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Abstract: The goal of the development project was to forecast power flows for a large industrial 

complex with an hourly step for several days, with as low a prediction error as possible. The 

primary activity of the industrial complex is the production of steel and technology-related 

production. However, there are several independent companies on this energy connection who  

have nothing in common with steel production technology. The biggest consumer is the electric 

arc furnace and the accompanying technology that has a specific energy profile. The rest of 

the companies are classic industrial electricity consumers, following the 7/5 working week. We 

have an interesting mix of electricity consumption profiles, so classic forecasting methods do 

not produce good results. The article presents an approach to predicting consumption by 24 

hours R2 = 0.93 MAPE = 9.9% and 48 hours R2 = 0.91 MAPE = 12.3% by combining standard 

forecasting methods and technical innovation appropriately. 
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Introduction 

Predicting the future has been a great motivation for the human mind for centuries. Today's 

prediction methods are based on the time series theory. Time series harbour a wealth of 

information. With proper mathematical and statistical processing, they give us prediction 

models. With forecasting models, we can predict the future. The goal is to make the forecast 

with as low an error as possible. 

 

Figure 1: Block diagram of industrial complex and power flows` branches 

The motivation is to predict with as low an error as possible the amount of energy we need in 

the next few days, which can be useful in reducing the cost of electricity. Secondly, the question 

is why would we produce more energy than we need and, thus, pollute the environment?  We 

present power flow forecasts for three branches of one energy node at the entrance of a large 

industrial complex. The Root-Mean-Square Error (RMSE) is a measure of the quality of the 
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different forecasting models for the same time series. The classic prediction model for the 

described case reaches RMSE = 3389. A power flow forecasting model with low prediction 

error reaches RMSE = 2584, in other words, we have improved the forecast model by over 

30%. The prediction step is 1 hour or 15 min. The results can be represented by a forecast 

error for the next hour on with 6% error, and the next 48 hours with 12% error. 

 

1. Methodology of work 
 

The methodology of the work is based on the time series theory, statistics and machine 

learning. The forecasting methodology is supported by a database and visualisation is 

performed through a secure Web server. The work process is basically classical: first, based 

on the characteristics of the time series of the measured electricity consumption, we choose 

the appropriate forecasting methodology. The methodology chosen returns a prediction model, 

but with indeterminate parameters. The parameters of the prediction model are then calculated 

by the programme before each prediction. Up to this point the methodology is completely 

normal.  

Classical work procedures need to be modified in order to achieve low prediction error. 

Simplified, for each time series at a branch, it is necessary to determine what is the useful 

signal and what is the noise. The prediction is then made only for the useful signal, because 

the noise interferes with the forecast. After the prediction is completed, the noise is again 

added to the useful signal. That’s how we get power flow forecasting with low prediction error. 

In this way, the basic measuring time series of the measured energy was processed - it is the 

first input signal. In order to perform the described procedures, we used two different forecast 

models, which partially cover the dynamic property of consumption in each branch. 

The second input time series is a planned production of the arc furnace in company 1; this is 

called the predictor.  For low prediction error, it is necessary to determine what information the 

predictor of the production of the arc furnace must contain. The predictor should be as simple 

as possible so that it can be realised in a project.  A periodogram was used to optimise the 

content of the predictor. The result was a bit surprising: For a prediction with a low error it is 

only necessary to know the time interval from when and until the production in the furnace will 

run. So, the predictor only has a value of 0 or 1. 

The first step to successful realisation of power flow forecasting is to study the characteristics 

of the main electricity consumers. There are several companies in the area of the former Ravne 

Ironworks, employing approximately 3,000 people. The largest company on the site is Metal 

Ravne, with approximately 900 employees. Metal Ravne is the largest company, and the 

largest consumer of electricity. The company consists of a steelworks, a rolling mill and electro-

smelting under  slag. In the steel plant, the basic unit is a 45-tonne electric UHP oven and a 

vacuum refill kiln for castings of classical ingots. In the Electro-under-slip section under the 

slag, 36-tonne and 3-tonne ESR devices are in use. At present, it operates in the scale of an 

industrial complex of 20 companies. The dominant characteristic of energy consumption from 

the grid is determined by the electric arc furnace, and by companies that are technologically 

connected to the smelting of iron (Figure 1). 

For the predictive work, we used the classical information structure for such examples in the 

composition: relational database, time series modeller, and HTML visualisation on the WEB 

intranet server (Figure 2). The time series modeller procedure estimates exponential 

smoothing, univariate Autoregressive Integrated Moving Average (ARIMA), and multivariate 

ARIMA  models for time series, and produces forecasts. The procedure includes an expert 
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modeller that attempts to identify and estimate the best-fitting ARIMA or exponential smoothing 

model for one or more dependent variable series automatically, thus eliminating the need to 

identify an appropriate model through trial and error. 

 

Figure 2: Forecasting information structure 

Statistics. Goodness-of-fit measures: stationary R-square, R-square, Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Maximum 

Absolute Error (MaxAE), Maximum Absolute Percentage Error (MaxAPE), normalised 

Bayesian information Criterion (BIC). Residuals: autocorrelation function, partial 

autocorrelation function, Ljung-Box Q. For ARIMA models: ARIMA orders for dependent 

variables, transfer function orders for independent variables, and outlier estimates. Also, 

smoothing parameter estimates for exponential smoothing models. 

The Mean Absolute Percentage Error (MAPE), is a measure of prediction accuracy of a 

forecasting method in statistics. It usually expresses accuracy as a percentage, and is defined 

by the formula: 
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where Ai is the actual value and Fi is the forecast value. Problems can occur when calculating 

the MAPE value with a series of small denominators. A singularity problem of the form 'one 

divided by zero' and/or the creation of very large changes in the Absolute Percentage Error 

can occur, caused by a small deviation in error. 

The Root-Mean-Square Error (RMSE) is a frequently used measure of the differences between 

values predicted by a model and the values observed. The RMSE represents the sample 

Standard Deviation of the differences between predicted values and observed values. These 

individual differences are called residuals when the calculations are performed over the data 

sample that was used for estimation, and are called prediction errors when computed out-of-

sample. RMSE is a measure of accuracy to compare forecasting errors of different models for 

data and not between datasets, as it is scale-dependent. RMSE is sensitive to outliers. 

RMSE =  √
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R squared in statistics, the coefficient of determination, denoted R2, is the proportion of the 

variance in the predictable variable Fi that is from the actual value Ai: 
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𝑅2    = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

2. Forecasting of power flow extremes for 7 days 
 

The first forecasting power flows task predicted of hourly maximum (minimum) at 7 days. An 
expert modeller has two inputs: Power flow time series and independent variable (predictor). 
The predictor was the total number of fillings at the electric arc furnace on working days.   The 
inputs to the forecasting expert modeller were calculated easily using aggregate functions from 
the basic time series (Figure 3). For the predictor, we used the total number of fillings at the 
electric arc furnace during a  day, that is, between midnight and midnight. The administrative 
production plans were not adequate for the predictor, as they do not take into account the 
actual production time, which is usually at night, or continuously for 24 hours over the weekend. 
Therefore, the predictor was calculated from the measured power flows at the common energy 
connection.   

 

Figure 3: Observed day max and predictor time series 

 

Table 1:  The power flow forecast for the day hour maximum 

 

 

The forecasting simulation for the 220 real cases, hour maximum per day, give as a statistic   
R2 = 0.9. That means that 90% of all of the variance in power flow extremes can be explained. 
Statistically good prediction results are obtained at high power flows. For  small values the 
MAPE statistic was poorer,  due to the nature of MAPE valuation - divide by low value. It should 
be clarified that the predicted values and the measured values have practically the same mean 
value and the same Standard Deviation, this is a good indication that the measurements and 
forecast are very close. (Table 1).  
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3. Daily load forecasting 

The next task was forecasting daily power flows in an hourly step. In reality, the second task 
is more challenging than the first, since here we have to predict at least 24 steps (better 48 
steps), and the prediction error increases with the number of prediction steps. Also, in this task, 
the expert modeller has two inputs: Power flow time series and predictor time series. We used 
calculated hourly averages or sum. The total number of fillings at the arc furnace in a working 
day is not a good predictor for the second task, and the exact time of filling in  the arc furnace 
is still required. The first forecasting try was calculated with a simple predictor, which  used the 
1-hour step predictor estimated from the hour time series. The predictor has a value of 1 if the 
hourly average power consumption is > 4,500, and 0 if the hourly average power consumption 
is < 4,500. In principle, the formula for the calculation is the same as in the case before, except 
that we added time to the predictor. This predictor was 1 throughout the operation of the electric 
arc furnace, that is, it did not follow the typical three phase production cycle at the arc furnace.  

 

Figure 4: Daily load forecasting with simple predictor 

 
Statistically the results of the forecasts, due to the simple predictor, results in the MAPE 
statistic 13% and R2 0.84. The prediction/observed chart shows that such a prediction is not 
applicable, as the real forecasts, wail points, are hosted in two unrelated clouds.                                           

 

3.1 Daily load forecasting with low prediction error 

 
3.1.1 Independent variable - predictor 

We assumed that the main culprit for the poor prediction was the overly simple predictor, which 
describes the events surrounding the arc furnace poorly, since the time series modeller was 
not obvious. In consultation with energy experts in the field, we realised that it is necessary 
first to understand the technological process of smelting and related electricity consumption. 
The furnace melting studies gave us the main ideas and guidelines on how to design a 
predictor to make it easy to put into practice, and to describe the energy developments in an 
electric arc furnace sufficiently well. The arc furnace and related technological processes are 
the dominant consumers of electricity. The melting process [1] is always carried out in an arc 
furnace with reduced voltage, since the conditions for burning the arc are poor in the cold 
cartridge; the ignition of the arc is carried out in such a way that the graphite electrode is 
lowered to the cartridge until it touches it, and until contact is reached with the other electrodes 
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with the cartridge. At the discharge of the electrode, then an electric arc is triggered - like the 
firing of the arc during manual arc welding. Because of this, the current size changes from the 
short-circuit current through the rated power to the zero current at the end of the arc. We say 
that the arc furnace is operating restlessly at the beginning of melting. Due to the formation of 
the first melt at the bottom of the furnace, the conditions for burning the arc are improved due 
to good ionisation conditions, so we increase the voltage of the arc gradually and the power of 
melting to the full power: This is always the largest when melting the cartridge when there is 
already a melt on the bottom of the furnace. We say that we are melting with a hidden arc, 
which radiates at full power in the crater, which the boulder has drilled into the plunged insert 
of old iron. In the further heating of the melt or in maintaining its temperature, the power of the 
furnace is significantly lower. The characteristics of the electric arc must be different in this 
situation, since the arc can now freeze to the walls and the furnace vane. 

 

 

Figure 5: Power flow during melting process [1] 

 
Old iron smelting takes  place in three phases, which means three jumps and falls in energy 
consumption (Figure 5). In fact, these ups and downs in geometric shape are constantly the 
same, with amplitudes and duration changing slightly. These changes are within reasonable 
limits, so the principle maintains. The course depends on the composition of the old iron 
melting in the arc furnace and what kind of steel we want as a final product. 
 
We can’t construct an exact predictor for each batch, since the energy consumption profile 
during and after melting depends on several parameters, and each batch is unique in principle. 
We decided on a reasonably simplified universal form of the predictor with a logical amplitude 
of 0 and 1. The x axis has a 15 min time step. In the phase of testing the adequacy of the 
predictor for a good forecast, we did not activate the Production Planning Department in the 
ironworks, but, in the development phase, the predictor was calculated from the energy 
measurements at the main energy connection. As we said, we did this on a 15 min time axis, 
and the amplitude was determined by the if statement: The value is 1 if the consumption is 
greater than 6,000 and 0 if the consumption is less than 6,000. The predictor step line in the 
chart has a grey colour. The step lines are characterised by the ups and downs of consumption 
for the smelting technology of the individual batch (Figure 6). An alert reader with a sense of 
geometry can already be convinced by comparing power flow during steel production and the 
predictor for forecasting with low prediction error on the proper construction of the predictor. 
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Figure 6: Predictor for forecasting with low prediction error - 15 min time step 

 
With the periodogram we checked the shape of the predictor and whether we really captured 
the dominant influence of the electric oven. The spectral plots were used to identify periodic 
behaviour in the time series. Instead of analysing the variation from one time point to the next, 
it contrasts the variation of the series as a whole into periodic components of different 
frequencies. Smooth series have stronger periodic components at low frequencies; random 
variation ("white noise") spreads the component strength over all frequencies. From the 
spectral figures, we can see that we have a good predictor, since it has a frequency spectrum 
similar to the frequency spectrum of the time series of common power flows. There is a slight 
difference in the shape of the curve, the frequency curve of the measurements is only shifted 
more along the y axis, which is understandable, since the predictor runs in amplitudes from 0 
to 1 and the power flow measurements have a maximum amplitude of 40,000. 

 

Figure 7: Final predictor – hour time step 

 

3.1.2 Forecasting model 
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As we made predictions on an hour scale, the predictor had to be calculated into an hour scale, 
with hourly average aggregate function.  Thus, we get a new predictor on the hour scale, which 
now had four values: 0.25, 0.5, 0.75, 1 (Figure 7). This was followed by the computation of a 
forecast model with hourly power flow time series and a new predictor. The model for our 
example is the linear standard ARIMA with notation (0,1,1) (1,0,1), where 0 is the order of 
autoregression, 1 is the order of differentiation, and 1 is the order of moving-average, and 
(1,0,1) are their seasonal counterparts. Model statistics are very good, approaching the magic 
limit to predict power flows with 95% probability 

The model can be estimated with statistics, or we can draw a chart. Model statistics are 
calculated for a 1-step virtual prediction, and, of course, for the same time series from which 
the model originated. Stationary R-squared explains that there is a seasonality in the 
measurement data, which the forecast model did not explain properly. The R-squared value 
tells us that the variability of the time series is well covered by the prediction model. 
Statistically, the prediction model misses the measurement data at 9%. The model's residual 
does not have autocorrelation, so the autocorrelation of time series is captured adequately in 
the model. The time series from which the model was created was selected without outliers 
(Table 2). The “observed/model fit prediction” dot chart fits in well with the ideal 45 degree line. 
It is encouraging that the points clouds in the chart are  continuous, and that the points cloud 
is a narrow ellipse. The narrow cloud of the ellipse is due to the good correlation between the 
model and the measurements (Figure 8). A continuous cloud means that the 4-level predictor 
is sufficiently segmented, since, for the 2-level predictor, we had a point cloud with a torn ellipse 
(Chapter 2). The statistics of the forecasting model are usually better than the statistics of the 
real forecasting itself. We want to predict 48-steps with an hourly step, so we are interested in 
the power flow over the next 48 hours. Of course, the first step to the final solution is a good 
model; a realistic prediction must be verified by the next phase, that is, by simulating the 
prediction on the real measurement data. 

Table 2:  The prediction model fit statistic 

Model 
Number of 
Predictors 

 Ljung-Box Q(18) 
Number 
of 
Outliers 

Stationary R-
squared R-squared RMSE MAPE MAE MaxAPE MaxAE Statistics DF Sig. 

Poraba-
Model_1 

1 .914 .947 2081 9.217 1579.641 285.055 9948 21.905 15 .110 0 

 

 

Figure 8: Model fit for forecasting with low prediction error 
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3.1.3 Procedures for improving forecasts 

To simulate the forecast, we can use a fixed model as we have just calculated. However, it 
can be recalculated before each prediction, which means that we adjust to any changes in the 
time series from which we learn. The learning time series has a constant length, which means 
moving the start and end of the time series one step to the right. The 1-step simulation 
prediction statistics are very close to the model statistics. Forecasts for 24 hours already have 
a 15% prediction error. However, the statistics of the 48-step simulation forecast were even 
worse. The relative error started approaching 19%. Statistics are a professional numerical 
indicator of the quality of forecasts, but the observed/prediction graphs are also very illustrative, 
and are an excellent tool for developing reflection and improving forecasts. A careful 
observation of the 48-step forecast chart makes it clear that the forecast is (statistically) poor, 
due mainly to the forecast of low power consumption values (Figure 9). The question arises 
how to improve the prediction, as it seems that we have chosen the predictor well, and also 
the expert modeller has determined the parameters of the prediction model optimally. We will 
explain how to improve our forecasts below. 

When we looked at the annual time series of consumption on the total energy connection, we 
found that the time series was not monotonous. For the first time, we noticed extremely low 
spending on national and religious holidays, which means that there are time series outliers. 
Another example of deviation from monotony is the maintenance of an electric arc furnace. 
During the maintenance of the arc furnace, also, the technological lines related to the melting 
of iron do not operate. At that time, consumption on the main energy connection follows the 
characteristic of the seasonal multiplicative Winters model 7/5.  

 

Figure 9: Forecasting simulation, next step to final prediction model 

 
We don't need a predictor to predict with the Winters seasonal model. The Winters' 
observed/prediction chart is almost a 45 degree line, which means that the model does the 
prediction very well, in other words,  we can predict this fraction of low power flows for a long 
time (Figure 10). The magnitude of the power flows is between 5,000 and 10,000, and is in 
amplitude of the problematic area of poor forecasting, as shown by the 48 hour prediction chart 
at full arc furnace operation (Figure 9). The second conclusion is that the season weeks are 
repeated throughout the year, whether  the arc furnace is or is not in operation. When the arc 
furnace is in operation, the seasonal power flow 7/5 is added to the dominant power flow 
caused by  the arc furnace technology part.  

So far, we have explained that the power flow at the common energy connection can be  
explained by ARIMA with a predictor and the Winters multiplicative seasonal model. The 
Winters model explains power flow exactly where ARIMA fails.  
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Figure 10: Load forecasting with multiplicative Winters 
 

We came to the idea of subtracting the seasonal data covered by Winters from the total power 
flow, thus allowing the ARIMA model with the predictor to do its part of the forecast perfectly. 
When the ARIMA model predicted for 48 hours, we finally add seasonal “Winters data” back 
to forecast of total consumption. The correlation between the forecast with Winters and the 
associated weekly measurement data is very strong. In order to perform the described 
subtraction and summation, we had to determine a “standardised weekly seasonal power 
flow”. We were able to do this because the Winters model is practically the same over a long 
period, and has a low forecast error.  That is how we came to the final forecasting with a low 
prediction error.  The forecasts were made by an expert modeller, and the last described 
transactions with the data were performed within the framework of a real-time database, using 
the SQL scripting language. 

 

4  Results - power flow forecasting with low prediction error 

Branch A represents a prediction of the power flow from the public grid, the total energy 

consumption, and has the result: for the next 24 hours: R2
24 = 0.93 MAPE24 = 9.9%; for the 

next 48 hours: R2
48 = 0.91 MAPE48 = 12.3% RMSE48 = 2584. The solution was tested by 

simulating a forecast of 21 days. We predicted each time point 48 times, first predicting 48 

steps away, then 47 steps away, etc. The last prediction is one step ahead of the time point. 

Thus, for 21 days, we made 504 forecasts (Figure 11, Table 3). 

 

Figure 11: Final result forecasting with low prediction error 
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Branch B represents the power flow prediction to  company 1, the largest consumer of power, 

with a typical coefficient of determination R2
48 = 0.93. Branch C represents the flow to all other 

businesses with MAPE48 = 7%. The project timeline can only be carried out in close cooperation 

with experts on site. A good real-time forecasting system for business can come about with 

steps to verify and implementation. Verification of the forecasts` model from a data set of the 

last year. Determine how a steel mill is capable to provide a predictor.  Estimate of financial 

savings using predicted daily power flows in the daily market, virtual trading for 3 months.  

Definition of the trading worst cases. Finally, signing a software lease and software 

maintenance contract. 

Table 3:  Final forecasting statistic 
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