Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity
SODA 2025

Tijn de Vos (r) Aleksander B.G. Christiansen

TU Graz

This project has received funding from the European Research Council (ERC) under the | I I F

European Union's Horizon 2020 research and innovation programme (grant agreement No
947702) and is supported by the Austrian Science Fund (FWF): P 32863-N.

Der Wissenschaftsfonds.

Dynamic Graph Algorithms

e Graph G = (V, E) with edge updates:
insertions/deletions.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Graph Algorithms

e Graph G = (V, E) with edge updates:
insertions/deletions.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Graph Algorithms

e Graph G = (V, E) with edge updates:
insertions/deletions.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Graph Algorithms

e Graph G = (V, E) with edge updates:
insertions/deletions.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Graph Algorithms

e Graph G = (V, E) with edge updates:
insertions/deletions.

@ Maintain the answer to a problem.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Graph Algorithms

e Graph G = (V, E) with edge updates:
insertions/deletions.

@ Maintain the answer to a problem.
o Goal: low update time.

» Worst-case.
» Amortized = ‘on average'.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Graph Algorithms

e Graph G = (V, E) with edge updates:
insertions/deletions.

@ Maintain the answer to a problem.

o Goal: low update time.

» Worst-case.
» Amortized = ‘on average'.

@ Adversary determines updates:
» Oblivious Adversary: updates fixed
beforehand.
» Adaptive Adversary: updates can depend
on (random) choices of the algorithm.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Part 1: Dynamic Min-Cut

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Problem

e Min-Cut (connectivity): find A, the
minimum number of edges disconnecting
the graph.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Min-Cut: Main Result
Theorem
Unweighted, undirected (multi-)graph G = (V, E). There exists a deterministic dynamic

algorithm that maintains the exact min-cut value A if A < Amax in O(A2:3 \/n) worst-case
update time.

Previously: O(A¥5,/n) [Thorup 07].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Dynamic Min-Cut: Main Result

Theorem

Unweighted, undirected (multi-)graph G = (V/, E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value X\ if A < Amax in O(A3:3,1/n) worst-case
update time.

Previously: O(A¥5,/n) [Thorup 07].

Corollary

Simple, unweighted, undirected graph G = (V/, E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value A with amortized update time

O(min{mi=1/12, mi1/13p1/13 13/2})

Previously: é(ml_l/?’l) [Goranci/Henzinger/Nanongkai/Saranurak/Thorup/Wulff-Nilsen ‘23].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Tree-Packing and Min-Cut

Definitions
o Tree-packing T = {Ti, To,...}: a family of trees in G such that [...].
o Load L7 (e): the number of trees in 7 that contain an edge e.
o Relative load ¢7 (e) := L7 (e)/|T].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Tree-Packing and Min-Cut

Definitions
o Tree-packing T = {Ti, To,...}: a family of trees in G such that [...].
o Load L7 (e): the number of trees in 7 that contain an edge e.
o Relative load ¢7 (e) := L7 (e)/|T].

Static [Karger '00] 4 [...].
Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21].
Dynamic [Thorup/Karger ‘00, Thorup ‘07].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Static: Disjoint Trees [Karger '00]

Theorem [Nash-Williams ‘61, Tutte ‘61]
A graph with minimum cut A contains at least A/2 disjoint spanning trees.]

@ Take T ={Ty, Tp,...} a maximum packing of disjoint spanning trees.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Static: Disjoint Trees [Karger '00]

Theorem [Nash-Williams ‘61, Tutte ‘61]
A graph with minimum cut A contains at least A/2 disjoint spanning trees. J

@ Take T ={Ty, Tp,...} a maximum packing of disjoint spanning trees.
@ We know A\/2 < |T| < X by above.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Static: Disjoint Trees [Karger '00]

Theorem [Nash-Williams ‘61, Tutte '61] J

A graph with minimum cut A contains at least A/2 disjoint spanning trees.

@ Take T ={Ty, Tp,...} a maximum packing of disjoint spanning trees.
@ We know A\/2 < |T| < X by above.

@ 7 covers any min-cut C. On average, a tree contains \/|T| < A/(\/2) < 2 edges from
C: it 2-respects C.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Static: Disjoint Trees [Karger '00]

Theorem [Nash-Williams ‘61, Tutte '61] J

A graph with minimum cut A contains at least A/2 disjoint spanning trees.

e Take 7 ={Ty, Ta,...} a maximum packing of disjoint spanning trees.
@ We know A\/2 < |T| < X by above.

@ 7 covers any min-cut C. On average, a tree contains \/|T| < A/(\/2) < 2 edges from
C: it 2-respects C.

e Can find tree-packing of size O(\) to approximate a packing of disjoint trees [Gabow ‘95,
Plotkin/Shmoys/Tardos ‘91].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Static: Disjoint Trees [Karger '00]

Theorem [Nash-Williams ‘61, Tutte '61] J

A graph with minimum cut A contains at least A/2 disjoint spanning trees.

Take 7 = {Ti, Tp,...} a maximum packing of disjoint spanning trees.
We know \/2 < |T| < A by above.

T covers any min-cut C. On average, a tree contains \/|T| < A/(\/2) < 2 edges from
C: it 2-respects C.

Can find tree-packing of size O(\) to approximate a packing of disjoint trees [Gabow ‘05,
Plotkin/Shmoys/Tardos ‘91].

e Can find 2-respecting cuts in O(mlog? n) time.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Static: Disjoint Trees [Karger '00]

Theorem [Nash-Williams ‘61, Tutte '61] J

A graph with minimum cut A contains at least A/2 disjoint spanning trees.

Take 7 = {Ti, Tp,...} a maximum packing of disjoint spanning trees.
We know \/2 < |T| < A by above.

T covers any min-cut C. On average, a tree contains \/|T| < A/(\/2) < 2 edges from
C: it 2-respects C.

Can find tree-packing of size O(\) to approximate a packing of disjoint trees [Gabow ‘05,
Plotkin/Shmoys/Tardos ‘91].

o Can find 2-respecting cuts in O(mlog? n) time.
@ Sample \ — log n to obtain O(mlog® n) time.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing
@ Define ideal load ¢*(e).

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing

@ Define ideal load ¢*(e).

o We want

#disjoint spanning trees = axe ()

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing

@ Define ideal load ¢*(e).
o We want

#disjoint spanning trees = axe ()
e If we fit k disjoint spanning trees in some G /P containing e then

(e) = %

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing

@ Define ideal load ¢*(e).
o We want
#disjoint spanning trees = e ()

e If we fit k disjoint spanning trees in some G /P containing e then

Spoiler:
@ Spoiler)

al’bOFiCity = m

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing — Formal

@ For a vertex partition P, we define the partition value as

part_val(P) := %

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing — Formal

@ For a vertex partition P, we define the partition value as

E
part_val(P) := %
@ Rephrase [Nash-Williams ‘61, Tutte ‘61]:
® := max L = min part_val(P)
T maxecelT(e) P part-v '

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing — Formal

@ For a vertex partition P, we define the partition value as

E
part_val(P) := %
@ Rephrase [Nash-Williams ‘61, Tutte ‘61]:
® := max L = min part_val(P)
T maxecelT(e) P part-v '

@ Define ideal load ¢* recursively:

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing — Formal

@ For a vertex partition P, we define the partition value as

E
part_val(P) := %
@ Rephrase [Nash-Williams ‘61, Tutte ‘61]:
® := max L = min part_val(P)
T maxecelT(e) P part-v '

@ Define ideal load ¢* recursively:
» Let P* be a partition with part_val(P*) = ®.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing — Formal

@ For a vertex partition P, we define the partition value as

E
part_val(P) := %
@ Rephrase [Nash-Williams ‘61, Tutte ‘61]:
® := max L = min part_val(P)
T maxecelT(e) P part-v '

@ Define ideal load ¢* recursively:
» Let P* be a partition with part_val(P*) = ®.
» Forall e € E(G/P*), set £*(e) :=1/0.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

|deal Tree-Packing — Formal

@ For a vertex partition P, we define the partition value as

E
part_val(P) := %
@ Rephrase [Nash-Williams ‘61, Tutte ‘61]:
® := max L = min part_val(P)
T maxecelT(e) P part-v '

@ Define ideal load ¢* recursively:
» Let P* be a partition with part_val(P*) = ®.
» Forall e € E(G/P*), set £*(e) :=1/0.
» For each S € P*, recurse on the subgraph G[S].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Greedy Tree-Packing

@ Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing 7T, the spanning trees form successive minimum spanning trees.
0 0

0

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Greedy Tree-Packing

@ Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing 7T, the spanning trees form successive minimum spanning trees.

QCO>L0 éo;o
0 0

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Greedy Tree-Packing

@ Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing 7T, the spanning trees form successive minimum spanning trees.

CCO>L0 éo;o éLo
0 0 1

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Greedy Tree-Packing

@ Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing 7T, the spanning trees form successive minimum spanning trees.

CCO>L0 oé)o;o o<1>oLo
0 0 1

o If |T| > 6\log m/e? then
|07 (e) = *(e)l < e/A,

for all e € E [Thorup '07].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Greedy Tree-Packing

@ Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing 7T, the spanning trees form successive minimum spanning trees.

oéoLo oé)o;o o<1>oLo
0 0 1

o If |T| > 6\log m/e? then
|07 (e) = *(e)l < e/A,

for all e € E [Thorup '07].
» If |T] > ©(Xlog n), then at least one tree 2-respects the min-cut.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Greedy Tree-Packing

@ Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing 7T, the spanning trees form successive minimum spanning trees.

oéoLo oé)o;o o<1>oLo
0 0 1

o If |T| > 6\log m/e? then
|07 (e) = *(e)l < e/A,

for all e € E [Thorup '07].

» If |T] > ©(Xlog n), then at least one tree 2-respects the min-cut.
» If |[T] > ©(\" log n) then at least one tree 1-respects the min-cut.
[Arkhipov/Kolmogorov '25]: | T| > ©(X° log n).

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Greedy Tree-Packing

@ Let the weight of an edge be the number of trees an edge belongs to. In a greedy
tree-packing 7T, the spanning trees form successive minimum spanning trees.

oéoLo é;o o<1>oLo
0 0 1

o If |T| > 6\log m/e? then
|07 (e) = *(e)l < e/A,

for all e € E [Thorup '07].
» If |T] > ©(Xlog n), then at least one tree 2-respects the min-cut.
» If |[T] > ©(\" log n) then at least one tree 1-respects the min-cut.
[Arkhipov/Kolmogorov '25]: |T| > ©(A% log n).
@ Distributed [Daga/Henzinger/Nanongkai/Saranurak ‘19, Dory/Efron/Mukhopadhyay/Nanongkai ‘21]
» Find greedy trees (easy).
» Find cuts 2-respecting a tree (hard).

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

@ Consider a min-cut C.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

@ Consider a min-cut C.

@ The average number of times a tree in T crosses C is

% ST () =3 ().

eeC ecC

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

@ Consider a min-cut C.
@ The average number of times a tree in T crosses C is

% ST () =3 ().

eeC ecC

o Soif > .ccl7(e) <2, at least one tree 1-respects C.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C.

The average number of times a tree in T crosses C is
1 T T
WZL (e)=> 17(e).
ecC ecC

So if Y occ €7 (e) < 2, at least one tree 1-respects C.
If > .cct*(e) < 2, then crude approximation gives Y . (7 (e) < 2.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C.

The average number of times a tree in T crosses C is

% ST () =3 ().

eeC ecC

So if Y occ €7 (e) < 2, at least one tree 1-respects C.
If > .cct*(e) < 2, then crude approximation gives Y . (7 (e) < 2.

Crude implies small |T| suffices.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C.

The average number of times a tree in T crosses C is

% ST () =3 ().
ecC ecC
So if Y occ €7 (e) < 2, at least one tree 1-respects C.
If > .cct*(e) < 2, then crude approximation gives Y . (7 (e) < 2.
Crude implies small |T| suffices.
Left with the case that every min-cut C has) ¢*(e) = 2.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C.

The average number of times a tree in T crosses C is

% ST () =3 ().
ecC ecC
So if Y occ €7 (e) < 2, at least one tree 1-respects C.
If > .cct*(e) < 2, then crude approximation gives Y . (7 (e) < 2.
Crude implies small |T| suffices.
Left with the case that every min-cut C has) ¢*(e) = 2.

Every edge e participating in a min-cut has £*(e) =~ %

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

A closer look at the Min-Cut and Tree-Packings

Consider a min-cut C.

The average number of times a tree in T crosses C is

2N 1T(e) =31 (e).
Mz %
So if Y occ €7 (e) < 2, at least one tree 1-respects C.
If > .cct*(e) < 2, then crude approximation gives Y . (7 (e) < 2.
Crude implies small |T| suffices.
Left with the case that every min-cut C has) ¢*(e) = 2.
Every edge e participating in a min-cut has £*(e) =~ %
All other edges f have £*(f) < 2.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Contracted Graphs

o Every edge e participating in a min-cut has ¢*(e) =~
o All other edges f have £*(f) < 2

X

2
-

PP

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Trivial Min-Cuts

o Left with the case that every min-cut C has) (*(e) ~ 2.

o Every edge e participating in a min-cut has ¢*(e) ~ %

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Trivial Min-Cuts

o Left with the case that every min-cut C has) (*(e) ~ 2.
o Every edge e participating in a min-cut has ¢*(e) ~ %

e Claim 1: For some known ¢ ~ %, G/{e € E : £*(e) < c} must contain trivial min-cuts.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Proof of Claim 1

Claim 1: For some c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Proof.
@ Suppose not: min-deg > A\ + 1.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Proof of Claim 1

Claim 1: For some c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Proof.
@ Suppose not: min-deg > A\ + 1.
o G/{e € E: (*(e) < c} contains at least 3(\ + 1)|V(G/{e € E : £*(e) < c})| edges.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Proof of Claim 1

Claim 1: For some c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Proof.
@ Suppose not: min-deg > A\ + 1.
o G/{e € E: (*(e) < c} contains at least 3(\ + 1)|V(G/{e € E : £*(e) < c})| edges.
o G/{e € E :(*(e) < c} are the edges with £*(e) > ¢ +—= (£*(e))* < c L

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Proof of Claim 1

Claim 1: For some c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Proof.
@ Suppose not: min-deg > A\ + 1.
o G/{e € E: (*(e) < c} contains at least 3(\ + 1)|V(G/{e € E : £*(e) < c})| edges.
o G/{e € E :(*(e) < c} are the edges with £*(e) > ¢ +—= (£*(e))* < c L

@ For the minimizing partition P we have “ﬁgj# <(tr(e)) < 1/c

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Proof of Claim 1

Claim 1: For some c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Proof.
@ Suppose not: min-deg > A\ + 1.
o G/{e € E: (*(e) < c} contains at least 3(\ + 1)|V(G/{e € E : £*(e) < c})| edges.
o G/{e € E :(*(e) < c} are the edges with £*(e) > ¢ +—= (£*(e))* < c L
@ For the minimizing partition P we have “ﬁgj# <(tr(e)) < 1/c

On each level, E(G/{e € E : ¢*(e) < c)} corresponds to the minimum partition.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Proof of Claim 1

Claim 1: For some c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Proof.
@ Suppose not: min-deg > A\ + 1.
o G/{e € E: (*(e) < c} contains at least 3(\ + 1)|V(G/{e € E : £*(e) < c})| edges.
o G/{e € E :(*(e) < c} are the edges with £*(e) > ¢ +—= (£*(e))* < c L
@ For the minimizing partition P we have “ﬁgj# <(tr(e)) < 1/c
@ On each level, E(G/{e € E : ¢*(e) < c)} corresponds to the minimum partition.
o Weget |[E(G/{ec E:t*(e)<c)} < cY(|V(G/{e€ E:t*(e) < c})|—1) ~
3IV(G/{e € E:t*(e) < c})l-

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Proof of Claim 1

Claim 1: For some c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Proof.
@ Suppose not: min-deg > A\ + 1.
o G/{e € E: (*(e) < c} contains at least 3(\ + 1)|V(G/{e € E : £*(e) < c})| edges.
o G/{e € E :(*(e) < c} are the edges with £*(e) > ¢ +—= (£*(e))* < c L
@ For the minimizing partition P we have “ﬁgj# <(tr(e)) < 1/c
@ On each level, E(G/{e € E : ¢*(e) < c)} corresponds to the minimum partition.
o Weget |[E(G/{ec E:t*(e)<c)} < cY(|V(G/{e€ E:t*(e) < c})|—1) ~
3IV(G/{e € E:t*(e) < c})l-

o Contradiction.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Trivial Min-Cuts

o Left with the case that every min-cut C has) ¢*(e) = 2.
o Every edge e participating in a min-cut has ¢*(e) ~ %

e Claim 1: For some known c ~ 3, G/{e € E : £*(e) < c} must contain trivial min-cuts.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Trivial Min-Cuts

Left with the case that every min-cut C has) - £*(e) = 2.
Every edge e participating in a min-cut has £*(e) =~ %

Claim 1: For some known c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Claim 2: For |T| = ©()\3,,, log m), all edges e in a min-cut have ¢7 (€) > c and all edges
in G[X] have (7 (e) < c.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Trivial Min-Cuts

Left with the case that every min-cut C has) - £*(e) = 2.

Every edge e participating in a min-cut has £*(e) =~ %

Claim 1: For some known c ~ 2, G/{e € E : {*(e) < c} must contain trivial min-cuts.

Claim 2: For |T| = ©()\3,,, log m), all edges e in a min-cut have ¢7 (€) > c and all edges
in G[X] have (7 (e) < c.

So a trivial min-cut of G/{e € E : *(e) < c} is a trivial min-cut of

G/{ec E:(T(e) < c}.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Algorithm

e Maintain tree-packing T of size |T| = ©()\3,,, log m).
instead of A%

» Decreased recourse (A max)-

max

@ Maintain 1-respecting cuts for each T € T in 6(\/)\maxn) worst-case update time.
@ Maintain trivial cuts in contracted graph G/{e € E : £7(e) < c} using top trees.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Algorithm

e Maintain tree-packing 7 of size |T| = ©(\3 ., log m).

» Decreased recourse (A3 instead of A).

@ Maintain 1-respecting cuts for each T € T in O(\/)\maxn) worst-case update time.
o Maintain trivial cuts in contracted graph G/{e € E : {7 (e) < c} using top trees.

Theorem

Unweighted, undirected (multi-)graph G = (V/, E). There exists a deterministic dynamic
algorithm that maintains the exact min-cut value X if A < Apmax in O(A3:3,1/n) worst-case
update time.

max

Previously: O(A¥5,/n) [Thorup 07].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Part 2: Dynamic Arboricity

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Define

@ The fractional arboricity:

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Define

@ The fractional arboricity:

— max JEG)
TSIt

@ The (integral) arboricity: & the minimum number of trees that cover E.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Define

@ The fractional arboricity:

._ |E(S)|
CTEVIs -1

@ The (integral) arboricity: & the minimum number of trees that cover E.

Theorem. We have & = [«a].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Theorem

Unweighted, undirected (multi-)graph G = (V, E). There exists a deterministic dynamic

algorithm that maintains a (1 + €)-approximation of the fractional arboricity & when o < amax
in O(vmax log® m/c*) amortized update time.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Theorem

Unweighted, undirected (multi-)graph G = (V/, E). There exists a deterministic dynamic

algorithm that maintains a (1 + ¢)-approximation of the fractional arboricity o when o < amax
in O(vmax log® m/c*) amortized update time.

@ Previously only (2 + £)-approximation.
o Worst-case (Las Vegas) with m°(1).
@ We showed that o = m and use a greedy tree-packing.

» [Cen/Fleischmann/Li/Li/Panigrahi '25] Used this fact to compute static arboricity faster
o Additional tricks to lower the recourse.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Fully dynamic (1 + €)-approximate arboricity
@ Deterministic ~ a < \/m update time.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Fully dynamic (1 + €)-approximate arboricity
@ Deterministic ~ a < \/m update time.
e Simple graphs (deterministic): poly(log n,e~') amortized

» Uses out-orientations for large values [Chekuri/Christiansen/Holm /van der
Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Fully dynamic (1 + €)-approximate arboricity
@ Deterministic ~ a < \/m update time.
e Simple graphs (deterministic): poly(log n,e~') amortized

» Uses out-orientations for large values [Chekuri/Christiansen/Holm /van der
Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Multi-Graphs
o Oblivious adversary: poly(log n,e~1) amortized update time

log n

» Standard uniform sampling ~ 257.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Arboricity

Fully dynamic (1 + €)-approximate arboricity
@ Deterministic ~ a < \/m update time.
e Simple graphs (deterministic): poly(log n,e~') amortized

» Uses out-orientations for large values [Chekuri/Christiansen/Holm /van der
Hoog/Quanrud/Rotenberg/Schwiegelshohn ‘24].

Multi-Graphs
o Oblivious adversary: poly(log n,e~1) amortized update time
» Standard uniform sampling ~ 'ngf.

o Adaptive adversary: poly(log n,e~!) amortized update time
» Fancy sampling.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Fancy Sampling
Uniform sampling ~ IZ%'

@ Problem: Adaptive adversary can delete sampled edges.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Fancy Sampling
Uniform sampling ~ ";%.
@ Problem: Adaptive adversary can delete sampled edges.

@ Solution: A vertex resamples its out-edges when affected.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Fancy Sampling
Uniform sampling ~ ";%.
@ Problem: Adaptive adversary can delete sampled edges.
@ Solution: A vertex resamples its out-edges when affected.
@ Problem: Maximum degree n — 1.
> In sampled graph =~ n/a.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Fancy Sampling
Uniform sampling ~ IZ%'
@ Problem: Adaptive adversary can delete sampled edges.
@ Solution: A vertex resamples its out-edges when affected.
@ Problem: Maximum degree n — 1.
> In sampled graph ~ n/a.
@ Solution: Use out-orientations such that each vertex ‘owns’ O(«) edges.

» In sampled graph O(« - % — O(loa#)'

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Part 3: More on Tree-Packings

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

More on Tree-Packings

e Unweighted, undirected (multi-)graph G = (V, E).
o Goal: |[(7T(e) — ¢*(e)| < e/ forall e € E.
e [Thorup '07] |T| = O(log m - \/e?) greedy trees.

@ Can we do better?

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

More on Tree-Packings

e Unweighted, undirected (multi-)graph G = (V, E).
o Goal: |[(7T(e) — ¢*(e)| < e/ forall e € E.

e [Thorup '07] |T| = O(log m - \/e?) greedy trees.

e Can we do better?

Theorem

In general, such a greedy tree-packing 7 needs |7 | = Q(\/e3/?) trees, whenever
=1 = O(n'/3).

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

More on Tree-Packings

e Unweighted, undirected (multi-)graph G = (V, E).
o Goal: |[(7T(e) — ¢*(e)| < e/ forall e € E.
e [Thorup '07] |T| = O(log m - \/e?) greedy trees.
e Can we do better?
Theorem

In general, such a greedy tree-packing 7 needs |7 | = Q(\/e3/?) trees, whenever
=1 = O(n'/3).

[Arkhipov/Kolmogorov '25]: Need |T| = Q()\/e’;‘z) trees

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

More on Tree-Packings

e Unweighted, undirected (multi-)graph G = (V, E).
o Goal: |[(7T(e) — ¢*(e)| <e/Aforallec E.
e [Thorup '07] |T| = O(log m - \/e?) greedy trees.
e Can we do better?
Theorem

In general, such a greedy tree-packing 7 needs |7 | = Q(\/e3/?) trees, whenever
=1 = O(n'/3).

[Arkhipov/Kolmogorov '25]: Need |T| = Q()\/e’;‘z) trees

Theorem
There exists such a tree-packing 7 with |7 = ©(\/e) trees. J

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

More on Tree-Packings
e Unweighted, undirected (multi-)graph G = (V, E).
o Goal: |[(7T(e) — t*(e)| <e/Aforallec E.
o [Thorup '07] |T| = O(log m - A/e?) greedy trees.
@ Can we do better?

Theorem (joint work with Mara Grilnberger)
Let v € [\, o] and let T be a greedy tree-packing with |T| > 3~ - log n/e2. Then

|7 () = £ (e)] < el*(e)
for all e € E with ¢*(e) > 1/~ and
|07 (e) = &*(e)l < e/v

for all e € E with ¢*(e) < 1/~.

In particular: need Q(o - log n/s?) trees to approximate the arboricity instead of

Q(a? - log n/e?) trees.
Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Conclusion

Contributions
© New insight on relation between tree-packings and min-cut.
@ First algorithms for dynamic (1 + ¢)-approximate arboricity via tree-packings.
© Subroutines for decreased recourse and better sampling.

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Conclusion

Contributions
© New insight on relation between tree-packings and min-cut.
@ First algorithms for dynamic (1 + ¢)-approximate arboricity via tree-packings.
© Subroutines for decreased recourse and better sampling.

Questions
@ Can we use different tree-packings?

@ Can we leverage these three contributions in other models?

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

Conclusion

Contributions
© New insight on relation between tree-packings and min-cut.
@ First algorithms for dynamic (1 + ¢)-approximate arboricity via tree-packings.
© Subroutines for decreased recourse and better sampling.

Questions
@ Can we use different tree-packings?

@ Can we leverage these three contributions in other models?

Thank you!

Tree-Packing Revisited: Faster Fully Dynamic Min-Cut and Arboricity

