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Dynamic Graph Algorithms

Graph G = (V ,E ) with edge updates:
insertions/deletions.

Maintain the answer to a problem.

Goal: low update time.
▶ Worst-case.
▶ Amortized = ‘on average’.

Adversary determines updates:
▶ Oblivious Adversary: updates fixed

beforehand.
▶ Adaptive Adversary: updates can depend

on (random) choices of the algorithm.
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Part 1: Dynamic Min-Cut
Part 2: Dynamic Arboricity

Part 3: More on Tree-Packings
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Problem

Min-Cut (connectivity): find λ, the
minimum number of edges disconnecting
the graph.
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Dynamic Min-Cut: Main Result

Theorem

Unweighted, undirected (multi-)graph G = (V ,E ). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ if λ ≤ λmax in Õ(λ5.5

max

√
n) worst-case

update time.

Previously: Õ(λ14.5
max

√
n) [Thorup ‘07].

Corollary

Simple, unweighted, undirected graph G = (V ,E ). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ with amortized update time

Õ(min{m1−1/12,m11/13n1/13, n3/2}).

Previously: Õ(m1−1/31) [Goranci/Henzinger/Nanongkai/Saranurak/Thorup/Wulff-Nilsen ‘23].

Tijn de VosTree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity 5



Dynamic Min-Cut: Main Result

Theorem

Unweighted, undirected (multi-)graph G = (V ,E ). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ if λ ≤ λmax in Õ(λ5.5
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Tree-Packing and Min-Cut

Definitions

Tree-packing T = {T1,T2, . . . }: a family of trees in G such that [...].

Load LT (e): the number of trees in T that contain an edge e.

Relative load ℓT (e) := LT (e)/|T |.

Static [Karger ‘00] + [. . . ].

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21].

Dynamic [Thorup/Karger ‘00, Thorup ‘07].
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Static: Disjoint Trees [Karger ‘00]

Theorem [Nash-Williams ‘61, Tutte ‘61]

A graph with minimum cut λ contains at least λ/2 disjoint spanning trees.

Take T = {T1,T2, . . . } a maximum packing of disjoint spanning trees.

We know λ/2 ≤ |T | ≤ λ by above.

T covers any min-cut C . On average, a tree contains λ/|T | ≤ λ/(λ/2) ≤ 2 edges from
C : it 2-respects C.

Can find tree-packing of size O(λ) to approximate a packing of disjoint trees [Gabow ‘95,

Plotkin/Shmoys/Tardos ‘91].

Can find 2-respecting cuts in O(m log2 n) time.

Sample λ → log n to obtain O(m log3 n) time.
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Ideal Tree-Packing
Define ideal load ℓ∗(e).

We want
#disjoint spanning trees = 1

maxe ℓ∗(e)
.

If we fit k disjoint spanning trees in some G/P containing e then

ℓ∗(e) =
1

k
.

Spoiler:

arboricity =
1

mine∈E ℓ∗(e)
.
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Ideal Tree-Packing – Formal

For a vertex partition P, we define the partition value as

part val(P) :=
|E(G/P)|
|P| − 1

.

Rephrase [Nash-Williams ‘61, Tutte ‘61]:

Φ := max
T

1

maxe∈E ℓT (e)
= min

P
part val(P).

Define ideal load ℓ∗ recursively:

▶ Let P∗ be a partition with part val(P∗) = Φ.
▶ For all e ∈ E (G/P∗), set ℓ∗(e) := 1/Φ.
▶ For each S ∈ P∗, recurse on the subgraph G [S ].
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Greedy Tree-Packing

Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing T , the spanning trees form successive minimum spanning trees.

0
0

0

1
1

0

1
2

1

If |T | ≥ 6λ logm/ε2 then
|ℓT (e)− ℓ∗(e)| ≤ ε/λ,

for all e ∈ E [Thorup ‘07].

▶ If |T | ≥ Θ(λ log n), then at least one tree 2-respects the min-cut.
▶ If |T | ≥ Θ(λ7 log n) then at least one tree 1-respects the min-cut.

[Arkhipov/Kolmogorov ’25]: |T | ≥ Θ(λ5 log n).

Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]

▶ Find greedy trees (easy).
▶ Find cuts 2-respecting a tree (hard).
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A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C .

The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
∑

e∈C ℓT (e) < 2.

Crude implies small |T | suffices.

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f ) < 2
λ .
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The average number of times a tree in T crosses C is

1

|T |
∑
e∈C

LT (e) =
∑
e∈C

ℓT (e).

So if
∑

e∈C ℓT (e) < 2, at least one tree 1-respects C .

If
∑

e∈C ℓ∗(e) ≪ 2, then crude approximation gives
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e∈C ℓT (e) < 2.

Crude implies small |T | suffices.
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Contracted Graphs

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

All other edges f have ℓ∗(f ) < 2
λ .
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Trivial Min-Cuts

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

Claim 1: For some known c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.
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Proof of Claim 1

Claim 1: For some c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Proof.

Suppose not: min-deg ≥ λ+ 1.

G/{e ∈ E : ℓ∗(e) < c} contains at least 1
2(λ+ 1)|V (G/{e ∈ E : ℓ∗(e) < c})| edges.

G/{e ∈ E : ℓ∗(e) < c} are the edges with ℓ∗(e) ≥ c ⇐⇒ (ℓ∗(e))−1 ≤ c−1.

For the minimizing partition P we have |E(G/P)|
|P|−1 ≤ (ℓ∗(e))−1 ≤ 1/c .

On each level, E (G/{e ∈ E : ℓ∗(e) < c)} corresponds to the minimum partition.

We get |E (G/{e ∈ E : ℓ∗(e) < c)} ≤ c−1(|V (G/{e ∈ E : ℓ∗(e) < c})| − 1) ≈
λ
2 |V (G/{e ∈ E : ℓ∗(e) < c})|.
Contradiction.
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Trivial Min-Cuts

Left with the case that every min-cut C has
∑

e∈C ℓ∗(e) ≈ 2.

Every edge e participating in a min-cut has ℓ∗(e) ≈ 2
λ .

Claim 1: For some known c ≈ 2
λ , G/{e ∈ E : ℓ∗(e) < c} must contain trivial min-cuts.

Claim 2: For |T | = Θ(λ3
max logm), all edges e in a min-cut have ℓT (e) > c and all edges

in G [X ] have ℓT (e) < c .

So a trivial min-cut of G/{e ∈ E : ℓ∗(e) < c} is a trivial min-cut of
G/{e ∈ E : ℓT (e) < c}.
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Algorithm

Maintain tree-packing T of size |T | = Θ(λ3
max logm).

▶ Decreased recourse (λ5
max instead of λ6

max).

Maintain 1-respecting cuts for each T ∈ T in Õ(
√
λmaxn) worst-case update time.

Maintain trivial cuts in contracted graph G/{e ∈ E : ℓT (e) < c} using top trees.

Theorem

Unweighted, undirected (multi-)graph G = (V ,E ). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value λ if λ ≤ λmax in Õ(λ5.5

max

√
n) worst-case

update time.

Previously: Õ(λ14.5
max

√
n) [Thorup ‘07].
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Part 1: Dynamic Min-Cut
Part 2: Dynamic Arboricity

Part 3: More on Tree-Packings
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Arboricity

Define

The fractional arboricity:

α := max
S⊆V

|E (S)|
|S | − 1

.

The (integral) arboricity: α̃ the minimum number of trees that cover E .

Theorem. We have α̃ = ⌈α⌉.
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Arboricity

Theorem

Unweighted, undirected (multi-)graph G = (V ,E ). There exists a deterministic dynamic
algorithm that maintains a (1 + ε)-approximation of the fractional arboricity α when α ≤ αmax

in O(αmax log
6m/ε4) amortized update time.

Previously only (2 + ε)-approximation.

Worst-case (Las Vegas) with mo(1).

We showed that α = 1
mine∈E ℓ∗(e) and use a greedy tree-packing.

▶ [Cen/Fleischmann/Li/Li/Panigrahi ’25] Used this fact to compute static arboricity faster

Additional tricks to lower the recourse.
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Arboricity

Fully dynamic (1 + ε)-approximate arboricity

Deterministic ∼ α ≤
√
m update time.

Simple graphs (deterministic): poly(log n, ε−1) amortized
▶ Uses out-orientations for large values [Chekuri/Christiansen/Holm/van der

Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Multi-Graphs

Oblivious adversary: poly(log n, ε−1) amortized update time
▶ Standard uniform sampling ∼ log n

αε2 .

Adaptive adversary: poly(log n, ε−1) amortized update time
▶ Fancy sampling.
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Fancy Sampling
Uniform sampling ∼ log n

αε2
.

Problem: Adaptive adversary can delete sampled edges.

Solution: A vertex resamples its out-edges when affected.

Problem: Maximum degree n − 1.
▶ In sampled graph ≈ n/α.

Solution: Use out-orientations such that each vertex ‘owns’ O(α) edges.
▶ In sampled graph O(α · log n

αε2 ) = O( log nε2 ).
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More on Tree-Packings

Unweighted, undirected (multi-)graph G = (V ,E ).

Goal: |ℓT (e)− ℓ∗(e)| ≤ ε/λ for all e ∈ E .

[Thorup ‘07] |T | = O(logm · λ/ε2) greedy trees.

Can we do better?

Theorem

In general, such a greedy tree-packing T needs |T | = Ω(λ/ε3/2) trees, whenever
ε−1 = O(n1/3).

[Arkhipov/Kolmogorov ’25]: Need |T | = Ω(λ/ε2) trees

Theorem

There exists such a tree-packing T with |T | = Θ(λ/ε) trees.
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More on Tree-Packings
Unweighted, undirected (multi-)graph G = (V ,E ).
Goal: |ℓT (e)− ℓ∗(e)| ≤ ε/λ for all e ∈ E .
[Thorup ‘07] |T | = O(logm · λ/ε2) greedy trees.
Can we do better?

Theorem (joint work with Mara Grilnberger)

Let γ ∈ [λ, α] and let T be a greedy tree-packing with |T | ≥ 3γ · log n/ε2. Then

|ℓT (e)− ℓ∗(e)| ≤ εℓ∗(e)

for all e ∈ E with ℓ∗(e) ≥ 1/γ and

|ℓT (e)− ℓ∗(e)| ≤ ε/γ

for all e ∈ E with ℓ∗(e) ≤ 1/γ.

In particular: need Ω(α · log n/ε2) trees to approximate the arboricity instead of
Ω(α2 · log n/ε2) trees.
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Conclusion

Contributions

1 New insight on relation between tree-packings and min-cut.

2 First algorithms for dynamic (1± ε)-approximate arboricity via tree-packings.

3 Subroutines for decreased recourse and better sampling.

Questions

Can we use different tree-packings?

Can we leverage these three contributions in other models?

Thank you!
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