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Abstract: Interest in and demand for electric vehicles (EVs) is growing strongly due to the 

increasing awareness of climate change and the respective long-term decarbonisation goals. 

One of the biggest challenges remains the provision of large-scale, efficient charging 

infrastructure (IS) in urban areas with intelligent load-management and appropriate pricing 

schemes. Our results show an increase of yearly load in the building due to E-Mobility by 39%. 

Nevertheless, given the appropriate pricing incentives, the existing household load maximum 

is not exceeded and also steering towards electricity consumption at times of high renewable 

shares is possible. This represents a promising outlook to avoid additional pressure to the 

distribution grid and promote the implementation of such IS for the further diffusion of EVs. 
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1 Motivation 

Interest in and demand for electric vehicles (EVs) is growing strongly. Reasons are the 

increasing awareness of climate change, as well as the obligation of car manufacturers to 

substantially reduce the CO2 emissions of their fleet by 2030. One of the biggest challenges 

associated with this development is the provision of appropriate charging infrastructure (IS). 

Major questions include, not only where charging can take place (e.g. private and public 

charging, charging at work, etc.) and at which charging speed and capacity, but also how the 

potential temporal distribution of this load develops. Whereas for single-family buildings and 

small company applications, many projects have already been conducted, research on how to 

provide optimal IS in large-scale residential buildings and the implementation of an optimal 

load-management (LM) for this application has been scarce. 

The main objective of this paper is to analyse various LM strategies for EV charging in large-

scale residential buildings, determined to meet the growing demand for E-Mobility and 

considering to which extent these strategies may offer relief to the distribution grid. In our 

analysis, we aim at keeping in mind the global perspective and consider it as essential for 

social welfare to avoid a further increase of existing load peaks through E-Mobility, regardless 

of the capacity available in one building or the regional distribution grid. Therefore, this paper 

puts a focus on detecting pricing and LM strategies that shift EV charging load away from the 

household (HH) load peaks and also analysing the amount of renewable electricity available 

while charging. This research is carried out within the cooperative R&D project URCHARGE 

powered by the Austrian Climate and Energy Fund within the programme “Zero Emission 

Mobility” with a focus on IS. The paper starts with an analysis of the technical and scientific 

state of the art in Chapter 2, focussing on the distribution of EV charging load in the first part 

and on potential pricing schemes and their impact on charging behaviour in the second part. 

Chapter 3 describes the methodology with the parameters and assumptions based on the 

project environment and the considered LM approach and pricing schemes. In Chapter 4, the 

results are presented for each of the LM approaches and finally, Chapter 5 provides 

comprehensive conclusions of our work. 

2 State of the art 

The technical state of the art of LM within our project currently provides a solution to distribute 

charging power across a maximum of 15 charging stations. This LM system, however, does 

not operate dynamically or intelligently based on an input from distribution grid constraints but 

simply carries out an equal distribution of total available capacity as soon as the EVs are 

plugged in. Concerning the interface between the charging station and the EV, there is no 

knowledge of the cars battery state of charge (SoC). This is planned to change through the 

implementation of the ISO standard 15118 in the near future, which shall equip the battery or 

EV with the capability to share information on the battery SoC [1]. Furthermore, there are few 

applications that allow the user to provide any demand data or potential charging time-periods 

to the LM system. Since large-scale applications of LM are still not commonly applicable and 

EV charging currently largely remains connected to a single home with a private charging 

station or charging at public stations, there are hardly any standardized tariff schemes defined 

to incentivize efficient LM from user side. In the public area, charging cost in the case study 

area Austria is usually set as a time-based tariff dependent on the maximum charging power 
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used, to reduce the time a car is parked at a public parking space. The tariff increases with 

charging speed from 3.7kW to 22kW. 

Our research on international literature on charging IS and LM software for EVs specifically in 

urban areas reveals evidence, that scientific investigation in particular for large-scale 

residential buildings, has still been scarce. Up to the best of our knowledge, no analysis with a 

focus on cost-minimal charging with a focus on IS and smart LM has been conducted in this 

respect. Efficient LM is also referred to as smart charging in literature, representing an adaption 

of the EV charging cycle to both the restrictions of the distribution grid and the needs of EV 

users [2]. IRENA [2] claims, that smart EV charging enables the following peak shaving, 

network congestion management and results in reduced grid IS investments by reducing 

pressure on the grid from E-mobility. Our paper, hence, aims at analysing the impact of efficient 

LM and appropriate pricing schemes on the load development in a large-scale residential 

building, with the goal of avoiding an increase in existing HH load peaks.  

2.1 Load increase through private EV charging 

As already mentioned, private charging IS still lacks appropriate research and resembles a 

promising opportunity to impose LM on a large amount of charging processes, since charging 

mostly takes place at home. With appropriate IS available, the share of controlled home 

charging may even be increased. As a basis for our research, we analyse literature on typical 

EV charging load profiles and the effect of controlled charging. Current literature suggest 

certain pricing schemes to shift charging load away from the HH load peaks. Limmer & 

Rodemann [3] focus on public charging IS and point out that peak demand charging represent 

a substantial part of the operating costs of public EV charging stations. They argue that today, 

the majority of public charging stations for EVs are uncontrolled, meaning that the EV is 

charged at full capacity as soon as it is plugged in, which usually coincides with overall load 

peaks. Furthermore, they claim that intelligent control of the charging processes supported by 

the use of a dynamic pricing scheme can help to reduce the peak load and the corresponding 

fees. In order to be able to ensure the largest possible range of distribution of the charging 

load, the period of time in which the car is available for charging must be as long as possible. 

Consequently, the price needs to decrease with time or the deadline the customer allows for 

charging. Bitar & Low [4] proposed such a pricing scheme and called it deadline differentiated 

pricing.  

Yi et al. [5] provide valuable work for our research and focus on residential charging 

coordination for a large-scale diffusion of EVs. They find that Plugged-in EV (PEV) charging 

tends to occur together with distribution grid peak loads, which is generally undesirable 

because utilities may need to take actions to serve this increased load reliably. Five different 

scenarios with varying PEV penetration are simulated to show the difference between 

uncontrolled and controlled charging, see Figure 1. Each scenario includes 100,000 

households and considers PEV penetrations between 10% and 90%. Simulation results based 

on real-world driving data show that home charging is able to meet the energy demand of the 

majority of Plug-in EVs in an average condition [6]. Wang et al. [6] conclude from their 

research, that with common battery capacities and if vehicle to grid technology is not 

considered, workplace charging would contribute to neither meeting EV owners' charging 

requirements nor improving their economic benefits under their assumptions. Furthermore, 
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they claim that with more than 7h of off-peak price, the charging load peak can be minimized 

based on minimum charging cost.  

 

Figure 1 Residential power load for uncontrolled and controlled charging under differing PEV penetration [5] 

Hu et al. [7] claim that without any management of EV charging load, peak loads may 

substantially increase in future electricity grids and point out that charging pricing mechanisms 

are essential to limit negative effects on the grid. Avoiding uncoordinated charging helps to fill 

valleys in the existing load pattern as shown in Figure 1. Hu et al. suggest a time-of-use (ToU) 

pricing mechanism, which incentivises the users to charge at low price or valley times. Their 

results show, however, that even with ToU pricing, new charging load peaks may arise, which 

is why the authors even suggest dynamic load-based pricing which adjusts the price according 

to the amount of EVs charged at a time. The price function for charging should, therefore, 

include charging and non-deferrable - in our case HH - load. Since their work represents a 

modelling approach it is, however, not very clear how this would work in reality. Dynamic 

pricing while the users’ EV is already plugged in seems to result in high price uncertainty. 

Hence, the strategy might have to be based on some prediction of common times with high 

charging demand or at least an opportunity for the user to set the charging strategy upfront. 

Nevertheless, our analysis will analyse the combination of a ToU with a capacity price based 

EV load and total load (see Chapter 3.4), given the chance for such user settings in the future.  

According to our analysis, uncontrolled charging leads to a steep increase in the evening load 

peak. With LM, it is possible to almost eliminate this peak increase and instead fill the HH load 

valley in the second night half with charging demand. This may reduce pressure imposed on 

the grid substantially and help to avoid investment in distribution grid expansion that may have 

been needed soon with the uncontrolled charging situation. An improved availability of large-

scale private charging solutions in the urban area, equipped with intelligent LM, would 

decrease the need for uncontrolled, public fast charging IS at least for daily purposes. In our 

point of view, deadline differentiated pricing suggested by Limmer & Rodemann [3], however, 

is a concept designated for private applications, since for public charging stations this would 

mean parking lots blocked for a considerable amount of time. 

2.2 Pricing schemes around the world 

The Northern-European countries represent leaders in the diffusion of E-mobility and provide 

valuable insights on EV charging and pricing. Norway’s pricing model for public fast charging 

includes a price per minute of charging regardless of how much energy is consumed and offers 
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home charging at a cheaper rate [8]. The authors find that to be able to avoid queues at the 

parking spaces, a combination of a time and energy based tariff is essential. Additionally, they 

clearly support a focus on low cost charging IS at home or at work realised as a larger-scale 

project to enable the application of efficient LM, instead of individual solutions that require 

greater investments per station. Surveys of Norwegian Battery-EV and Plug-in Hybrid EV 

owners show, that charging is mostly done at home or at work, relying on slow chargers, 

matching the usually shorter trip length of EVs, mostly used for commuting (92%) and common 

day trips (57%) [9]. In Sweden, up to 80% of EV users live in individual homes, compared to 

around 50% of the general population. In Sweden, customers usually pay per kilowatt-hour 

(kWh) or per minute with different pricing schemes for public fast- and slow charging, as well 

as private charging, see Figure 2. 

 

Figure 2 Price ranges for common charging practices in the Nordic Region [9]  

Across the Nordic Region, the pricing schemes described in Figure 3 can be detected [9]. 

There is a range of pricing schemes from variable pricing per kWh, to a combination of a price 

per charging session and per minute, down to a one-time fixed fee or no fee at all. The latter, 

however, probably represents a temporary offer to further promote E-Mobility. 

 

Figure 3 Potential pricing models [9] 

For the US, Kim [10] finds that San Diego Gas & Electric (SDGE) offers time-of-use (ToU) 

pricing plans to its residential customers. In a standard ToU plan, each day is broken into on-
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peak and off-peak time zones with a lower price during the off-peak hours. The ToU plans are 

also tiered plans so if a customer exceeds the baseline allowance by a certain threshold, the 

rates increase. This resembles a combination of time and quantity based pricing. The authors 

point out that one of the key factors that support a response to such tariffs is the users’ ability 

to work with smartphone applications (“apps”), taking advantage of the off-peak rates by setting 

the charging time. 

3 Methodology 

3.1 Parameters and assumptions 

To determine the EV charging demand and pattern, we assume a scenario in 2030, with a 30% 

share of EVs in individual transport [11]. Our simulation includes 150 parking spaces, whereas 

50 of them require charging IS. The building in total consists of 200 households with typical 

HH electricity consumption, which we extrapolate from a variation of 72 HH load profiles. In 

this first analysis, we do not add any flexibility to HH load but aim at analysing how overall 

building load develops with different LM and pricing strategies for charging EVs. Typical 

Austrian charging profiles are determined from a study analysing usual driving purposes and 

distances during weekdays and on weekends [12]. Based on the probability distribution of 

common start and return times and the trip length per purpose during a day, driving patterns 

are determined. We run this random distribution of diving patterns once and use the same 

profiles for all the approaches. A maximum capacity of 11kW for private stations in the building 

and 22kW for public charging stations is defined.  

In a first connection dimensioning assumption by our project partners, total charging capacity 

for the 50 EVs is determined as 50kW, available for all EVs within the local charging network. 

This represents an average capacity of 1kW per EV and is expected to be sufficient for the 

case study on hand, considering simultaneity and LM. The private charging stations are 

controlled by one master station that coordinates the distribution of the available 50kW across 

all its so-called slave stations at the parking spaces (see Figure 4).  

 

Figure 4 Master-Slave Network for Load Management 

The aim of the project Urcharge is an extension of LM functionalities for this master-slave 

network. The LM shall eventually be controlled dynamically from two sides. On the one hand, 

the control station shall receive input from current distribution grid restrictions as an input to 

charging capacity control. On the other hand, customer behaviour shall receive appropriate 

incentives through pricing schemes. The focus of this analysis clearly addresses LM triggered 
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through pricing from demand side and tests the impact of several approaches on grid load and 

renewable electricity use. Nevertheless, this can also offer valuable knowledge for future 

intelligent LM and appropriate steering of the master-slave network through a more central, 

top-down approach. 

When it comes to distribution grid constraints, however, we do not include any external 

limitations to the LM in this paper to avoid the complexity of adding assumptions about detailed 

load flows in the grid. Our model is restricted by the capacity per charging station and the 

described assumption for the total charging capacity. Overall, 15% of charging may take place 

at public stations, while 85% of charging shall take place at home. The battery capacity of the 

vehicles is determined as 40kWh for 80% of the cars and 60kWh for the remaining 20%. Their 

consumption is shown in Figure 5 and modelled as an interpolation between 15kWh/100km in 

summer and 17kWh/100km in winter, due to additional power consumption for heating and the 

batteries temperature sensitivity [13].  

 

Figure 5 Development of EV Power Consumption throughout the year 

Charging is possible from the time of return at the home station and limited to the required 

battery SoC. LM is carried out across all EVs currently charging and flexibility for the system 

obviously increases with the time-period an EV is plugged in. In our analysis, we determine 

different tariffs for private charging in the case study such as a flat rate per kWh, time-

dependent tariff, power-dependent tariff or charging based on the electricity spot price 2018. 

The model is set up as a linear optimization model with the aim of minimizing the costs of EV 

charging.  

1 Objective Function                                       𝑀𝑖𝑛 𝑓 (𝑃𝐶ℎ𝑝
, 𝑐𝑐ℎ𝑝

, 𝑃𝐶ℎℎ
, 𝑐𝑐ℎℎ

) = ∑ ∑ 𝑃𝐶ℎ𝑝
∗ 𝑐𝑐ℎ𝑝

+  𝑃𝐶ℎℎ
 ∗ 𝑐𝑐ℎℎ𝑛,𝑡,𝑖   

𝑃𝐶ℎ𝑝
  …  Charging power at public station 

𝑐𝑐ℎ𝑝
  …  Cost of charging at public station 

𝑃𝐶ℎℎ
  …  Charging power at home station 

𝑐𝑐ℎℎ
  …  Cost of charging at home station 

n  …  number of EVs 

𝑡  …  time steps  

𝑖  …  number of driving purposes 

3.2 Household load characteristics 

Figure 6 shows the pattern of the existing HH load and its common noon and evening peaks. 

To evaluate the HH peak and base load range, we make use of the percentile method, e.g. 

evaluating the HH load value that is exceeded by only 10% of all values, the 90th percentile 

(P90), which amounts to 98.8kW. Whereas everything above represents peak load, any value 

below represents a load valley.  
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Figure 6 Household Load Peaks and Valleys 

Furthermore, the spot price of 2018 is displayed, to show the given correlation with the HH 

pattern, with a correlation coefficient of 0.29, and its potential as a tariff scheme. The different 

tariff schemes described in Chapter 3.4 have the purpose to avoid an increase in the existing 

HH load maximum and fill the load valleys instead. With the spot price as a tariff scheme, we 

aim at considering the CO2 aspect of EV charging analyzed through the correlation coefficient 

of fossil fuel power generation and total load. This correlation should ideally be negative to 

achieve high load at low fossil fuel electricity generation. The LM approach is outlined in the 

upcoming chapter followed by a description of the applied tariff schemes.  

3.3 Load-management approach 

The considered LM approach includes an optimization of EV charging load with full information 

of the EVs power consumption for the upcoming year, based on the calculation of charging 

profiles described in Chapter 3.1. The optimization of charging demand is carried out according 

to the exact requirements of the users, representing an ideal situation for most efficient LM 

according to the defined limitations and the chosen pricing scheme. Based on upcoming driving 

distances and respective power consumption, the EVs can be charged from the time of their 

return to the home station until their next trip, up to the maximum capacity of the battery. In 

addition, the model has the possibility to charge EVs at public charging stations at a slightly 

higher price. Obviously, the approach largely differs from reality in which, currently, no 

information on the upcoming consumption of the EV is available. Still, such a scenario offers 

valuable insight on the benefit of exact customer information. Even a foresight of several days 

could be favourable to consider e.g. the weather forecast and predict potential longer weekend 

trips in nice weather or renewable power availability. For a seasonal shift of charging demands 

the battery capacity of 40kWh, however, appears to be too small. 

3.4 Pricing approach 

The goal of pricing schemes is to avoid any increase in the maximum HH load through EV 

charging demand, and shift charging into HH load valleys. Table 1 provides an overview of the 

pricing schemes that are applied and the structure that is followed throughout our results. For 

public charging, we always set a flat rate price that is slightly higher than the home charging 

tariff. At first, we apply a basic flat rate tariff without any incentives and control function for the 
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charging load distribution. We then compare the impact of other pricing approaches on 

charging load as, e.g. the historic spot price of 2018. In our analysis, we assume that the 

additional demand from E-Mobility has no effect on the spot price. We regard this as no harm 

to our approach, since we aim at showing the impact of pricing on the shift of charging load in 

general, with no means of delivering an exact pricing scheme or business model for a specific 

time in the future. A tariff based on the EXAA spot price manages charging load according to 

the countrywide electricity price determined by the share of renewable electricity and the 

overall load (Figure 6). This, obviously, does not mean that the approach favours the local grid 

situation.  

The ToU tariff is derived by applying a higher price at times of high HH load and a lower price 

during load valleys. In Figure 6, the P90 mark indicates at which times the higher ToU price is 

imposed. As a result, charging power is mostly consumed when HH load is beneath this 

threshold, if the EVs are available at the home station during these times. Finally, all three tariff 

schemes may be combined with a capacity price, specifically imposed on high charging load 

or high total load in the building, to further decrease pressure on the load situation. This tariff 

links situations of high charging load to a higher price. If it is even based on the total load 

situation, a higher price occurs when charging plus HH load is high. Table 2 provides a 

summary of the tariff approaches and the defined parameters. In our results, we analyse the 

impact of the pricing schemes on total load and the capability of these two capacity pricing 

options to further control the load situation.  

Table 1 Structure of pricing approaches  

A1  

Flat rate tariff 

B1  

Spot price 2018 

C1  

ToU tariff 

A2  

Flat rate tariff 

+ price on EV load 

(CPEV) 

B2  

Spot price 2018 

+ price on EV load 

(CPEV) 

C2  

ToU tariff 

+ price on EV load 

(CPEV) 

A3  

Flat rate tariff 

+ price on total load 

(CPTotal) 

B3  

Spot price 2018 

+ price on total load  

(CPTotal) 

C3  

ToU tariff 

+ price on total load  

(CPTotal) 
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Table 2 Defined pricing schemes 

 A. Flat Rate B. Spot Price C. ToU 

 Flat rate price determined 

as €/kWh. 

 

 

 

 

 

 

Expected incentive 

No incentives to users for 

the control of charging 

demand.  

Charging demand may 

lead to an increase in 

existing HH load peaks. 

Historic EXAA spot price for 2018. Largely 

determined by renewable power share and 

current national load. No interaction with 

demand in our model. 

The objective is the analysis of charging 

load shift based on the overall pattern of the 

spot price and its correlation with renewable 

power generation and suitability to avoid 

HH load peaks. We therefore do not add 

any grid cost etc.  

Expected incentive 

A high spot price usually represents low 

renewable power share and/or high 

demand. As a result, the spot price is 

expected to function as valuable incentive 

for a load shift away from peaks and low 

renewable power shares. 

High peak and low off-peak price based on 

current HH load. The threshold is defined at 

98.8kW representing the P90 of the HH 

load (see Chapter 3.1). Charging power 

above the threshold receives the peak 

price. 

 

 

 

Expected incentive 

The aim of a ToU price is to fill the HH load 

valleys and avoid increasing existing HH 

load peaks. 

This guarantees a low impact of e-mobility 

on the load peaks of the building and is 

considered to have minimum impact on the 

distribution grid. 

+ Capacity 

Pricing 

The Capacity Price is applied to charging at peak load times in addition to one of the defined tariff schemes A-C. 

1. CPEV: Price on peak EV charging capacity: Peak defined at above 2/3 of max. charging capacity 50kW = 

33.33kW to avoid charging at maximum available capacity. 

2. CPTotal: Price on peak total load: Tariff is imposed above maximum HH load to avoid total load exceeding HH 

load peak. 
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4 Model results 

The results show the development of total load through EV charging compared to existing HH 

load, applying the pricing schemes and structure described in Chapter 3.4. For the analysis, 

we define the parameters in Table 3 as essential for the LM approach evaluation. In our view, 

these indicators can be used as a measure of the effectiveness of the various price 

mechanisms. We are interested in the absolute peak load, which should be avoided as far as 

possible and in the valleys during which the EVs are to be charged. The volumes serve to 

represent the energy consumed in the previously defined base or peak load band. In order to 

evaluate the ecological impact of EV charging and the CO2 emissions of the electricity 

consumed, the correlation factor with fossil generation is used. 

Table 3 Important result parameters 

Category Parameter Description 

Peaks & 
Valleys 

Maximum [MW] Maximum load discovered in the year 

Minimum [MW] Minimum load discovered in the year 

Volume 
Peak volume [MWh] 

Load volume in the peak range above P90. Overall 
development of peak load 

Base volume [MWh] 
Load volume in the base range below P90. Overall 
development of base load 

CO2 

effect 
RCO2 

Correlation Coefficient of load with national fossil fuel 
power generation from coal and gas (2018 data) 

4.1 Results overview 

This chapter provides a results overview in graphs and a table to introduce the upcoming 

detailed analysis for overall load for each tariff scheme. We first analyse the exact 

characteristics of the existing HH load in the building as a baseline scenario, to which the 

situation with EV charging demand is compared. According to our assumptions and 

methodology, irrespective of the LM approach and the tariff scheme, the yearly charging 

demand of the 50 EVs accounts for about 213MWh and increases yearly electricity 

consumption of the building by about 39%. Figure 7 in the results overview shows the HH load 

boxplot, with a median of 59.9kW and a maximum at 173kW. Daily peak load usually occurs 

between 4pm and 8pm. Figure 7 shows the boxplot for the HH load only and Table 4 

summarizes the HH load characteristics in absolute numbers. 

Secondly, an overview of the developments including EV charging is presented. Figure 8 

represents a general overview of the charging load with a mark at the 50kW available charging 

capacity and HH load with a mark at P90 per pricing scheme applied, for an exemplary time-

period. Figure 9 shows how total load is distributed and includes a label for the maximum HH 

load at 173kW as a reference. The subplots can be compared for each of the pricing schemes 

and the analysis in the following chapters will refer to them.  

Table 5 offers a summary in numbers of the proportional changes due to EV charging load 

compared to HH load for each of the tariff schemes defined in our methodology and is 

visualized in Figure 10. The results represent the parameters defined and explained at the 

beginning of this chapter. 
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Parameter Results 

HH Load / Year 550 MWh 

Maximum HH Load 173 kW 

Median HH Load 59.9 kW 

Minimum HH Load 20 kW 

P90 HH Load 98.8 kW 

Base Volume <P90 537 MWh 

Peak Volume >P90 13 MWh 

RCO2* 40% 

Figure 7 Boxplot HH load 
Table 4 Characteristics of existing HH load 
*Correlation HH load & fossil power 

 

Figure 8 EV charging load and household load for each pricing scheme 
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Figure 9 Boxplot for total load per pricing scheme 

Table 5 Changes compared to HH Load due to 30% EVs  

 A1 Flat rate B1 Spot18 C1 ToU 

Maximum 24% 29% 0% 

Minimum 10% 14% 25% 

Peak volume 700% 288% 241% 

Base volume 22% 32% 33% 

RCO2  23% 13% 32% 

 A2 +CPEV B2 +CPEV C2 +CPEV 

Maximum 15% 20% 0% 

Minimum 51% 28% 73% 

Peak volume 364% 255% 215% 

Base volume 30% 33% 34% 

RCO2 27% 28% 36% 

 A3 +CPTotal B3 +CPTotal C3 +CPTotal 

Maximum 0% 0% 0% 

Minimum 8% 14% 25% 

Peak volume 690% 287% 238% 

Base volume 22% 32% 34% 

RCO2 23% 13% 32% 
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Figure 10 Visualization of changes compared to household load according to Table 5 

4.2 A. Flat rate tariff 

The result for charging load distribution based on the flat rate tariff shown in Figure 8 is 

characterized by a clear lack of control and appropriate incentives to the user for load shifting 

(A1). The time of return to the home station obviously largely correlates with the HH load peaks, 

leading to a load increase through EV charging demand, even with a simultaneity factor of 

28%. In Table 5, the significant rise of the load maximum is described with 24% and the peak 

volume is increased remarkably by 700%, resulting from uncontrolled charging. Regarding the 

50kW mark of total available charging capacity, Figure 8 for A1 indicates that this estimation 

is not fully utilized, but that EV charging power is compressed into few hours during the day, 

due to a missing incentive for greater distribution at lower charging power. The model does not 

yet make use of any public charging possibilities, making clear that sufficient availability of 

private charging IS reduces the need for fast charging options at least for common, daily 

business. Regarding the boxplot graphs in Figure 9, the simple flat rate tariff (A1) leads to a 

rather broad range of charging load values, which confirms the lack of control through this 

constant tariff.  

Consequently, a price on EV charging capacity (CPEV) in scenario A2 seems applicable and 

still offers appropriate convenience not leading to any additional public charging requirements. 

The capacity price indirectly leads to a capacity limitation, since users avoid these times and 

demand can also be met with only 33kW instead of 50kW (see Figure 8), distributed across a 

longer time period, though. This leads to a lower impact on total load if charging coincides with 

HH load peaks and achieves a shift into valley times, due to greater distribution. Figure 10 

points out that the load maximum only increases by 15%, whereas the load minimum is 

increased substantially by 51%, signifying that load valleys are filled successfully. Also the 

boxplot in Figure 9 is characterized by a very dense median area with a few outliers. Finally, a 

capacity price imposed on total load above the HH maximum (CPTotal) in scenario A3 

successfully avoids any increase in the load maximum. In this case, the boxplot in Figure 9 

shows a rather compact median area. Still the peak volume increases by 690%, which is 

substantial (see Figure 10). The correlation with fossil fuel power generation (RCO2) is at about 

25% for all flat rate tariff approaches. This leads us to the conclusion that a flat rate tariff 

requires additional control by limiting the EV charging capacity, as in scenario A2, to avoid a 

high impact on total load. 
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4.3 B. Historic spot price 

As already indicated in Figure 1, charging according to a spot price shows at a positive 

correlation with the common HH pattern. This already implies that the spot price may be a 

reasonable control measure as an incentive to users to shift EV charging away from the HH 

load peaks into the valleys. Figure 11 below, additionally, supports the correlation of the spot 

price with national renewable electricity feed-in with a coefficient ranging between -0.11 and -

0.2 depending on the season. Price dips occur at noon times and specifically at periods of high 

wind power generation. This would resemble a favourable approach concerning the CO2 

performance of E-Mobility. The results for the spot price approach B in Table 5 exactly confirm 

this capability. Whereas the spot price on its own does still lead to a significant increase in the 

maximum load of 29% and the peak volume of 288%, RCO2 is weakened substantially down to 

13%. The boxplot B1 in Figure 9, however, shows that the spot price as such is not sufficient 

as a load control measure and still causes many outliers exceeding HH load. Adding a price 

on EV charging capacity (B2) still causes a moderate increase in the maximum load of 19%, 

but a rather small increase in overall peak volume of only 255%.  

 

Figure 11 Spot price vs. renewable power generation 

Nevertheless, with EV users avoiding higher charging capacity, charging times are distributed 

more at lower charging power. As a result, charging load is shifted into times of higher fossil 

fuel power generation, increasing the ecological impact. Hence, the price on charging capacity 

reduces the flexibility to always follow the incentives given by the spot price. Nevertheless, 

approach B2 provides a rather good compromise between a comparatively low CO2 impact 

with a correlation of 28% and, at the same time a smaller impact on the peak volume with a 

desired shift into the base volume. Finally, the spot price together with a capacity price based 

on total load (B3) looks quite promising, leading to total load below the maximum HH load and 

again achieving the lowest RCO2 of 13%. Figure 10, however, makes clear that this leads to a 

quite substantial increase in the overall peak volume of 287%.  

4.4 C. Time-of-use tariff  

In our analysis, the ToU price achieves the best result when it comes to avoiding an increase 

in the load maximum, with a specifically good result in shifting load into the minimum of the HH 

load valley. Throughout the approaches, the boxplots in Figure 9 for the ToU price approach 

B present the most compact load results, indicating its capability of efficient charging power 

control. Table 5 shows that the maximum HH load is not exceeded by the additional EV 
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charging demand in any of the ToU approaches and also the minimum total load always 

increases. Additionally, the base volume is increased substantially, indicating a favourable 

distribution of charging load. We detect that a combination with a price on EV charging capacity 

(C2) even improves the result in all of these matters. Analysing Figure 10, with a peak load 

volume increase of only 215% and the shift into base load this approach represents the best 

result in almost all aspects, apart from the correlation with fossil fuel power generation. The 

CO2 impact appears highest in this case with RCO2 at 36%. High charging load is now avoided 

by the users resulting in a broader distribution into day times, also including higher HH load 

periods during noon. A capacity price based on total HH load (C3), however, shows a rather 

good result in all the aspects, specifically as combination of avoiding the load maximum and 

minimizing an increase in the peak volume amounts to 238% (see Table 5). 

The analysis of results in this chapter clearly indicates the complexity of determining an 

appropriate tariff scheme, depending on the exact objective of the LM system. If tariff 

approaches are combined, several interdependencies may lead to unexpected results and 

hence, require appropriate research upfront. Still, this first analysis provides insight on the 

advantages and disadvantages of certain pricing approaches, of which we derive a conclusion 

in the upcoming chapter. 

5 Conclusions 

Our results show a yearly load increase through E-Mobility in the residential building of 39%. 

In average, we calculate a fourfold increase in the peak volume and a base volume increase 

of about 33% due to charging demand, differing slightly between the different tariff-schemes 

applied (see Table 5). This, of course, depends on the threshold defined in this study. Due to 

peak load shifting through LM into “valleys”, a manipulation of currently existing and very 

predictable load patterns occurs, flattening the variation in HH load throughout the day. This 

analysis indicates that, if private charging IS is conveniently available, public charging is not 

necessarily required for common daily trips. Of course, it needs to be pointed out that these 

results rely upon our chosen methodology and parameters. Quite independently of the tariff 

scheme applied, the LM system operates throughout most of the time the EVs are plugged in, 

demanding as much time as possible for the most efficient operation of charging distribution. 

In our analysis, a mere flat rate pricing scheme for EV charging results in a remarkable 

increase in the building’s peak load. We, therefore, conclude that more specific control 

measures are required. The ToU tariff succeeds in staying below the HH load maximum and 

can provide incentives to avoid an increase in the peak volume. Together with a price on high 

charging capacity, this represents the best result of all approaches. The ToU tariff is a valuable 

approach for private charging, when EVs are plugged in for a long time at their private parking 

space. In this situation, the LM software can optimize the charging process according to current 

HH load which is very predictable, if allowed by the customer. Still, the ecological effect of the 

current share of renewable power generation is not considered in a ToU tariff. For this purpose, 

the spot price would provide a valuable incentive to charge while the renewable power share 

is high in the system. Obviously, specifically the ToU and spot price approach would be 

supported by the opportunity for the user to state a certain deadline at which the charging 

process needs to be completed, following the deadline-differentiated pricing described in 

Chapter 2.1. This would allow the LM software to distribute the charging load using the 
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maximum amount of hours granted. Furthermore, we claim that a certain amount of foresight 

of a few days enables a more successful LM process, due to a better consideration of forecasts 

on spot prices, potential driving distances or power consumption per 100km. 

Analysing the impact of increasing EV charging demand on the requirement of power 

generation through fossil fuels e.g. gas and coal we can conclude that a tariff such as the spot 

price may represent a capable measure to minimize the correlation between high charging 

total load and a high share of fossil fuel electricity in the system. However, considering an 

implementation of a PV rooftop system to supply charging power, we find that total load and 

PV generation hardly show any or often even a negative correlation, meaning that storage will 

be required as flexibility. In any case, we do see a potential impact on the electricity mix 

consumed, if peak hours increase causing higher import or thermal power requirements. This 

would lead to a negative impact on the CO2 balance, as long as Europe’s electricity market is 

not 100% renewable, and requires attention. 

Our future research within the Urcharge project will include rolling optimization between one 

and three days under less foresight on EV power consumption and pricing to analyse a 

scenario closer to reality. Additionally, we aim at an extension of the model to a common urban 

region in Austria including several large-scale residential buildings, also with a rooftop-PV 

system, and a public building (e.g. shopping centre) with EV charging opportunities and 

differing load patterns. Furthermore, our future research shall put a focus on the load and CO2 

aspects of E-Mobility within this larger environment, also deriving more general conclusions 

not only for this case study, but applicable on a national scale. To analyse the effect of an 

increasing share of renewable power generation, we will model the potential power generation 

in 2030 and derive a spot price estimation, which again may represent an input to the defined 

LM approaches. 

Abbreviations 

CO2 Carbon dioxide 

CPEV Capacity Price on EV charging load 

CPTotal Capacity price on total building load 

EV Electric Vehicle 

HH Household 

IS Infrastructure 

LM Load management 

PEV Plug-in Electric Vehicle 

P90 90th percentile 

RCO2 CO2 correlation coefficient between load and fossil power 

SoC State of charge 

ToU Time of use 
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