
Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity
SODA 2025

Tijn de Vos rO Aleksander B.G. Christiansen

TU Graz

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No
947702) and is supported by the Austrian Science Fund (FWF): P 32863-N.

Dynamic Graph Algorithms

Graph G = (V ,E) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 2

Dynamic Graph Algorithms

Graph G = (V ,E) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 2

Dynamic Graph Algorithms

Graph G = (V ,E) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 2

Dynamic Graph Algorithms

Graph G = (V ,E) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 2

Dynamic Graph Algorithms

Graph G = (V ,E) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 2

Dynamic Graph Algorithms

Graph G = (V ,E) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 2

Dynamic Graph Algorithms

Graph G = (V ,E) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 2

Part 1: Dynamic Min-Cut
Part 2: Dynamic Arboricity

Part 3: More on Tree-Packings

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 3

Problem

Min-Cut (connectivity): find λ, the
minimum number of edges disconnecting
the graph.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 4

Dynamic Min-Cut: Main Result

Theorem

Unweighted, undirected (multi-)graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ if λ ≤ λmax in Õ(λ5.5

max

√
n) worst-case

update time.

Previously: Õ(λ14.5
max

√
n) [Thorup ‘07].

Corollary

Simple, unweighted, undirected graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ with amortized update time

Õ(min{m1−1/12,m11/13n1/13, n3/2}).

Previously: Õ(m1−1/31) [Goranci/Henzinger/Nanongkai/Saranurak/Thorup/Wulff-Nilsen ‘23].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 5

Dynamic Min-Cut: Main Result

Theorem

Unweighted, undirected (multi-)graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ if λ ≤ λmax in Õ(λ5.5

max

√
n) worst-case

update time.

Previously: Õ(λ14.5
max

√
n) [Thorup ‘07].

Corollary

Simple, unweighted, undirected graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ with amortized update time

Õ(min{m1−1/12,m11/13n1/13, n3/2}).

Previously: Õ(m1−1/31) [Goranci/Henzinger/Nanongkai/Saranurak/Thorup/Wulff-Nilsen ‘23].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 5

Tree-Packing and Min-Cut

Definitions

Tree-packing T = {T1,T2, . . . }: a family of trees in G such that [...].

Load LT (e): the number of trees in T that contain an edge e.

Relative load ℓT (e) := LT (e)/|T |.

Static [Karger ‘00] + [. . .].

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21].

Dynamic [Thorup/Karger ‘00, Thorup ‘07].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 6

Tree-Packing and Min-Cut

Definitions

Tree-packing T = {T1,T2, . . . }: a family of trees in G such that [...].

Load LT (e): the number of trees in T that contain an edge e.

Relative load ℓT (e) := LT (e)/|T |.

Static [Karger ‘00] + [. . .].

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21].

Dynamic [Thorup/Karger ‘00, Thorup ‘07].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 6

Static: Disjoint Trees [Karger ‘00]

Theorem [Nash-Williams ‘61, Tutte ‘61]

A graph with minimum cut λ contains at least λ/2 disjoint spanning trees.

Take T = {T1,T2, . . . } a maximum packing of disjoint spanning trees.

We know λ/2 ≤ |T | ≤ λ by above.

T covers any min-cut C . On average, a tree contains λ/|T | ≤ λ/(λ/2) ≤ 2 edges from
C : it 2-respects C.

Can find tree-packing of size O(λ) to approximate a packing of disjoint trees [Gabow ‘95,

Plotkin/Shmoys/Tardos ‘91].

Can find 2-respecting cuts in O(m log2 n) time.

Sample λ → log n to obtain O(m log3 n) time.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 7

Static: Disjoint Trees [Karger ‘00]

Theorem [Nash-Williams ‘61, Tutte ‘61]

A graph with minimum cut λ contains at least λ/2 disjoint spanning trees.

Take T = {T1,T2, . . . } a maximum packing of disjoint spanning trees.

We know λ/2 ≤ |T | ≤ λ by above.

T covers any min-cut C . On average, a tree contains λ/|T | ≤ λ/(λ/2) ≤ 2 edges from
C : it 2-respects C.

Can find tree-packing of size O(λ) to approximate a packing of disjoint trees [Gabow ‘95,

Plotkin/Shmoys/Tardos ‘91].

Can find 2-respecting cuts in O(m log2 n) time.

Sample λ → log n to obtain O(m log3 n) time.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 7

Static: Disjoint Trees [Karger ‘00]

Theorem [Nash-Williams ‘61, Tutte ‘61]

A graph with minimum cut λ contains at least λ/2 disjoint spanning trees.

Take T = {T1,T2, . . . } a maximum packing of disjoint spanning trees.

We know λ/2 ≤ |T | ≤ λ by above.

T covers any min-cut C . On average, a tree contains λ/|T | ≤ λ/(λ/2) ≤ 2 edges from
C : it 2-respects C.

Can find tree-packing of size O(λ) to approximate a packing of disjoint trees [Gabow ‘95,

Plotkin/Shmoys/Tardos ‘91].

Can find 2-respecting cuts in O(m log2 n) time.

Sample λ → log n to obtain O(m log3 n) time.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 7

Static: Disjoint Trees [Karger ‘00]

Theorem [Nash-Williams ‘61, Tutte ‘61]

A graph with minimum cut λ contains at least λ/2 disjoint spanning trees.

Take T = {T1,T2, . . . } a maximum packing of disjoint spanning trees.

We know λ/2 ≤ |T | ≤ λ by above.

T covers any min-cut C . On average, a tree contains λ/|T | ≤ λ/(λ/2) ≤ 2 edges from
C : it 2-respects C.

Can find tree-packing of size O(λ) to approximate a packing of disjoint trees [Gabow ‘95,

Plotkin/Shmoys/Tardos ‘91].

Can find 2-respecting cuts in O(m log2 n) time.

Sample λ → log n to obtain O(m log3 n) time.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 7

Static: Disjoint Trees [Karger ‘00]

Theorem [Nash-Williams ‘61, Tutte ‘61]

A graph with minimum cut λ contains at least λ/2 disjoint spanning trees.

Take T = {T1,T2, . . . } a maximum packing of disjoint spanning trees.

We know λ/2 ≤ |T | ≤ λ by above.

T covers any min-cut C . On average, a tree contains λ/|T | ≤ λ/(λ/2) ≤ 2 edges from
C : it 2-respects C.

Can find tree-packing of size O(λ) to approximate a packing of disjoint trees [Gabow ‘95,

Plotkin/Shmoys/Tardos ‘91].

Can find 2-respecting cuts in O(m log2 n) time.

Sample λ → log n to obtain O(m log3 n) time.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 7

Static: Disjoint Trees [Karger ‘00]

Theorem [Nash-Williams ‘61, Tutte ‘61]

A graph with minimum cut λ contains at least λ/2 disjoint spanning trees.

Take T = {T1,T2, . . . } a maximum packing of disjoint spanning trees.

We know λ/2 ≤ |T | ≤ λ by above.

T covers any min-cut C . On average, a tree contains λ/|T | ≤ λ/(λ/2) ≤ 2 edges from
C : it 2-respects C.

Can find tree-packing of size O(λ) to approximate a packing of disjoint trees [Gabow ‘95,

Plotkin/Shmoys/Tardos ‘91].

Can find 2-respecting cuts in O(m log2 n) time.

Sample λ → log n to obtain O(m log3 n) time.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 7

Ideal Tree-Packing
Define ideal load ℓ∗(e).

We want
#disjoint spanning trees = 1

maxe ℓ∗(e)
.

If we fit k disjoint spanning trees in some G/P containing e then

ℓ∗(e) =
1

k
.

Spoiler:

arboricity =
1

mine∈E ℓ∗(e)
.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 8

Ideal Tree-Packing
Define ideal load ℓ∗(e).

We want
#disjoint spanning trees = 1

maxe ℓ∗(e)
.

If we fit k disjoint spanning trees in some G/P containing e then

ℓ∗(e) =
1

k
.

Spoiler:

arboricity =
1

mine∈E ℓ∗(e)
.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 8

Ideal Tree-Packing
Define ideal load ℓ∗(e).

We want
#disjoint spanning trees = 1

maxe ℓ∗(e)
.

If we fit k disjoint spanning trees in some G/P containing e then

ℓ∗(e) =
1

k
.

Spoiler:

arboricity =
1

mine∈E ℓ∗(e)
.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 8

Ideal Tree-Packing
Define ideal load ℓ∗(e).

We want
#disjoint spanning trees = 1

maxe ℓ∗(e)
.

If we fit k disjoint spanning trees in some G/P containing e then

ℓ∗(e) =
1

k
.

Spoiler:

arboricity =
1

mine∈E ℓ∗(e)
.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 8

Ideal Tree-Packing – Formal

For a vertex partition P, we define the partition value as

part val(P) :=
|E(G/P)|
|P| − 1

.

Rephrase [Nash-Williams ‘61, Tutte ‘61]:

Φ := max
T

1

maxe∈E ℓT (e)
= min

P
part val(P).

Define ideal load ℓ∗ recursively:

▶ Let P∗ be a partition with part val(P∗) = Φ.
▶ For all e ∈ E (G/P∗), set ℓ∗(e) := 1/Φ.
▶ For each S ∈ P∗, recurse on the subgraph G [S].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 9

Ideal Tree-Packing – Formal

For a vertex partition P, we define the partition value as

part val(P) :=
|E(G/P)|
|P| − 1

.

Rephrase [Nash-Williams ‘61, Tutte ‘61]:

Φ := max
T

1

maxe∈E ℓT (e)
= min

P
part val(P).

Define ideal load ℓ∗ recursively:

▶ Let P∗ be a partition with part val(P∗) = Φ.
▶ For all e ∈ E (G/P∗), set ℓ∗(e) := 1/Φ.
▶ For each S ∈ P∗, recurse on the subgraph G [S].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 9

Ideal Tree-Packing – Formal

For a vertex partition P, we define the partition value as

part val(P) :=
|E(G/P)|
|P| − 1

.

Rephrase [Nash-Williams ‘61, Tutte ‘61]:

Φ := max
T

1

maxe∈E ℓT (e)
= min

P
part val(P).

Define ideal load ℓ∗ recursively:

▶ Let P∗ be a partition with part val(P∗) = Φ.
▶ For all e ∈ E (G/P∗), set ℓ∗(e) := 1/Φ.
▶ For each S ∈ P∗, recurse on the subgraph G [S].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 9

Ideal Tree-Packing – Formal

For a vertex partition P, we define the partition value as

part val(P) :=
|E(G/P)|
|P| − 1

.

Rephrase [Nash-Williams ‘61, Tutte ‘61]:

Φ := max
T

1

maxe∈E ℓT (e)
= min

P
part val(P).

Define ideal load ℓ∗ recursively:
▶ Let P∗ be a partition with part val(P∗) = Φ.

▶ For all e ∈ E (G/P∗), set ℓ∗(e) := 1/Φ.
▶ For each S ∈ P∗, recurse on the subgraph G [S].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 9

Ideal Tree-Packing – Formal

For a vertex partition P, we define the partition value as

part val(P) :=
|E(G/P)|
|P| − 1

.

Rephrase [Nash-Williams ‘61, Tutte ‘61]:

Φ := max
T

1

maxe∈E ℓT (e)
= min

P
part val(P).

Define ideal load ℓ∗ recursively:
▶ Let P∗ be a partition with part val(P∗) = Φ.
▶ For all e ∈ E (G/P∗), set ℓ∗(e) := 1/Φ.

▶ For each S ∈ P∗, recurse on the subgraph G [S].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 9

Ideal Tree-Packing – Formal

For a vertex partition P, we define the partition value as

part val(P) :=
|E(G/P)|
|P| − 1

.

Rephrase [Nash-Williams ‘61, Tutte ‘61]:

Φ := max
T

1

maxe∈E ℓT (e)
= min

P
part val(P).

Define ideal load ℓ∗ recursively:
▶ Let P∗ be a partition with part val(P∗) = Φ.
▶ For all e ∈ E (G/P∗), set ℓ∗(e) := 1/Φ.
▶ For each S ∈ P∗, recurse on the subgraph G [S].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 9

Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].

▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.
▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.

[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 10

Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].

▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.
▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.

[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 10

Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].

▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.
▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.

[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 10

Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].

▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.
▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.

[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 10

Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].
▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.

▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.
[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 10

Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].
▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.
▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.

[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 10

Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].
▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.
▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.

[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 10

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 11

Contracted Graphs

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f) < 2
λ .

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 12

Trivial Min-Cuts

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

Claim 1: For some known c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 13

Trivial Min-Cuts

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

Claim 1: For some known c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 13

Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.
Contradiction.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 14

Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.
Contradiction.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 14

Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.
Contradiction.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 14

Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.
Contradiction.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 14

Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.
Contradiction.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 14

Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.

Contradiction.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 14

Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.
Contradiction.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 14

Trivial Min-Cuts

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

Claim 1: For some known c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Claim 2: For |T | = Θ(λ3
max logm), all edges e in a min-cut have ℓT (e) > c and all edges

in G [X] have ℓT (e) < c .

So a trivial min-cut of G/{e ∈ E : ℓ∗(e) < c} is a trivial min-cut of
G/{e ∈ E : ℓT (e) < c}.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 15

Trivial Min-Cuts

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

Claim 1: For some known c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Claim 2: For |T | = Θ(λ3
max logm), all edges e in a min-cut have ℓT (e) > c and all edges

in G [X] have ℓT (e) < c .

So a trivial min-cut of G/{e ∈ E : ℓ∗(e) < c} is a trivial min-cut of
G/{e ∈ E : ℓT (e) < c}.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 15

Trivial Min-Cuts

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

Claim 1: For some known c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Claim 2: For |T | = Θ(λ3
max logm), all edges e in a min-cut have ℓT (e) > c and all edges

in G [X] have ℓT (e) < c .

So a trivial min-cut of G/{e ∈ E : ℓ∗(e) < c} is a trivial min-cut of
G/{e ∈ E : ℓT (e) < c}.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 15

Algorithm

Maintain tree-packing T of size |T | = Θ(λ3
max logm).

▶ Decreased recourse (λ5
max instead of λ6

max).

Maintain 1-respecting cuts for each T ∈ T in Õ(
√
λmaxn) worst-case update time.

Maintain trivial cuts in contracted graph G/{e ∈ E : ℓT (e) < c} using top trees.

Theorem

Unweighted, undirected (multi-)graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ if λ ≤ λmax in Õ(λ5.5

max

√
n) worst-case

update time.

Previously: Õ(λ14.5
max

√
n) [Thorup ‘07].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 16

Algorithm

Maintain tree-packing T of size |T | = Θ(λ3
max logm).

▶ Decreased recourse (λ5
max instead of λ6

max).

Maintain 1-respecting cuts for each T ∈ T in Õ(
√
λmaxn) worst-case update time.

Maintain trivial cuts in contracted graph G/{e ∈ E : ℓT (e) < c} using top trees.

Theorem

Unweighted, undirected (multi-)graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ if λ ≤ λmax in Õ(λ5.5

max

√
n) worst-case

update time.

Previously: Õ(λ14.5
max

√
n) [Thorup ‘07].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 16

Part 1: Dynamic Min-Cut
Part 2: Dynamic Arboricity

Part 3: More on Tree-Packings

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 17

Arboricity

Define

The fractional arboricity:

α := max
S⊆V

|E (S)|
|S | − 1

.

The (integral) arboricity: α̃ the minimum number of trees that cover E .

Theorem. We have α̃ = ⌈α⌉.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 18

Arboricity

Define

The fractional arboricity:

α := max
S⊆V

|E (S)|
|S | − 1

.

The (integral) arboricity: α̃ the minimum number of trees that cover E .

Theorem. We have α̃ = ⌈α⌉.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 18

Arboricity

Define

The fractional arboricity:

α := max
S⊆V

|E (S)|
|S | − 1

.

The (integral) arboricity: α̃ the minimum number of trees that cover E .

Theorem. We have α̃ = ⌈α⌉.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 18

Arboricity

Theorem

Unweighted, undirected (multi-)graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains a (1 + ε)-approximation of the fractional arboricity α when α ≤ αmax

in O(αmax log
6m/ε4) amortized update time.

Previously only (2 + ε)-approximation.

Worst-case (Las Vegas) with mo(1).

We showed that α = 1
mine∈E ℓ∗(e) and use a greedy tree-packing.

▶ [Cen/Fleischmann/Li/Li/Panigrahi ’25] Used this fact to compute static arboricity faster

Additional tricks to lower the recourse.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 19

Arboricity

Theorem

Unweighted, undirected (multi-)graph G = (V ,E). There exists a deterministic dynamic
algorithm that maintains a (1 + ε)-approximation of the fractional arboricity α when α ≤ αmax

in O(αmax log
6m/ε4) amortized update time.

Previously only (2 + ε)-approximation.

Worst-case (Las Vegas) with mo(1).

We showed that α = 1
mine∈E ℓ∗(e) and use a greedy tree-packing.

▶ [Cen/Fleischmann/Li/Li/Panigrahi ’25] Used this fact to compute static arboricity faster

Additional tricks to lower the recourse.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 19

Arboricity

Fully dynamic (1 + ε)-approximate arboricity

Deterministic ∼ α ≤
√
m update time.

Simple graphs (deterministic): poly(log n, ε−1) amortized
▶ Uses out-orientations for large values [Chekuri/Christiansen/Holm/van der

Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Multi-Graphs

Oblivious adversary: poly(log n, ε−1) amortized update time
▶ Standard uniform sampling ∼ log n

αε2 .

Adaptive adversary: poly(log n, ε−1) amortized update time
▶ Fancy sampling.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 20

Arboricity

Fully dynamic (1 + ε)-approximate arboricity

Deterministic ∼ α ≤
√
m update time.

Simple graphs (deterministic): poly(log n, ε−1) amortized
▶ Uses out-orientations for large values [Chekuri/Christiansen/Holm/van der

Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Multi-Graphs

Oblivious adversary: poly(log n, ε−1) amortized update time
▶ Standard uniform sampling ∼ log n

αε2 .

Adaptive adversary: poly(log n, ε−1) amortized update time
▶ Fancy sampling.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 20

Arboricity

Fully dynamic (1 + ε)-approximate arboricity

Deterministic ∼ α ≤
√
m update time.

Simple graphs (deterministic): poly(log n, ε−1) amortized
▶ Uses out-orientations for large values [Chekuri/Christiansen/Holm/van der

Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Multi-Graphs

Oblivious adversary: poly(log n, ε−1) amortized update time
▶ Standard uniform sampling ∼ log n

αε2 .

Adaptive adversary: poly(log n, ε−1) amortized update time
▶ Fancy sampling.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 20

Arboricity

Fully dynamic (1 + ε)-approximate arboricity

Deterministic ∼ α ≤
√
m update time.

Simple graphs (deterministic): poly(log n, ε−1) amortized
▶ Uses out-orientations for large values [Chekuri/Christiansen/Holm/van der

Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Multi-Graphs

Oblivious adversary: poly(log n, ε−1) amortized update time
▶ Standard uniform sampling ∼ log n

αε2 .

Adaptive adversary: poly(log n, ε−1) amortized update time
▶ Fancy sampling.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 20

Fancy Sampling
Uniform sampling ∼ log n

αε2
.

Problem: Adaptive adversary can delete sampled edges.

Solution: A vertex resamples its out-edges when affected.

Problem: Maximum degree n − 1.
▶ In sampled graph ≈ n/α.

Solution: Use out-orientations such that each vertex ‘owns’ O(α) edges.
▶ In sampled graph O(α · log n

αε2) = O(log nε2).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 21

Fancy Sampling
Uniform sampling ∼ log n

αε2
.

Problem: Adaptive adversary can delete sampled edges.

Solution: A vertex resamples its out-edges when affected.

Problem: Maximum degree n − 1.
▶ In sampled graph ≈ n/α.

Solution: Use out-orientations such that each vertex ‘owns’ O(α) edges.
▶ In sampled graph O(α · log n

αε2) = O(log nε2).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 21

Fancy Sampling
Uniform sampling ∼ log n

αε2
.

Problem: Adaptive adversary can delete sampled edges.

Solution: A vertex resamples its out-edges when affected.

Problem: Maximum degree n − 1.
▶ In sampled graph ≈ n/α.

Solution: Use out-orientations such that each vertex ‘owns’ O(α) edges.
▶ In sampled graph O(α · log n

αε2) = O(log nε2).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 21

Fancy Sampling
Uniform sampling ∼ log n

αε2
.

Problem: Adaptive adversary can delete sampled edges.

Solution: A vertex resamples its out-edges when affected.

Problem: Maximum degree n − 1.
▶ In sampled graph ≈ n/α.

Solution: Use out-orientations such that each vertex ‘owns’ O(α) edges.
▶ In sampled graph O(α · log n

αε2) = O(log nε2).

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 21

Part 1: Dynamic Min-Cut
Part 2: Dynamic Arboricity

Part 3: More on Tree-Packings

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 22

More on Tree-Packings

Unweighted, undirected (multi-)graph G = (V ,E).

Goal: |ℓT (e)− ℓ∗(e)| ≤ ε/λ for all e ∈ E .

[Thorup ‘07] |T | = O(logm · λ/ε2) greedy trees.

Can we do better?

Theorem

In general, such a greedy tree-packing T needs |T | = Ω(λ/ε3/2) trees, whenever
ε−1 = O(n1/3).

[Arkhipov/Kolmogorov ’25]: Need |T | = Ω(λ/ε2) trees

Theorem

There exists such a tree-packing T with |T | = Θ(λ/ε) trees.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 23

More on Tree-Packings

Unweighted, undirected (multi-)graph G = (V ,E).

Goal: |ℓT (e)− ℓ∗(e)| ≤ ε/λ for all e ∈ E .

[Thorup ‘07] |T | = O(logm · λ/ε2) greedy trees.

Can we do better?

Theorem

In general, such a greedy tree-packing T needs |T | = Ω(λ/ε3/2) trees, whenever
ε−1 = O(n1/3).

[Arkhipov/Kolmogorov ’25]: Need |T | = Ω(λ/ε2) trees

Theorem

There exists such a tree-packing T with |T | = Θ(λ/ε) trees.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 23

More on Tree-Packings

Unweighted, undirected (multi-)graph G = (V ,E).

Goal: |ℓT (e)− ℓ∗(e)| ≤ ε/λ for all e ∈ E .

[Thorup ‘07] |T | = O(logm · λ/ε2) greedy trees.

Can we do better?

Theorem

In general, such a greedy tree-packing T needs |T | = Ω(λ/ε3/2) trees, whenever
ε−1 = O(n1/3).

[Arkhipov/Kolmogorov ’25]: Need |T | = Ω(λ/ε2) trees

Theorem

There exists such a tree-packing T with |T | = Θ(λ/ε) trees.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 23

More on Tree-Packings

Unweighted, undirected (multi-)graph G = (V ,E).

Goal: |ℓT (e)− ℓ∗(e)| ≤ ε/λ for all e ∈ E .

[Thorup ‘07] |T | = O(logm · λ/ε2) greedy trees.

Can we do better?

Theorem

In general, such a greedy tree-packing T needs |T | = Ω(λ/ε3/2) trees, whenever
ε−1 = O(n1/3).

[Arkhipov/Kolmogorov ’25]: Need |T | = Ω(λ/ε2) trees

Theorem

There exists such a tree-packing T with |T | = Θ(λ/ε) trees.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 23

More on Tree-Packings
Unweighted, undirected (multi-)graph G = (V ,E).
Goal: |ℓT (e)− ℓ∗(e)| ≤ ε/λ for all e ∈ E .
[Thorup ‘07] |T | = O(logm · λ/ε2) greedy trees.
Can we do better?

Theorem (joint work with Mara Grilnberger)

Let γ ∈ [λ, α] and let T be a greedy tree-packing with |T | ≥ 3γ · log n/ε2. Then

|ℓT (e)− ℓ∗(e)| ≤ εℓ∗(e)

for all e ∈ E with ℓ∗(e) ≥ 1/γ and

|ℓT (e)− ℓ∗(e)| ≤ ε/γ

for all e ∈ E with ℓ∗(e) ≤ 1/γ.

In particular: need Ω(α · log n/ε2) trees to approximate the arboricity instead of
Ω(α2 · log n/ε2) trees.

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 24

Conclusion

Contributions

1 New insight on relation between tree-packings and min-cut.

2 First algorithms for dynamic (1± ε)-approximate arboricity via tree-packings.

3 Subroutines for decreased recourse and better sampling.

Questions

Can we use different tree-packings?

Can we leverage these three contributions in other models?

Thank you!

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 25

Conclusion

Contributions

1 New insight on relation between tree-packings and min-cut.

2 First algorithms for dynamic (1± ε)-approximate arboricity via tree-packings.

3 Subroutines for decreased recourse and better sampling.

Questions

Can we use different tree-packings?

Can we leverage these three contributions in other models?

Thank you!

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 25

Conclusion

Contributions

1 New insight on relation between tree-packings and min-cut.

2 First algorithms for dynamic (1± ε)-approximate arboricity via tree-packings.

3 Subroutines for decreased recourse and better sampling.

Questions

Can we use different tree-packings?

Can we leverage these three contributions in other models?

Thank you!

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 25

