

ATCS Seminar, 27.01.2026

Small Empty Cycles in Simple Drawings of K_n

A. Hofer, J. Orthaber, B. Vogtenhuber, A. Weinberger

Simple Drawings

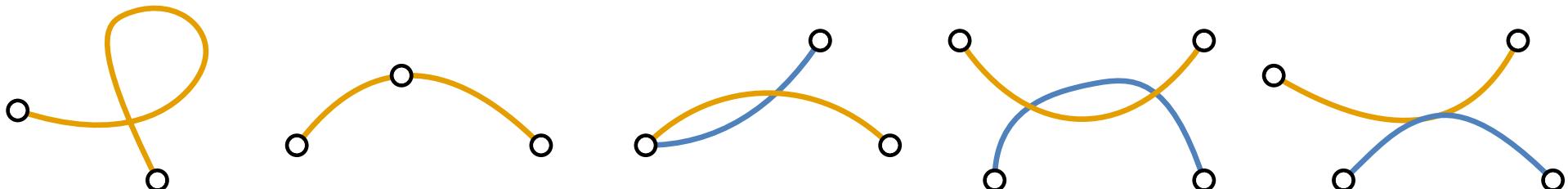
A **simple drawing** of a graph G in the plane:

- **vertices**: pairwise distinct points
- **edges**: Jordan arcs between the respective end-vertices s.t.
 - do not pass through other vertices
 - any two edges intersect in at most one point - either a common end-vertex or a proper crossing

Simple Drawings

A **simple drawing** of a graph G in the plane:

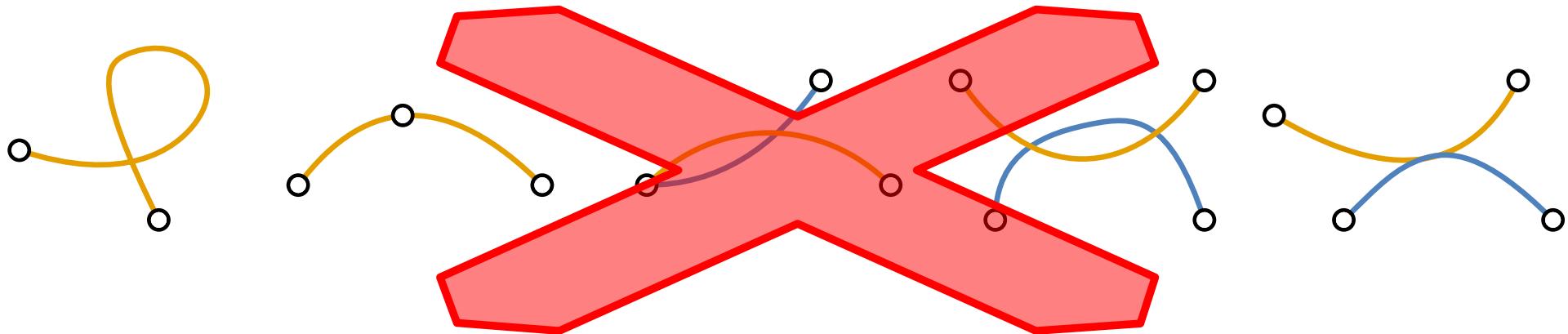
- **vertices**: pairwise distinct points
- **edges**: Jordan arcs between the respective end-vertices s.t.
 - do not pass through other vertices
 - any two edges intersect in at most one point - either a common end-vertex or a proper crossing



Simple Drawings

A **simple drawing** of a graph G in the plane:

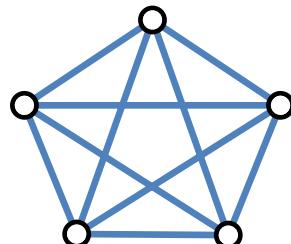
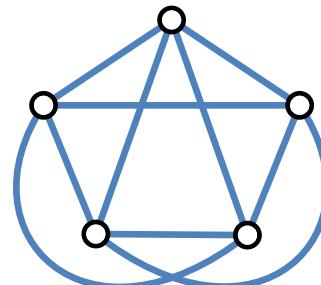
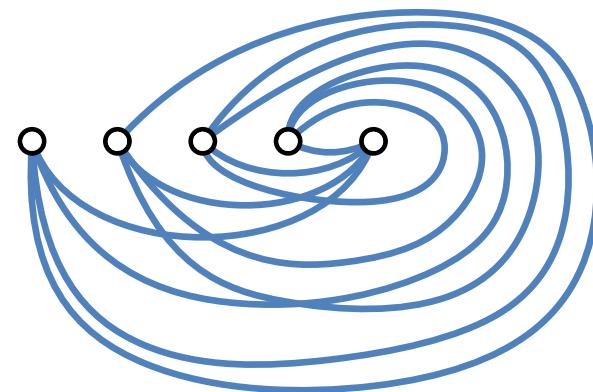
- **vertices**: pairwise distinct points
- **edges**: Jordan arcs between the respective end-vertices s.t.
 - do not pass through other vertices
 - any two edges intersect in at most one point - either a common end-vertex or a proper crossing



Simple Drawings

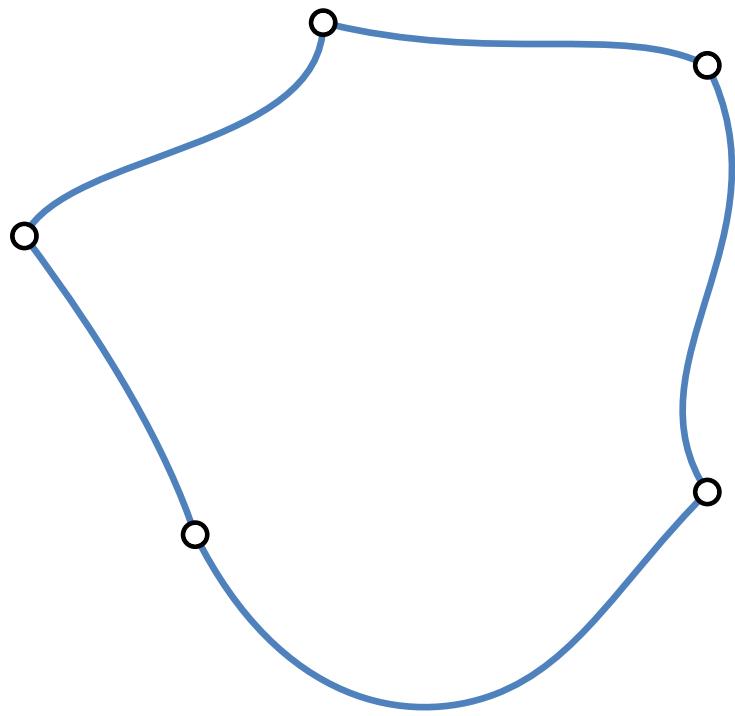
A **simple drawing** of a graph G in the plane:

- **vertices**: pairwise distinct points
- **edges**: Jordan arcs between the respective end-vertices s.t.
 - do not pass through other vertices
 - any two edges intersect in at most one point - either a common end-vertex or a proper crossing



Empty Plane k -Cycles

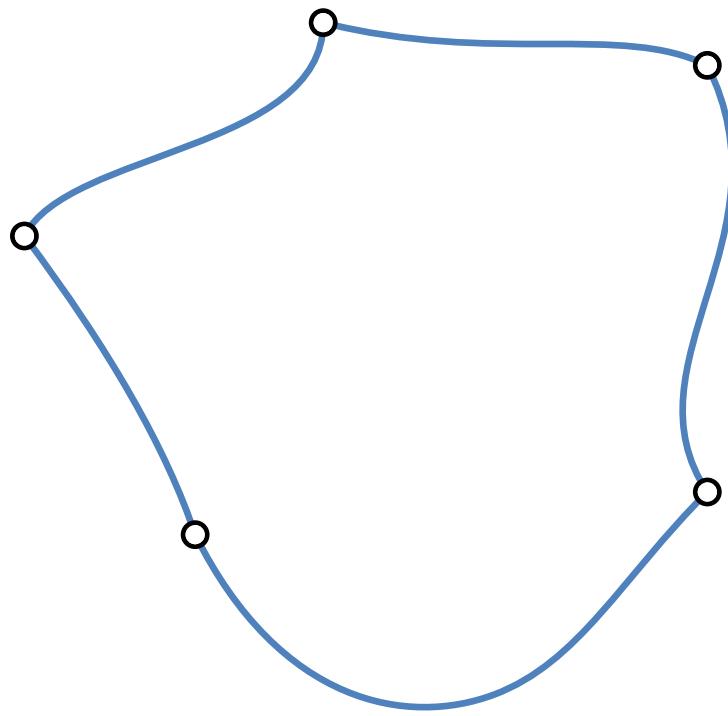
Crossing-free cycle on k vertices (for $k \geq 3$)



Empty Plane k -Cycles

Crossing-free cycle on k vertices (for $k \geq 3$)

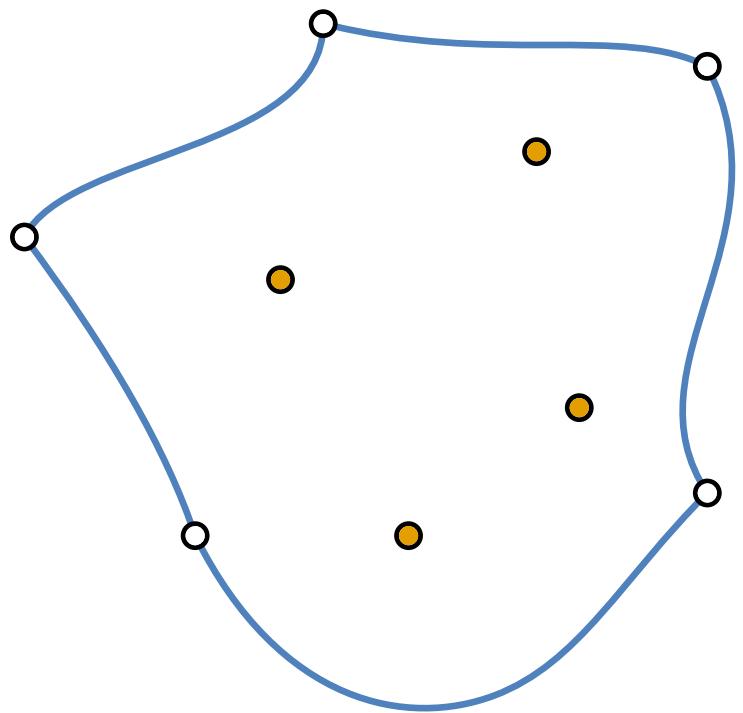
→ induces two connected regions - the **sides** of the cycle



Empty Plane k -Cycles

Crossing-free cycle on k vertices (for $k \geq 3$)

→ induces two connected regions - the **sides** of the cycle

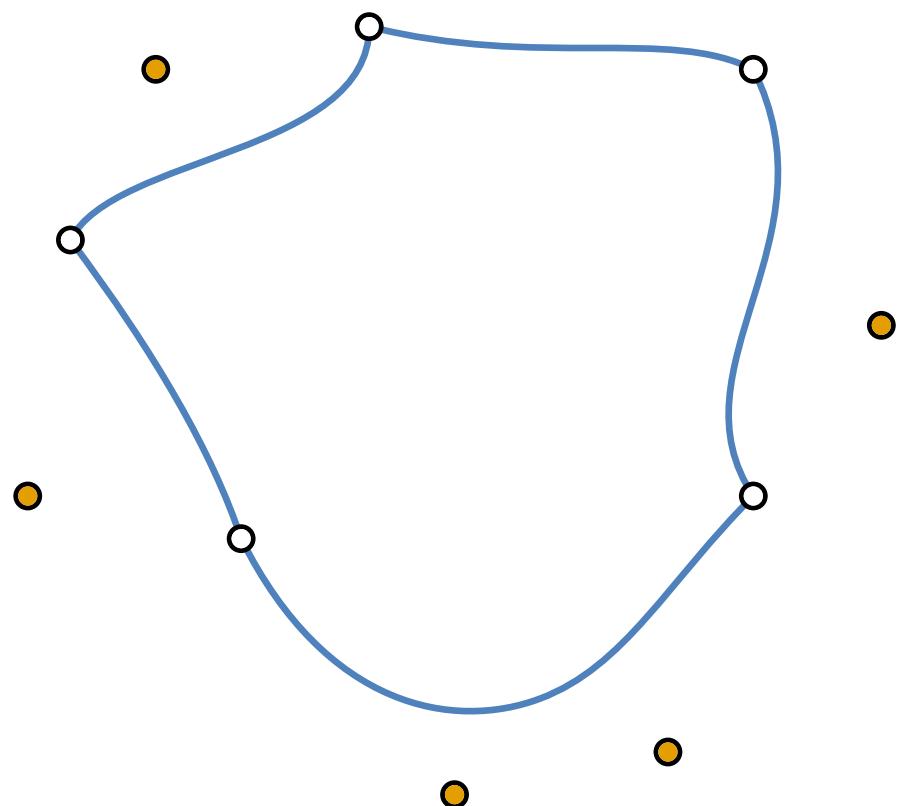


empty plane k -cycle:
no vertices on one side

Empty Plane k -Cycles

Crossing-free cycle on k vertices (for $k \geq 3$)

→ induces two connected regions - the **sides** of the cycle

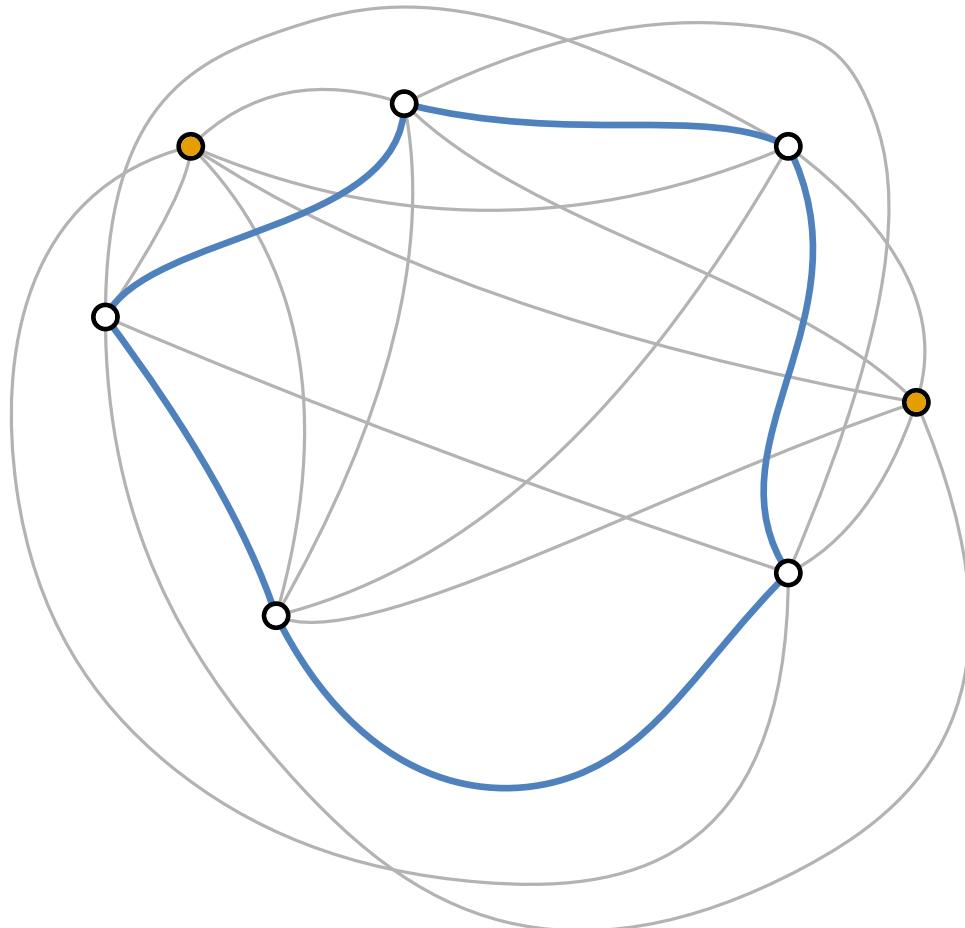


empty plane k -cycle:
no vertices on one side

Empty Plane k -Cycles

Crossing-free cycle on k vertices (for $k \geq 3$)

→ induces two connected regions - the **sides** of the cycle



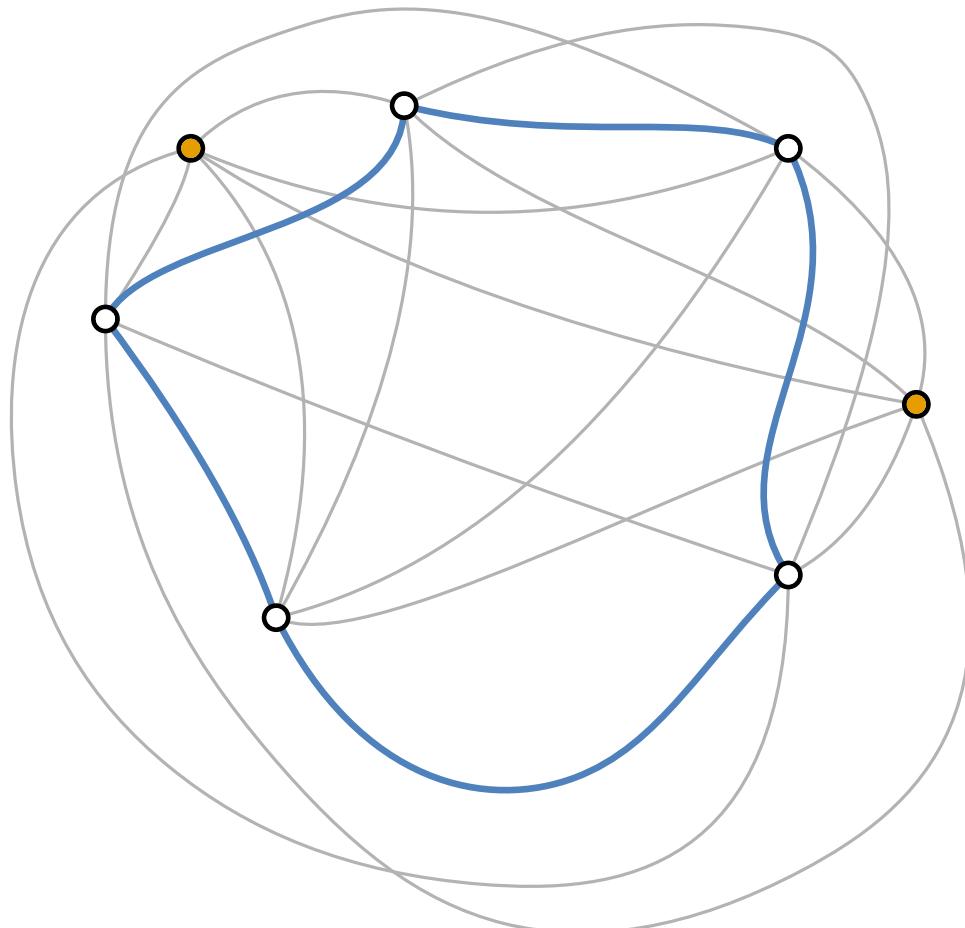
empty plane k -cycle:
no vertices on one side

We are interested in
empty plane k -cycles in
simple drawings D of K_n

Empty Plane k -Cycles

Crossing-free cycle on k vertices (for $k \geq 3$)

→ induces two connected regions - the **sides** of the cycle



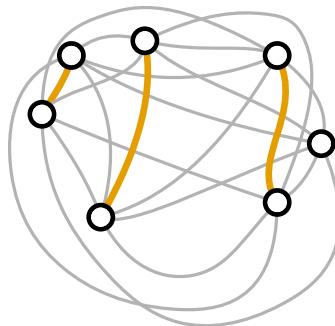
empty plane k -cycle:
no vertices on one side

We are interested in
empty plane k -cycles in
simple drawings D of K_n

Invariance under (weak)
isomorphism!

Plane Sub-drawings in Simple Drawings of K_n

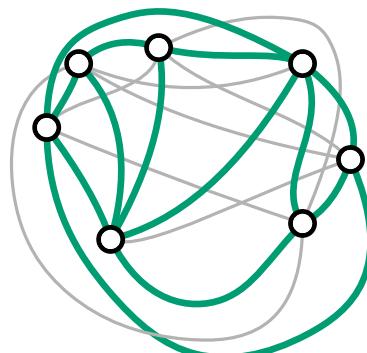
matchings



cycles & paths



maximal plane sub-drawings



and many more...

Questions:

- existence
- (asymptotic) size
- number
- ...

Plane Empty Cycles

Conjecture 1 [Rafla 1988]:

Every simple drawing of K_n contains a plane Hamiltonian cycle.

For $k = n$, an empty plane k -cycle is a plane Hamiltonian cycle!

Plane Empty Cycles

Conjecture 1 [Rafla 1988]:

Every simple drawing of K_n contains a plane Hamiltonian cycle.

For $k = n$, an empty plane k -cycle is a plane Hamiltonian cycle!

Conjecture 2 [BFROS 2024]:

Every simple drawing of K_n contains an empty plane k -cycle for every $k = 3, \dots, n$.

Conjecture 2 holds for subclasses of straight-line, x -monotone, and g -convex drawings. For simple drawings in general, it has been shown for $k = 3$ and $k = 4$.

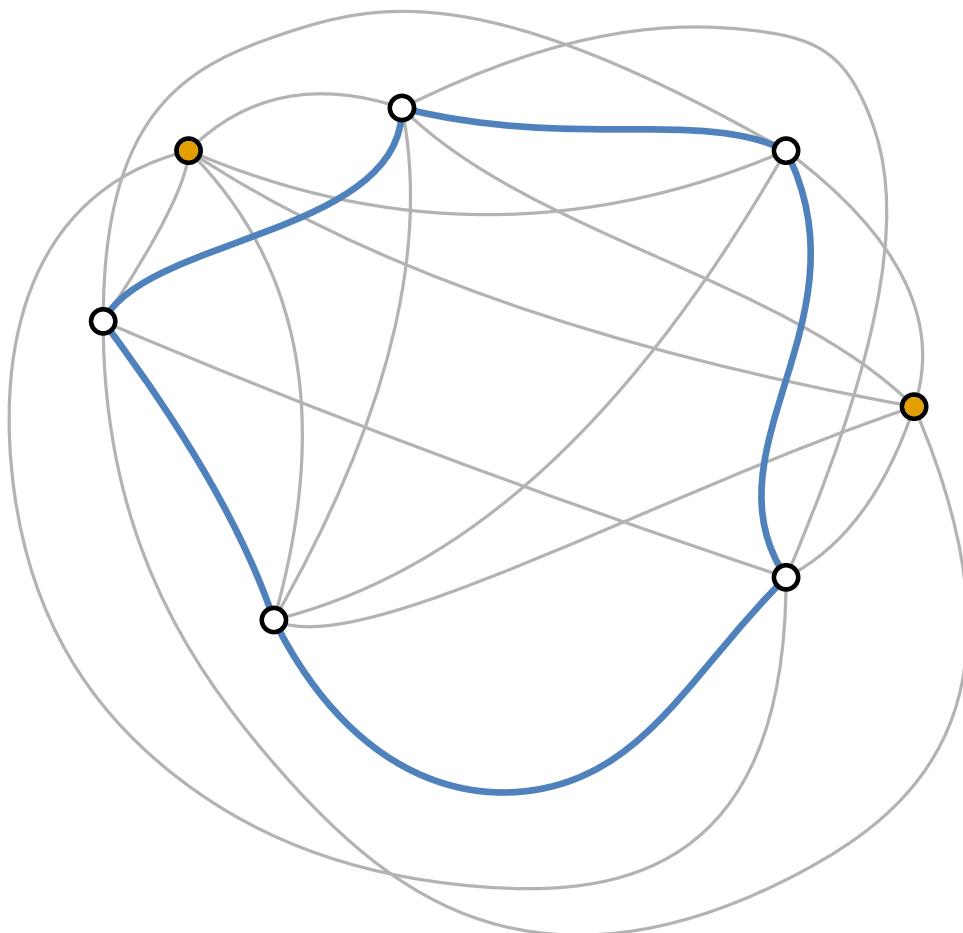
Conjecture 2 \Rightarrow Conjecture 1

Small values of k

Theorem: Every simple drawing of K_n for $n \geq 5$ contains an empty plane k -cycle of length $k = 5$ or $k = 6$ *at every vertex*.

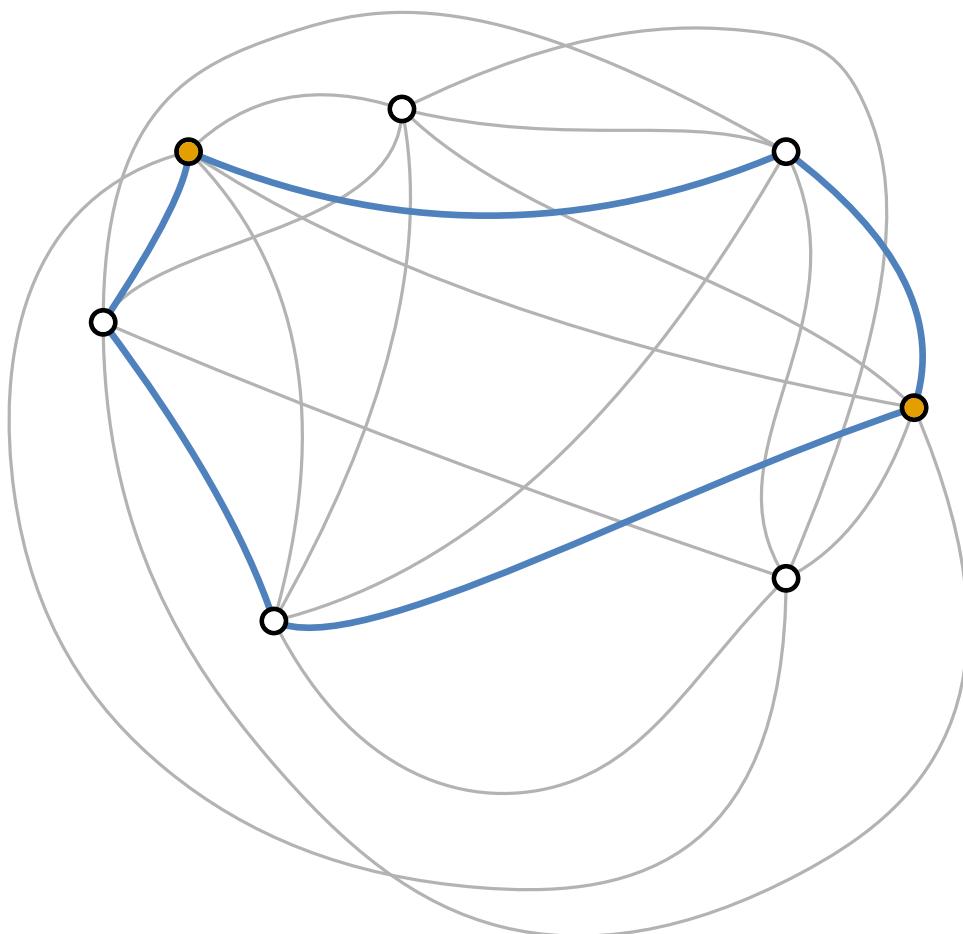
Small values of k

Theorem: Every simple drawing of K_n for $n \geq 5$ contains an empty plane k -cycle of length $k = 5$ or $k = 6$ at every vertex.



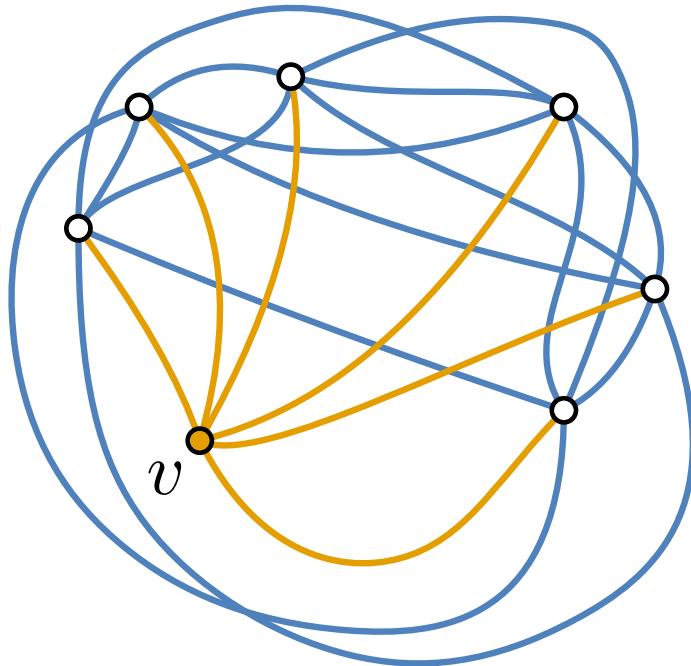
Small values of k

Theorem: Every simple drawing of K_n for $n \geq 5$ contains an empty plane k -cycle of length $k = 5$ or $k = 6$ at every vertex.



Preliminaries

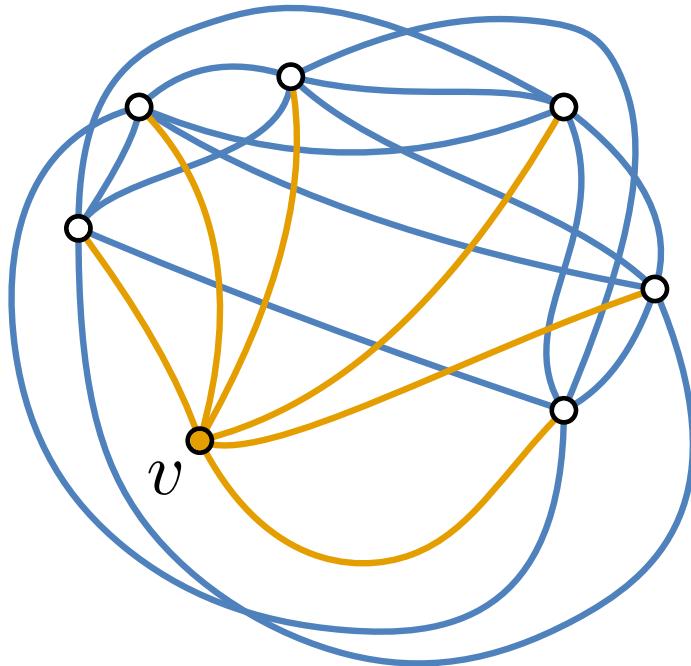
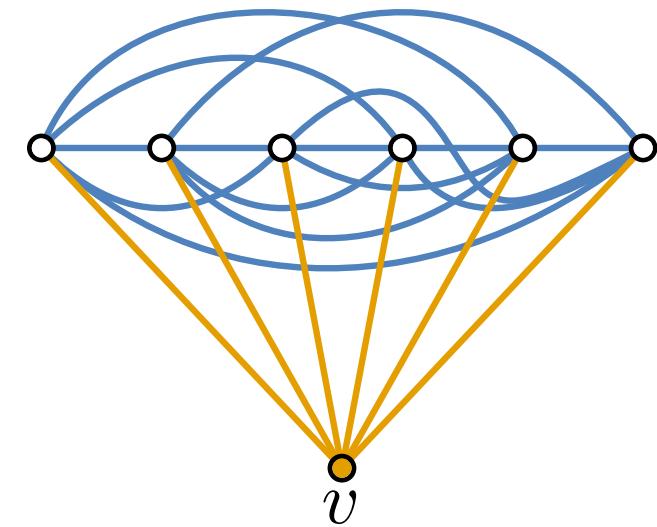
simple drawing D of K_n



$\text{star}(v)$ is the spanning
subdrawing of all edges
incident to v

Preliminaries

simple drawing D of K_n

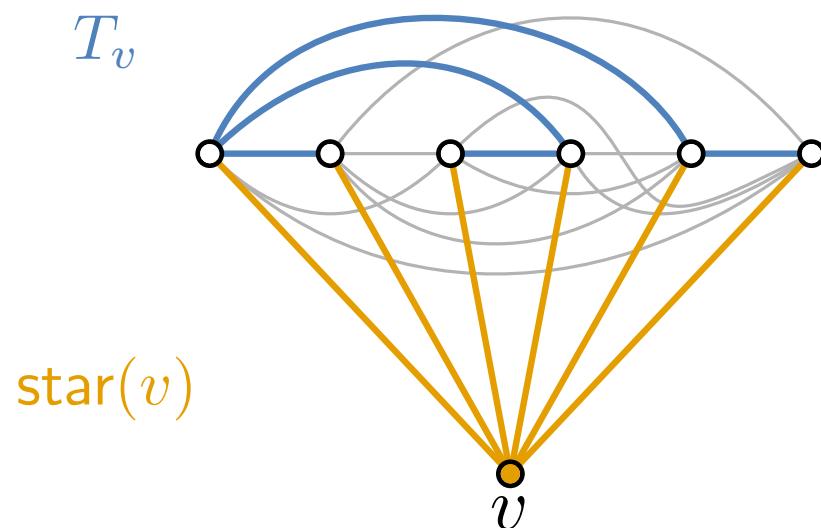


$\text{star}(v)$ is the spanning subdrawing of all edges incident to v

an ice-cream cone drawing at v

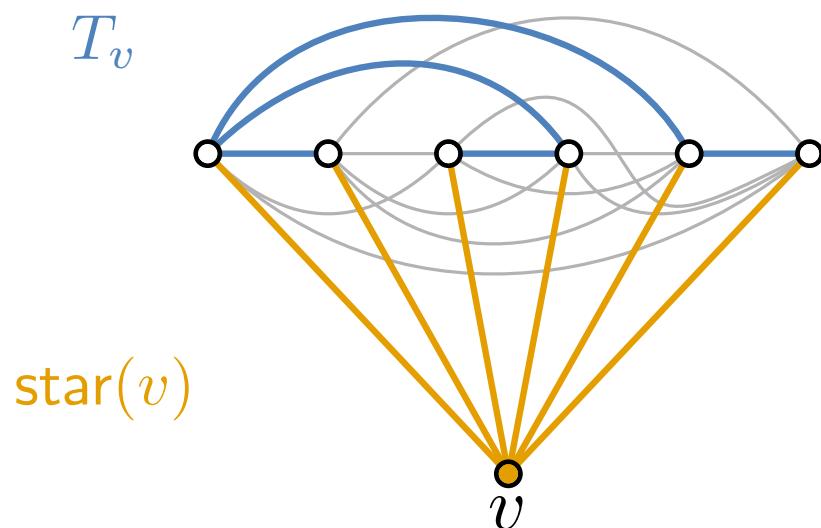
Preliminaries

Lemma [GPT 2021]: Given a simple drawing D of K_n and a vertex v , there exists a spanning sub-tree T_v on $V \setminus v$ s.t. $D' := \text{star}(v) \cup T_v$ is a plane sub-drawing of D .



Preliminaries

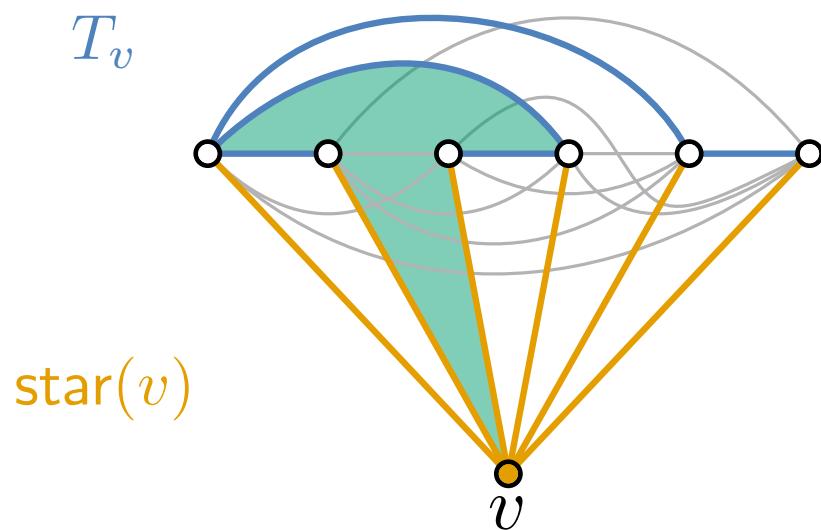
Lemma [GPT 2021]: Given a simple drawing D of K_n and a vertex v , there exists a spanning sub-tree T_v on $V \setminus v$ s.t. $D' := \text{star}(v) \cup T_v$ is a plane sub-drawing of D .



- All faces of D' are incident to v .
- Every face of D' is an empty plane cycle in D .

Preliminaries

Lemma [GPT 2021]: Given a simple drawing D of K_n and a vertex v , there exists a spanning sub-tree T_v on $V \setminus v$ s.t. $D' := \text{star}(v) \cup T_v$ is a plane sub-drawing of D .

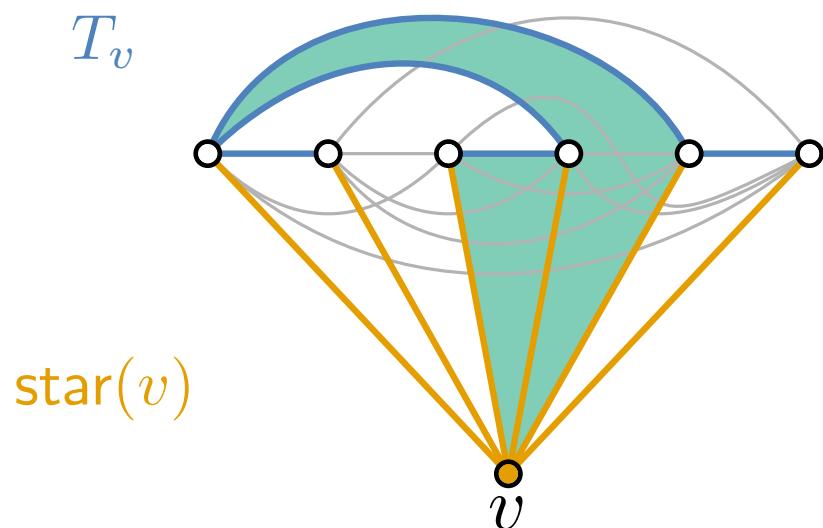


Good:

- Faces of size 5 or 6

Preliminaries

Lemma [GPT 2021]: Given a simple drawing D of K_n and a vertex v , there exists a spanning sub-tree T_v on $V \setminus v$ s.t. $D' := \text{star}(v) \cup T_v$ is a plane sub-drawing of D .

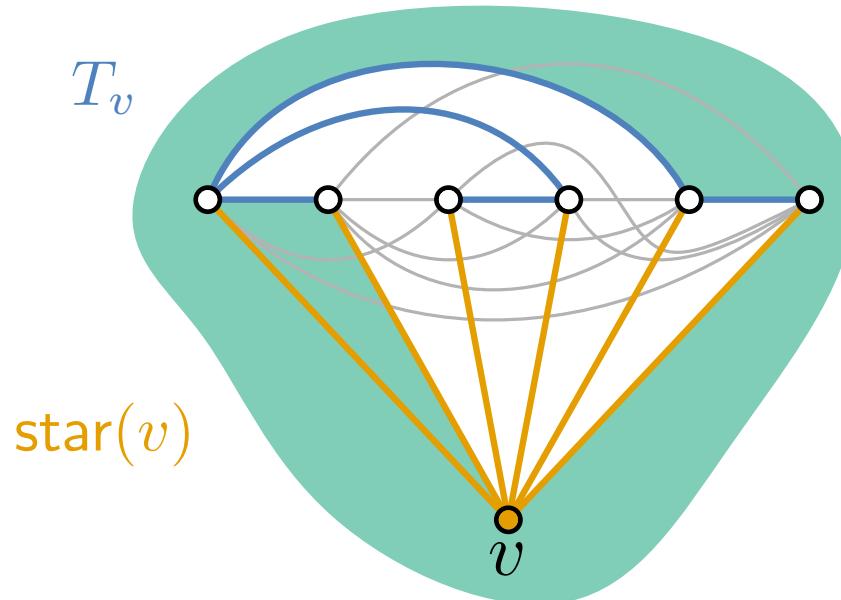


Good:

- Faces of size 5 or 6
- Adjacent faces of size 3 and 4 sharing one edge
(3+4 or 3+3+3 yields 5-cycle;
4+4 yields 6-cycle)

Preliminaries

Lemma [GPT 2021]: Given a simple drawing D of K_n and a vertex v , there exists a spanning sub-tree T_v on $V \setminus v$ s.t. $D' := \text{star}(v) \cup T_v$ is a plane sub-drawing of D .

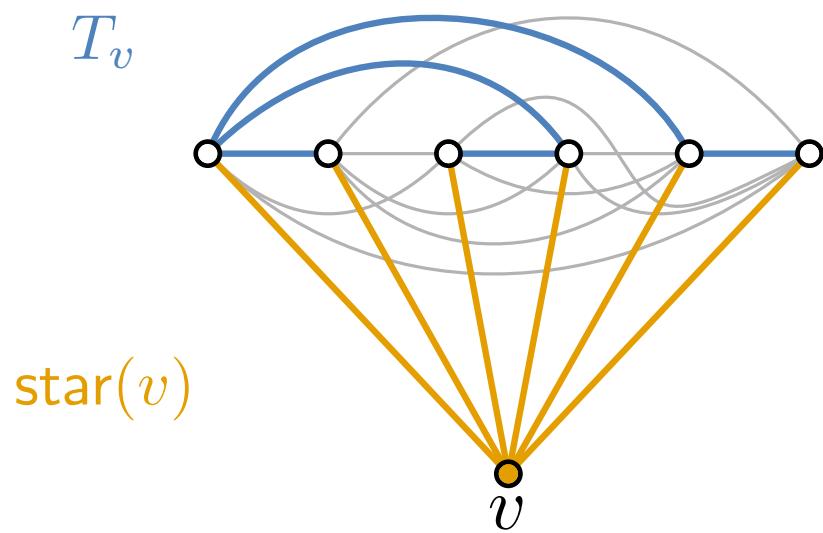


Good:

- Faces of size 5 or 6
- Adjacent faces of size 3 and 4 sharing one edge
(3+4 or 3+3+3 yields 5-cycle;
4+4 yields 6-cycle)

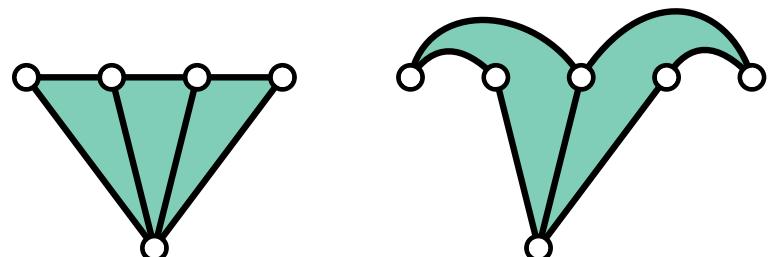
Preliminaries

Lemma [GPT 2021]: Given a simple drawing D of K_n and a vertex v , there exists a spanning sub-tree T_v on $V \setminus v$ s.t. $D' := \text{star}(v) \cup T_v$ is a plane sub-drawing of D .



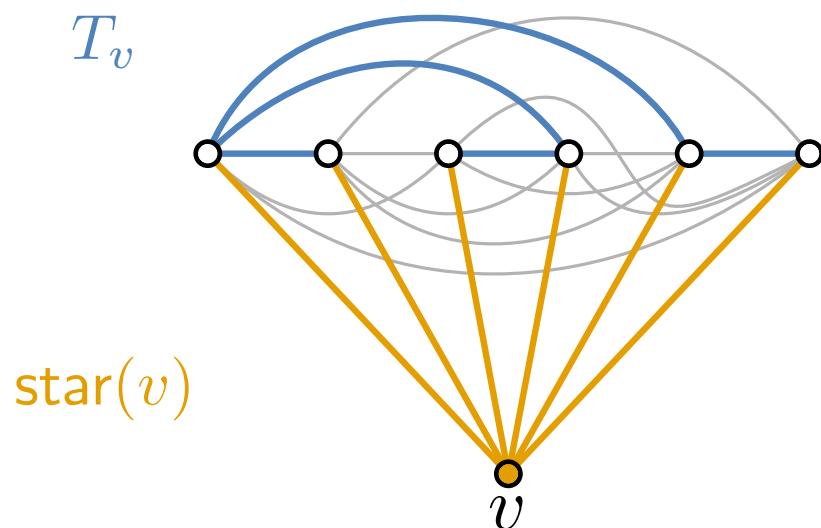
Good:

- Faces of size 5 or 6
- Adjacent faces of size 3 and 4 sharing one edge
(3+4 or 3+3+3 yields 5-cycle;
4+4 yields 6-cycle)



Preliminaries

Lemma [GPT 2021]: Given a simple drawing D of K_n and a vertex v , there exists a spanning sub-tree T_v on $V \setminus v$ s.t. $D' := \text{star}(v) \cup T_v$ is a plane sub-drawing of D .



Good:

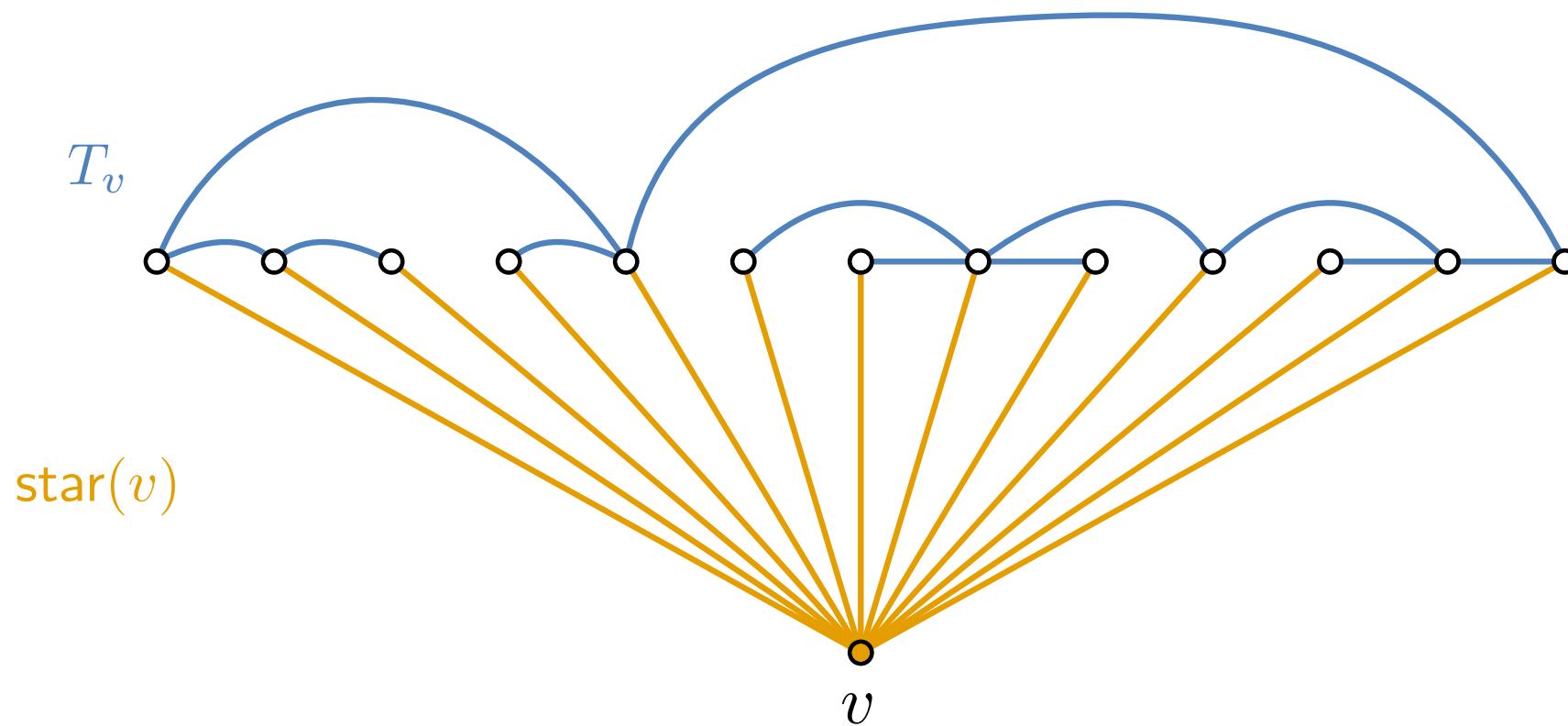
- Faces of size 5 or 6
- Adjacent faces of size 3 and 4 sharing one edge
(3+4 or 3+3+3 yields 5-cycle;
4+4 yields 6-cycle)

Can we always find such good (combinations of) faces in $\text{star}(v) \cup T_v$?

Preliminaries - Umbrellas and Pockets

We consider a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v .

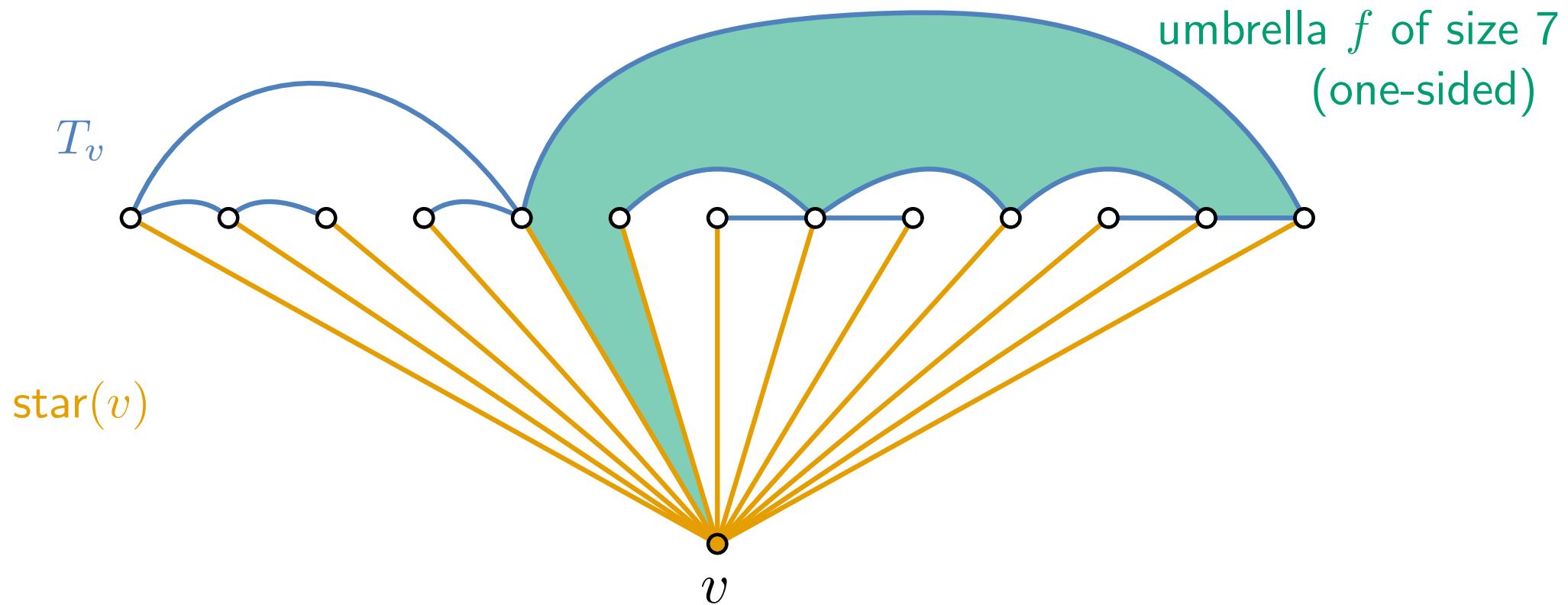
umbrella of size k : a bounded face of size $k \geq 4$



Preliminaries - Umbrellas and Pockets

We consider a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v .

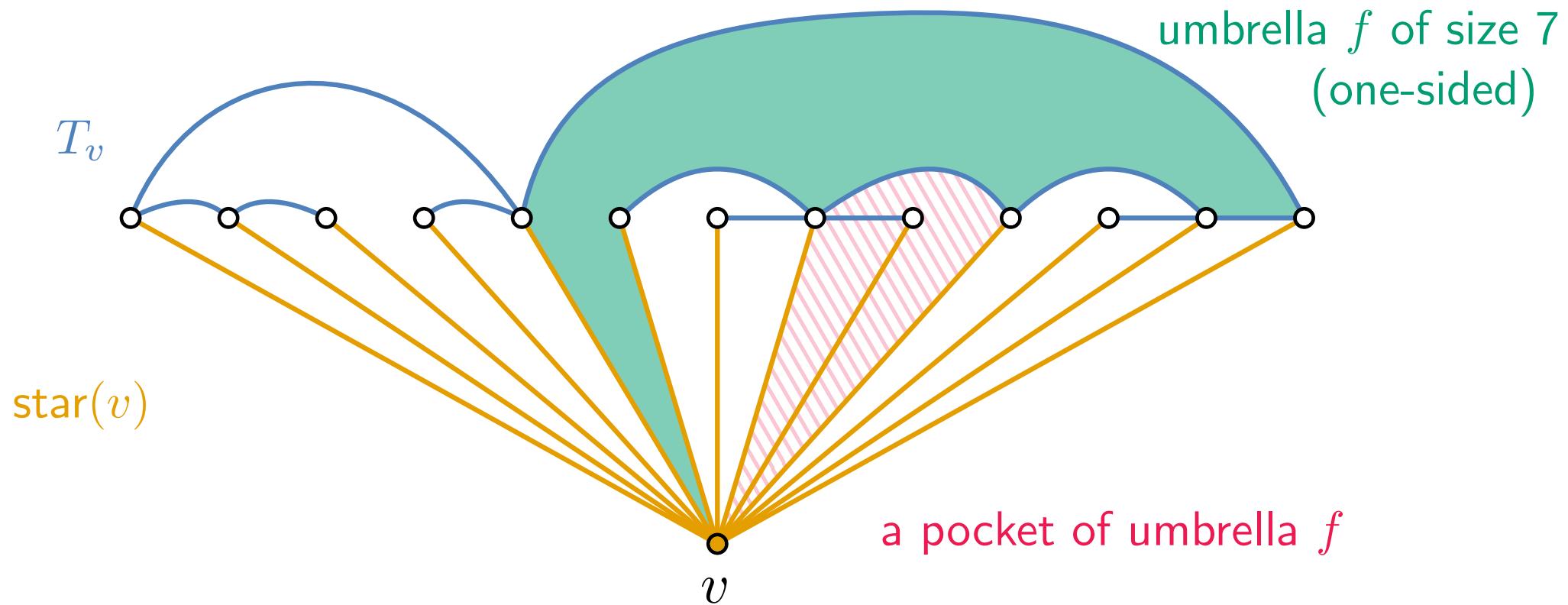
umbrella of size k : a bounded face of size $k \geq 4$



Preliminaries - Umbrellas and Pockets

We consider a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v .

umbrella of size k : a bounded face of size $k \geq 4$

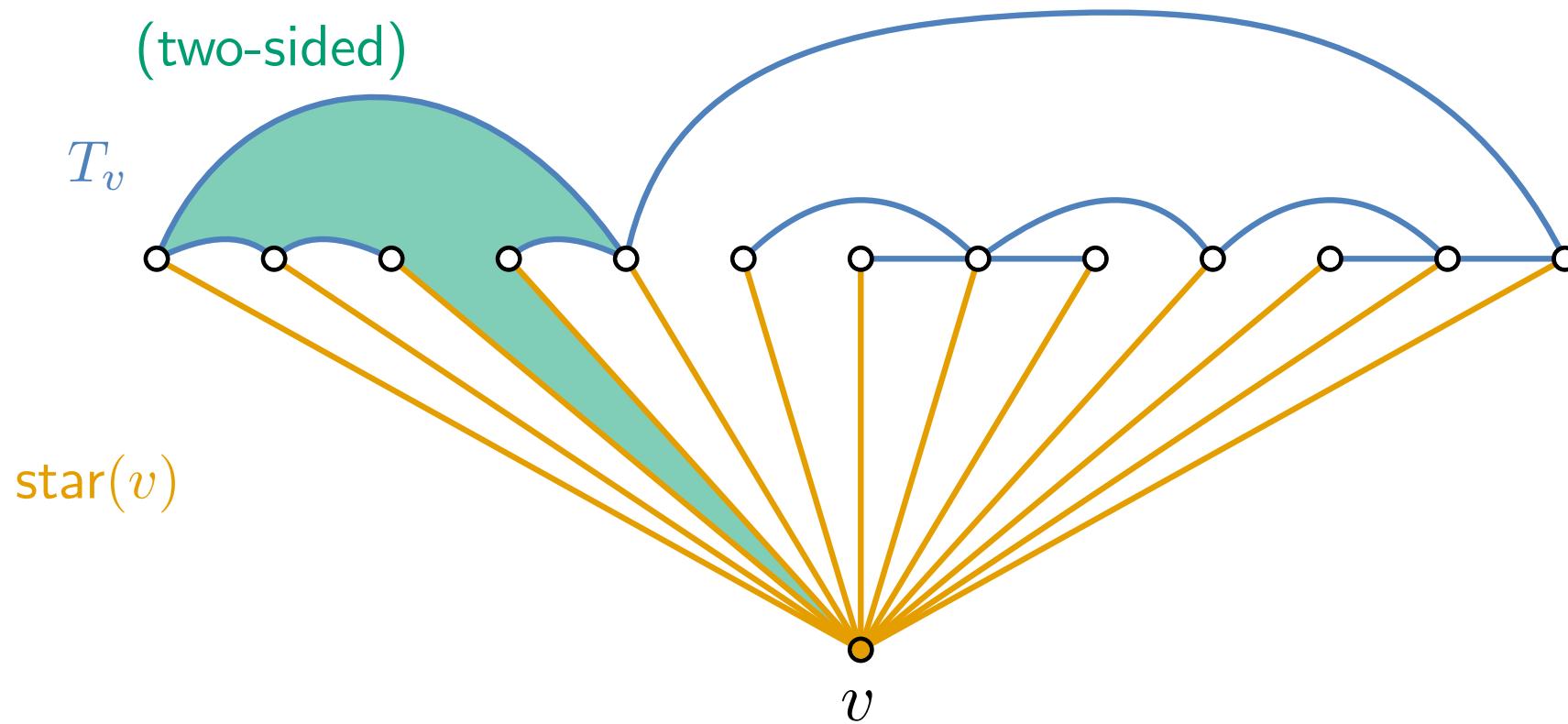


Preliminaries - Umbrellas and Pockets

We consider a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v .

umbrella of size k : a bounded face of size $k \geq 4$

umbrella of size 6
(two-sided)



Proof of Theorem (Sketch)

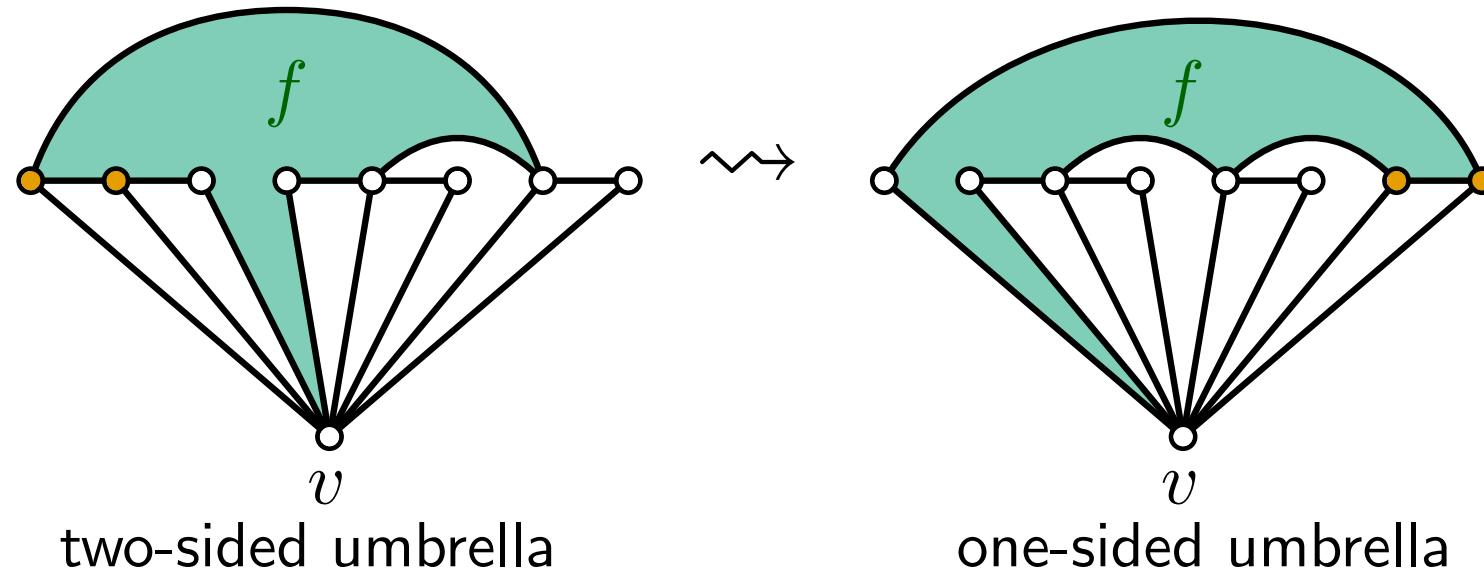
Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 1: There exists a face f of size $k \geq 7$.

→ w.l.o.g. assume that f is a one-sided umbrella.

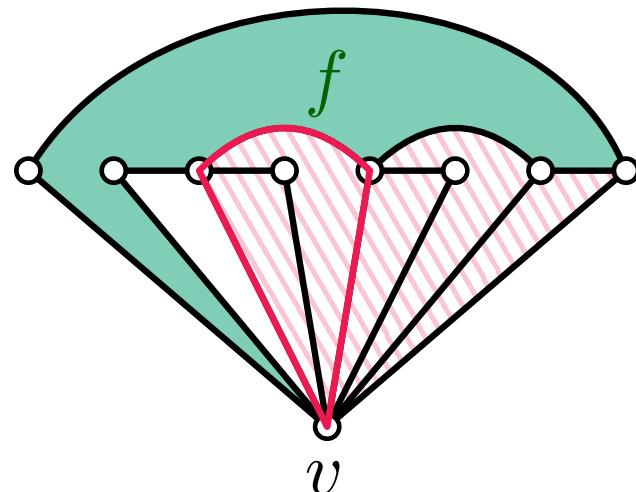


Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 1: There exists a face f of size $k \geq 7$.

→ w.l.o.g. assume that f is a one-sided umbrella.



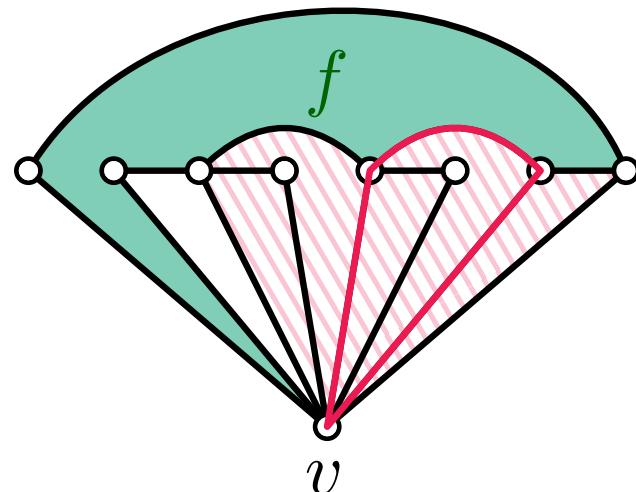
Pick three consecutive **pockets** of f

Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 1: There exists a face f of size $k \geq 7$.

→ w.l.o.g. assume that f is a one-sided umbrella.



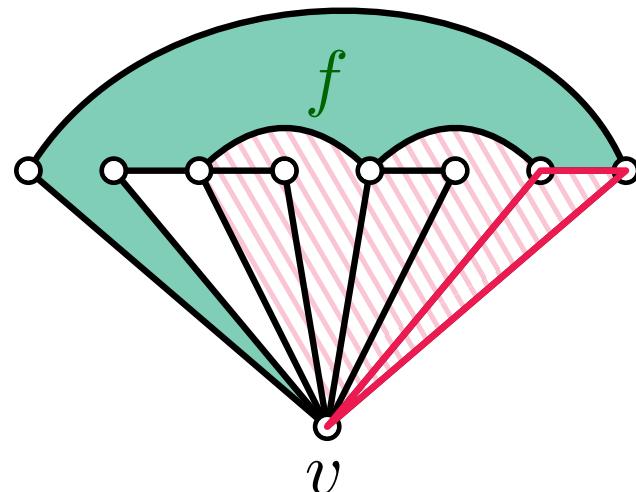
Pick three consecutive **pockets** of f

Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 1: There exists a face f of size $k \geq 7$.

→ w.l.o.g. assume that f is a one-sided umbrella.



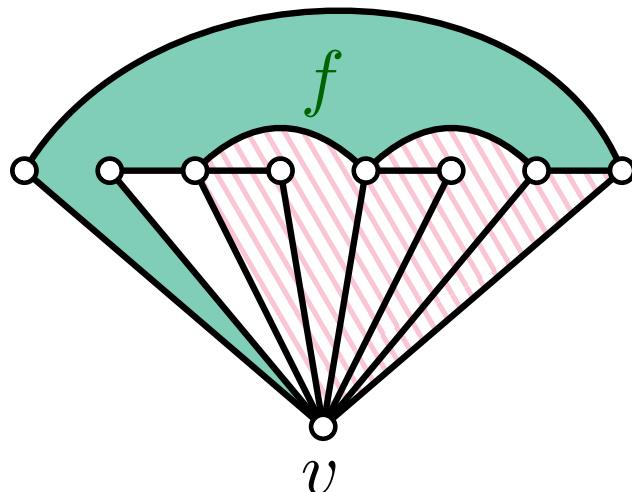
Pick three consecutive **pockets** of f

Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 1: There exists a face f of size $k \geq 7$.

→ w.l.o.g. assume that f is a one-sided umbrella.



Pick three consecutive **pockets** of f

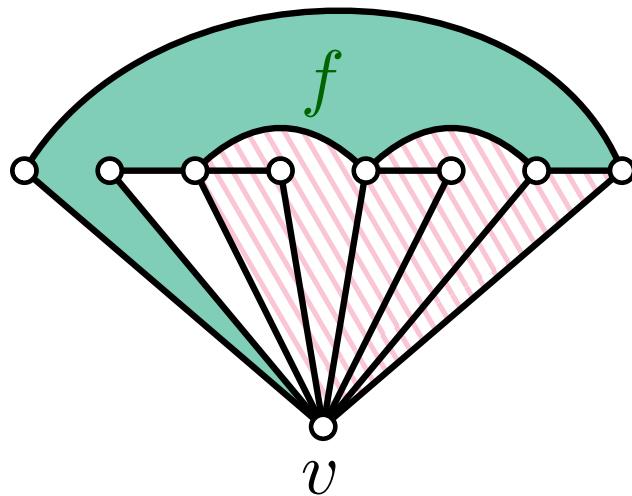
Idea: Iteratively find three “smaller” consecutive pockets completely contained in current ones until we find a good combination of faces.

Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 1: There exists a face f of size $k \geq 7$.

→ w.l.o.g. assume that f is a one-sided umbrella.



Pick three consecutive **pockets** of f

Idea: Iteratively find three “smaller” consecutive pockets completely contained in current ones until we find a good combination of faces.

We find an empty plane 5- or 6-cycle!

Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

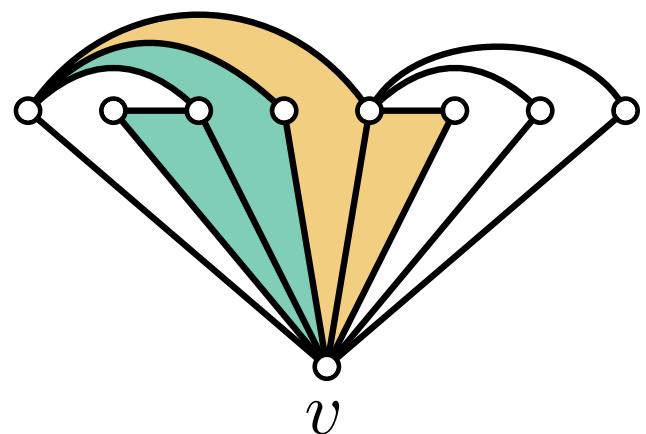
Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle



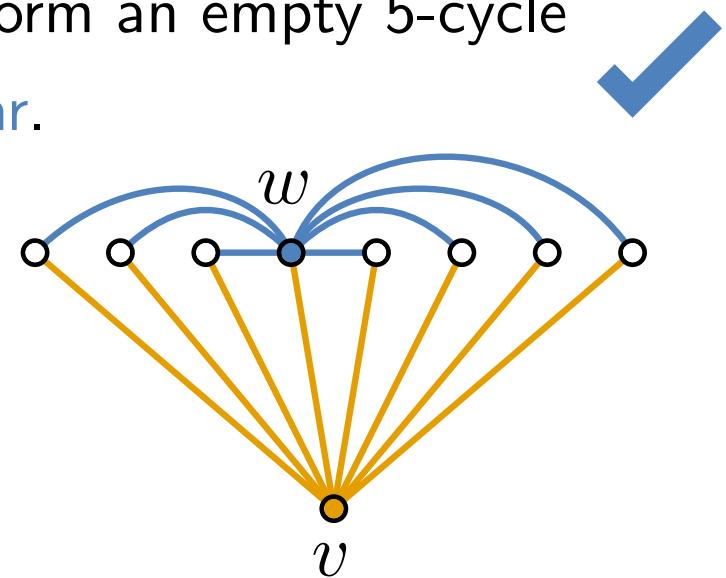
Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.



Proof of Theorem (Sketch)

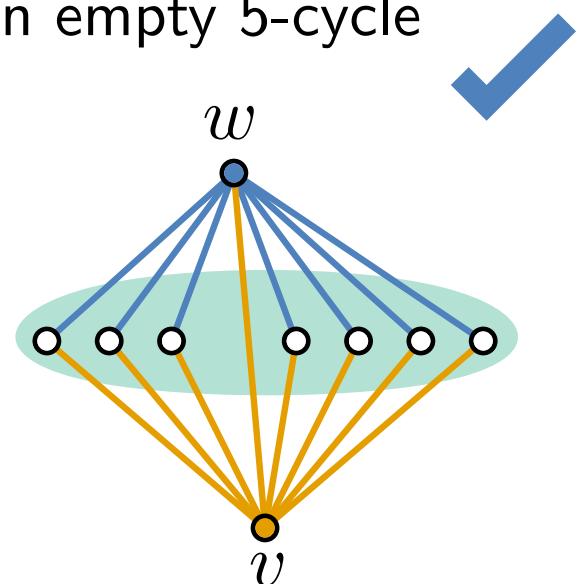
Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .



Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .



Proof of Theorem (Sketch)

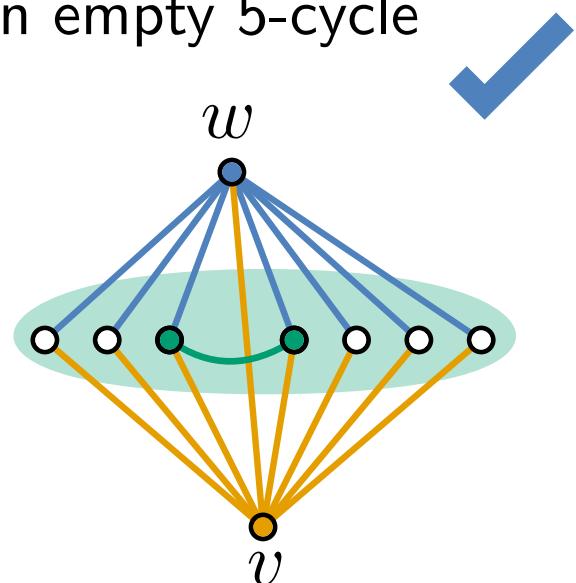
Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .



Proof of Theorem (Sketch)

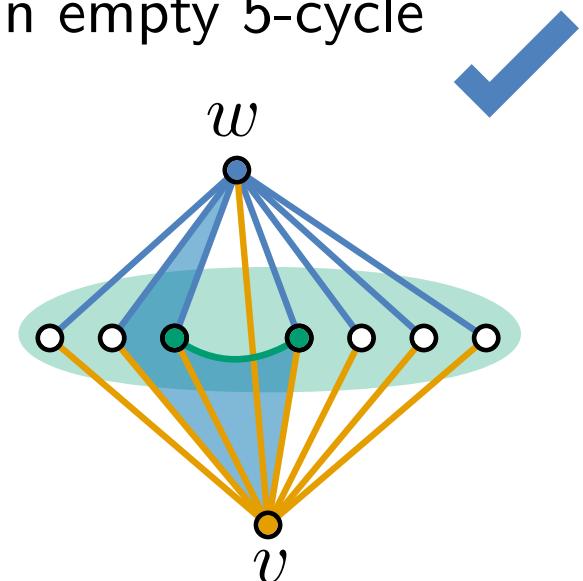
Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .



Proof of Theorem (Sketch)

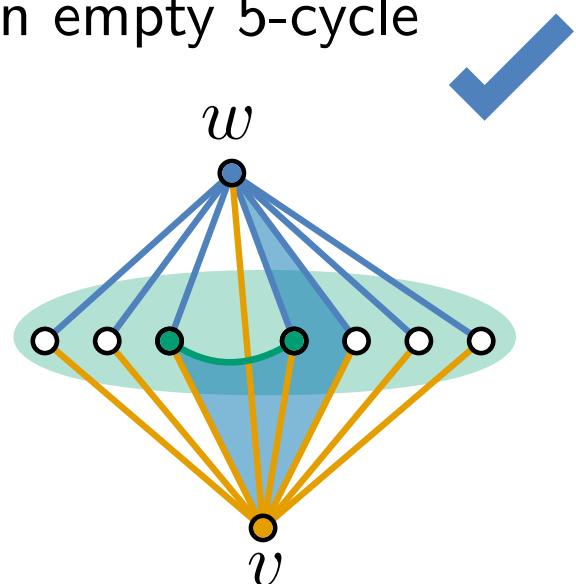
Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .



Proof of Theorem (Sketch)

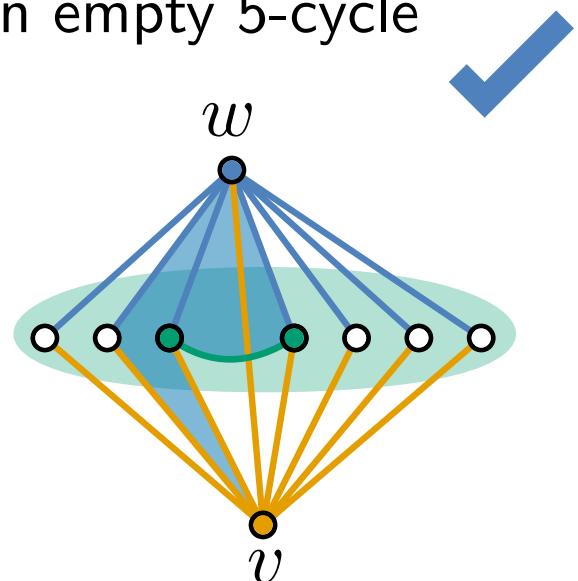
Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .



Proof of Theorem (Sketch)

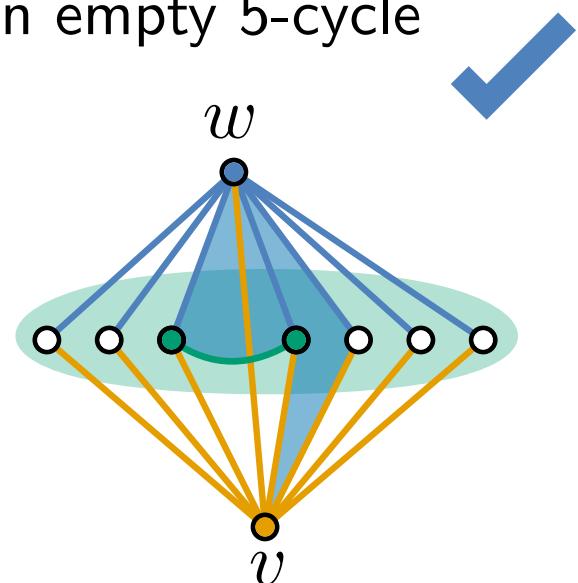
Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .



Proof of Theorem (Sketch)

Fix a vertex v and a sub-drawing $D' = \text{star}(v) \cup T_v$ of D as ice-cream cone drawing at v . Assume that D' has no face of size 5 or 6.

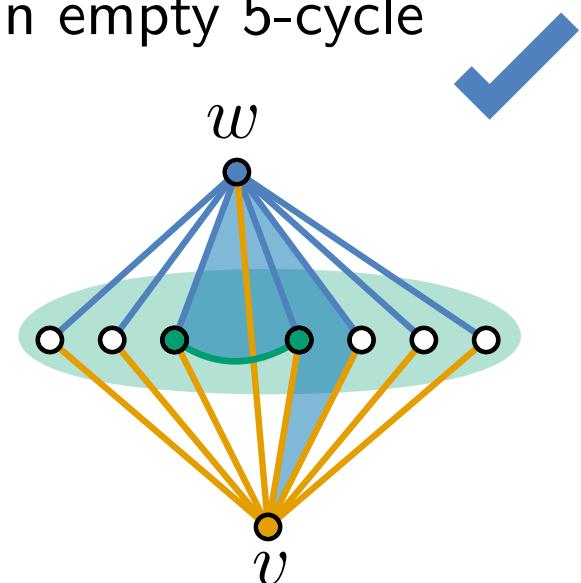
Case 2: All faces are of size ≤ 4 .

\Rightarrow exactly two faces are of size 3

- If faces of size 3 are **not** adjacent: Each of them can be combined with a face of size 4 to form an empty 5-cycle
- Otherwise, D' is a plane **double-star**.

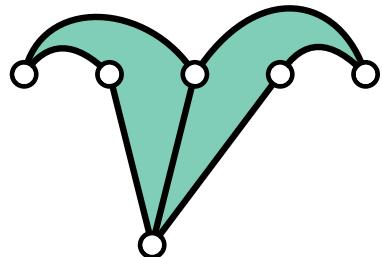
\Rightarrow There exists an edge in D which crosses at most the edge $\{v, w\}$ of D' .

Get two empty plane 5-cycles at v !
(resp. four if $n \geq 6$)



What now?

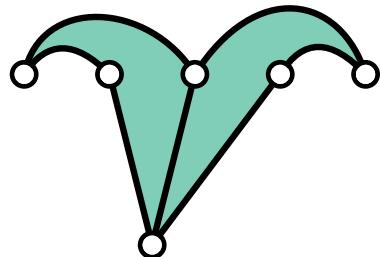
- Can we get rid of the 6-cycles?



→ Problematic case: “good” combination of faces of size 4

What now?

- Can we get rid of the 6-cycles?

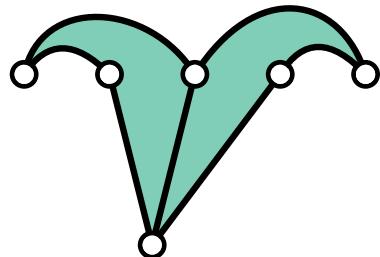


→ Problematic case: “good” combination of faces of size 4

- **However:** For every vertex v that is part of a plane double-star $\text{star}(v) \cup \text{star}(w)$, we can guarantee two empty 5-cycles!
- Furthermore, we can also find two empty 6-cycles incident to v in the double-star!

What now?

- Can we get rid of the 6-cycles?



→ Problematic case: “good” combination of faces of size 4

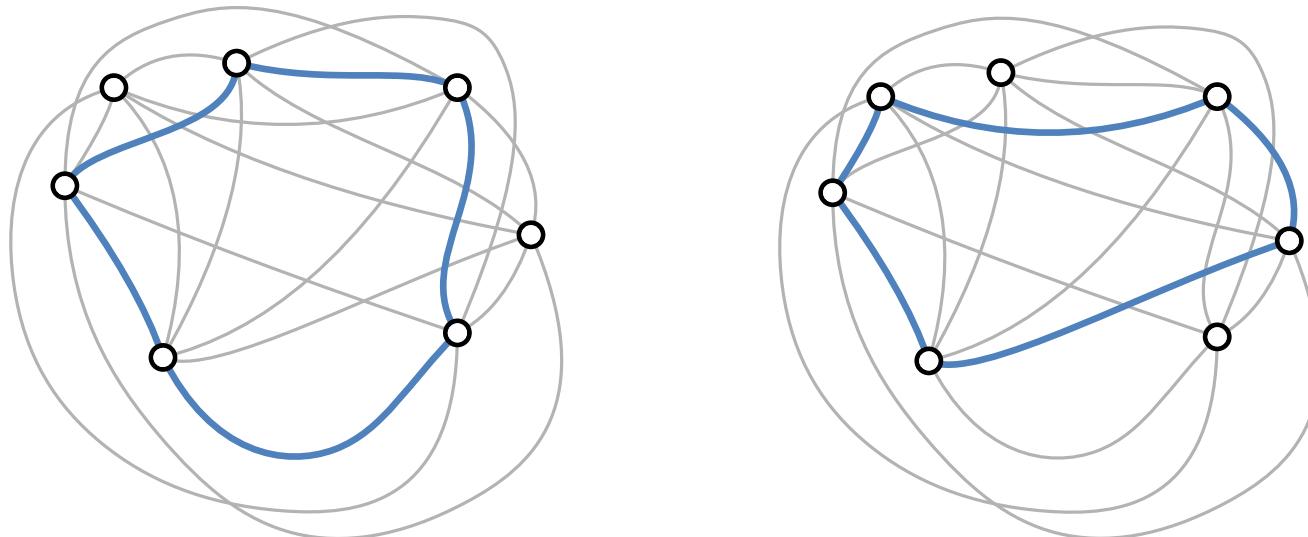
- **However:** For every vertex v that is part of a plane double-star $\text{star}(v) \cup \text{star}(w)$, we can guarantee two empty 5-cycles!
- Furthermore, we can also find two empty 6-cycles incident to v in the double-star!

Open Problem [Orthaber 2025]:

Every simple drawing of K_n contains *two* empty plane k -cycles for $k = 3, \dots, n$ at every vertex.

Conclusion

Theorem: Every simple drawing of K_n for $n \geq 5$ contains an empty plane k -cycle of length $k = 5$ or $k = 6$ at every vertex.

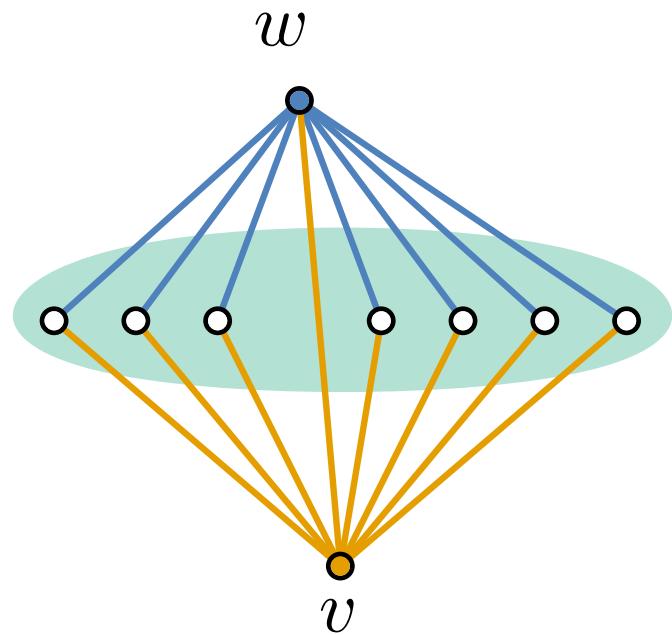


Open Problem [Orthaber 2025]:

Every simple drawing of K_n contains two empty plane k -cycles for $k = 3, \dots, n$ at every vertex.

Short edges in c -monotone drawings of K_n

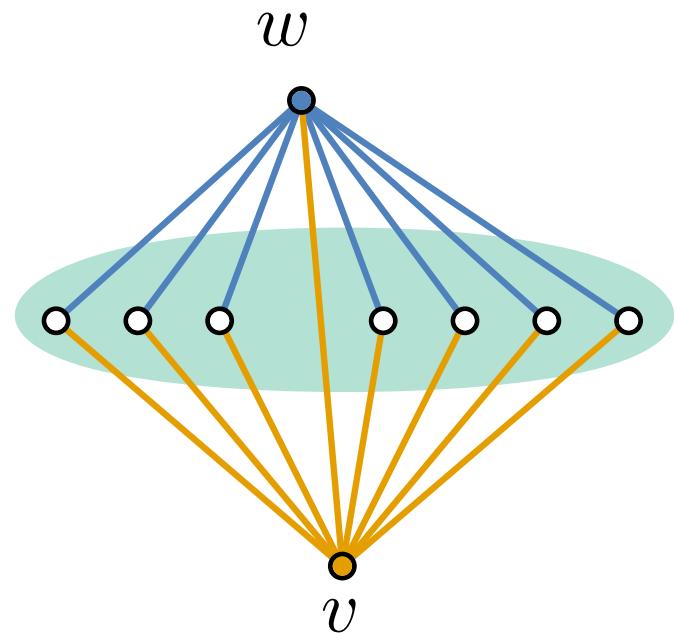
Details on how to guarantee the “good” edge in the plane double-star:



Short edges in c -monotone drawings of K_n

Details on how to guarantee the “good” edge in the plane double-star:

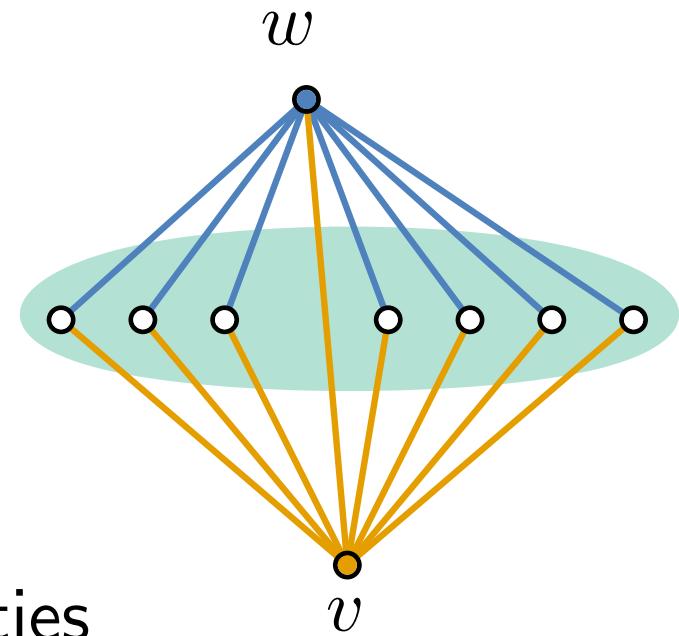
- The sub-drawing of D induced by the vertices $V \setminus \{v, w\}$ is strongly isomorphic to a c -monotone drawing.



Short edges in c -monotone drawings of K_n

Details on how to guarantee the “good” edge in the plane double-star:

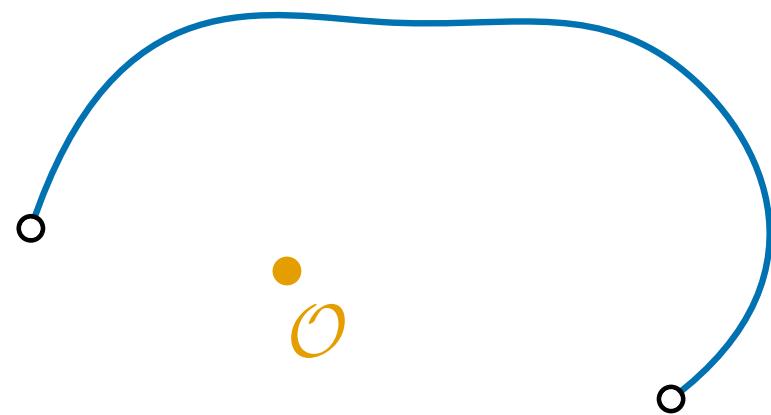
- The sub-drawing of D induced by the vertices $V \setminus \{v, w\}$ is strongly isomorphic to a c -monotone drawing.



→ We can use structural properties of c -monotone drawings to find a “good” edge.

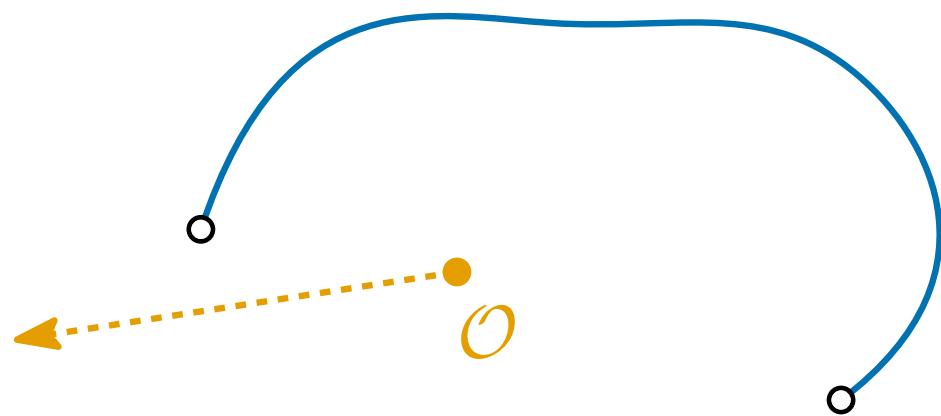
c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.



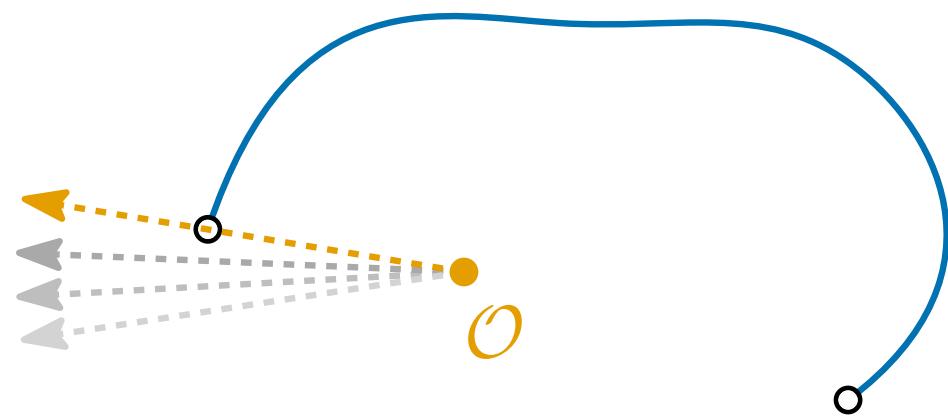
c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.



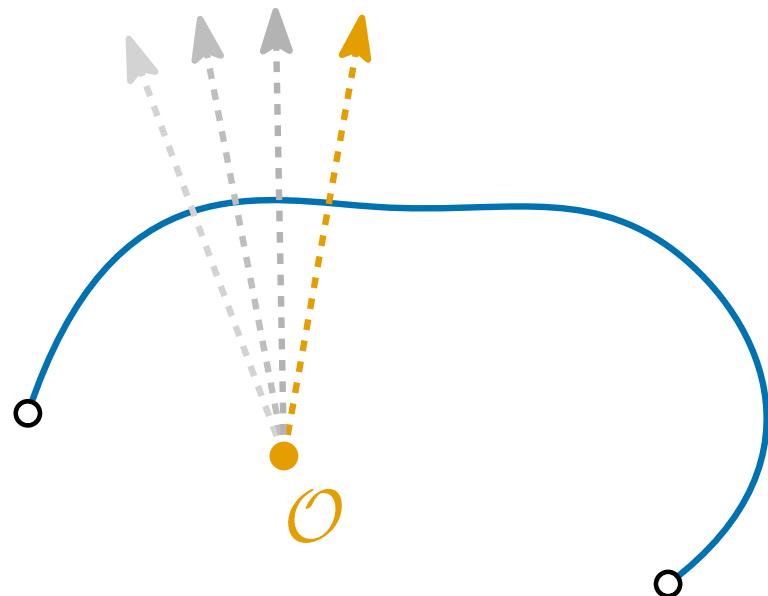
c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.



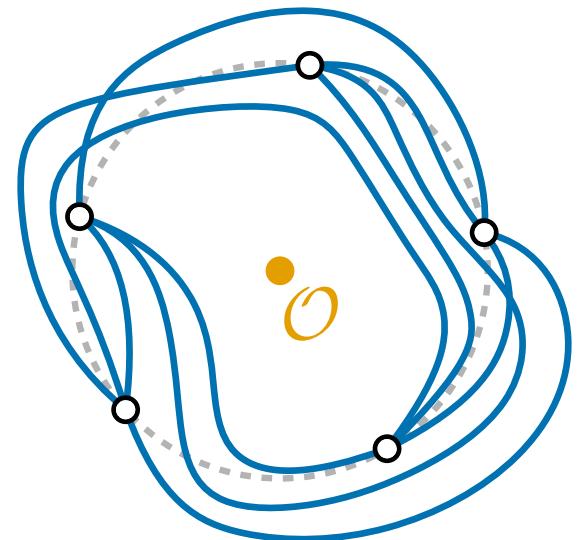
c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.



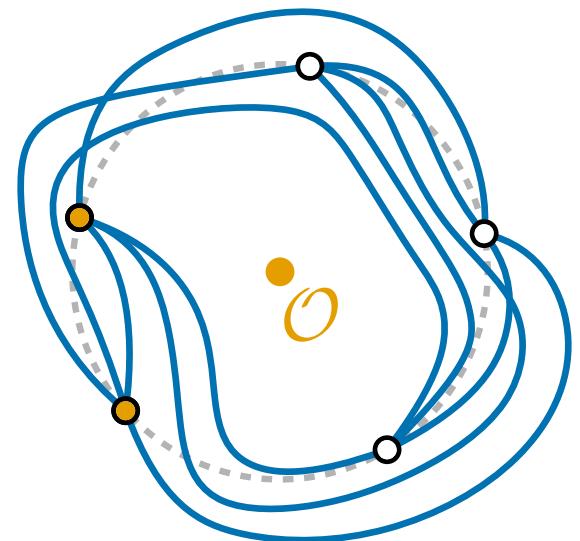
c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.
- c -monotone drawing: a simple drawing where there exists a point \mathcal{O} s.t. every edge of the drawing is c -monotone w.r.t. \mathcal{O} .
- Every c -monotone drawing is isomorphic to a c -monotone drawing where all vertices lie on a common circle with center \mathcal{O} .



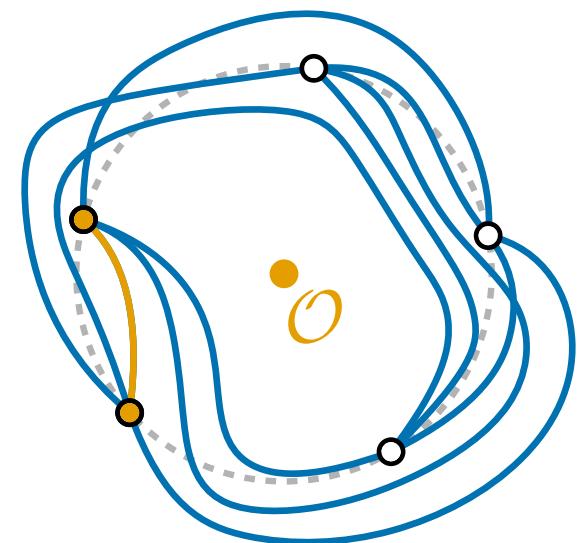
c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.
- c -monotone drawing: a simple drawing where there exists a point \mathcal{O} s.t. every edge of the drawing is c -monotone w.r.t. \mathcal{O} .
- Every c -monotone drawing is isomorphic to a c -monotone drawing where all vertices lie on a common circle with center \mathcal{O} .
- Vertices adjacent in the circular order around \mathcal{O} are called neighboring.



c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.
- c -monotone drawing: a simple drawing where there exists a point \mathcal{O} s.t. every edge of the drawing is c -monotone w.r.t. \mathcal{O} .
- Every c -monotone drawing is isomorphic to a c -monotone drawing where all vertices lie on a common circle with center \mathcal{O} .
- Vertices adjacent in the circular order around \mathcal{O} are called neighboring.
- An edge between neighboring vertices is short if it “goes the short way around \mathcal{O} ”. Else it is long.

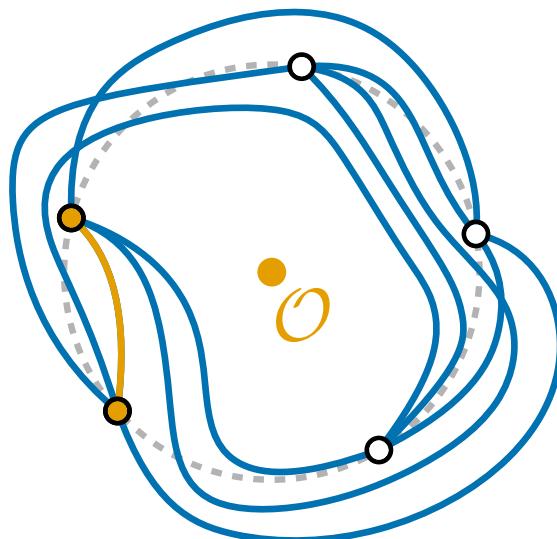


c -Monotone Drawings

- An edge is c -monotone w.r.t. a point \mathcal{O} if every ray emanating from \mathcal{O} crosses the edge at most once.
- c -monotone drawing: a simple drawing where there exists a point \mathcal{O} s.t. every edge of the drawing is c -monotone w.r.t. \mathcal{O} .
- Every c -monotone drawing is isomorphic to a c -monotone drawing where all vertices lie on a common circle with center \mathcal{O} .
- Vertices adjacent in the circular order around \mathcal{O} are called neighboring.
- An edge between neighboring vertices is short if it “goes the short way around \mathcal{O} ”. Else it is long.

c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

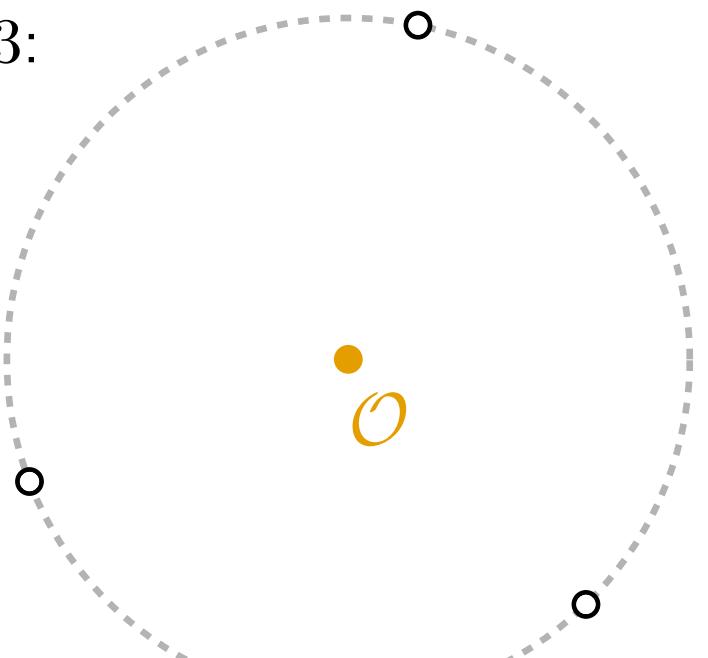


c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

Base case for $n = 3$:

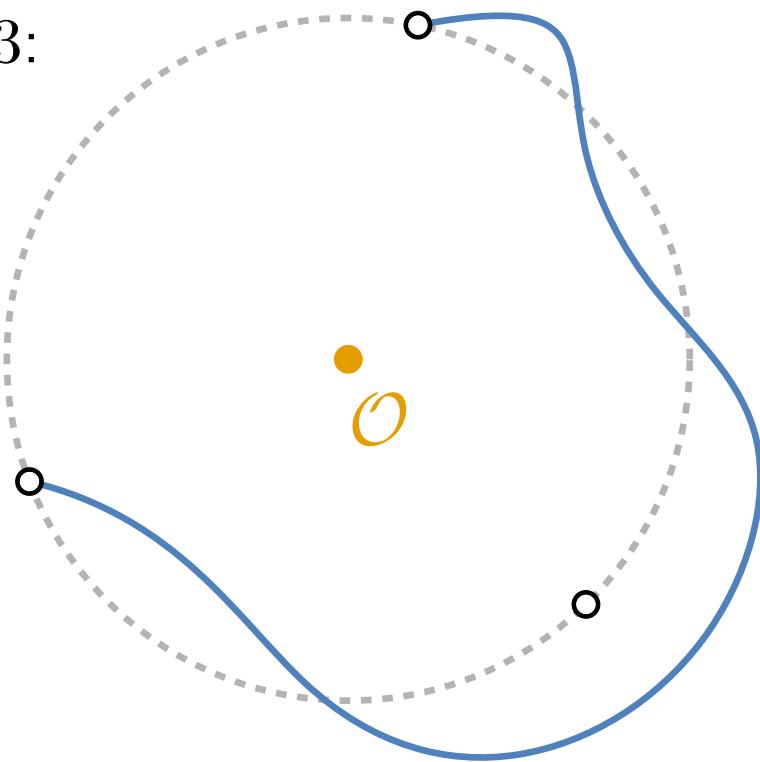


c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

Base case for $n = 3$:

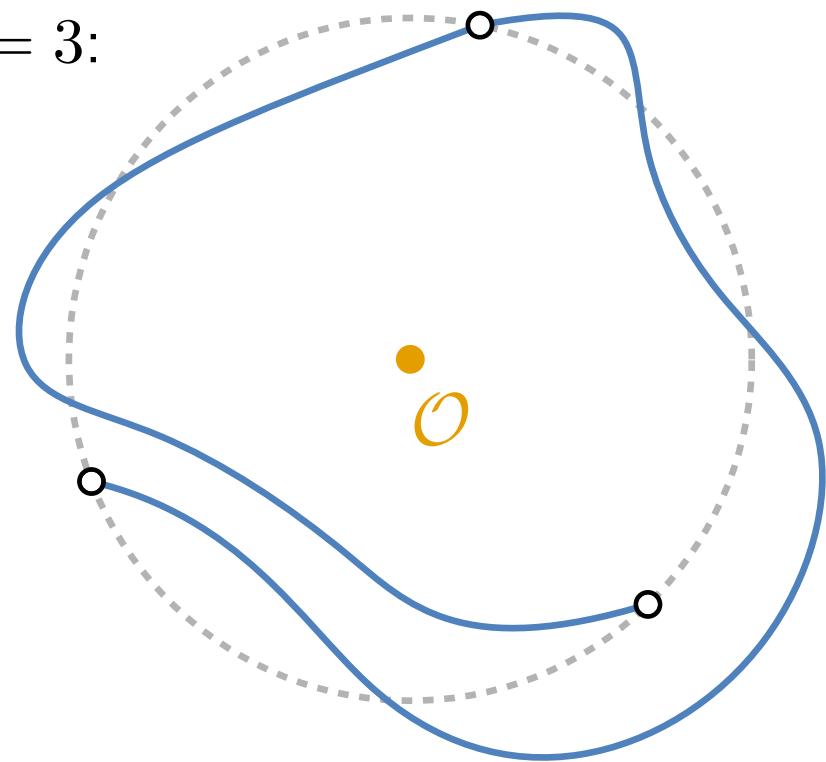


c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

Base case for $n = 3$:

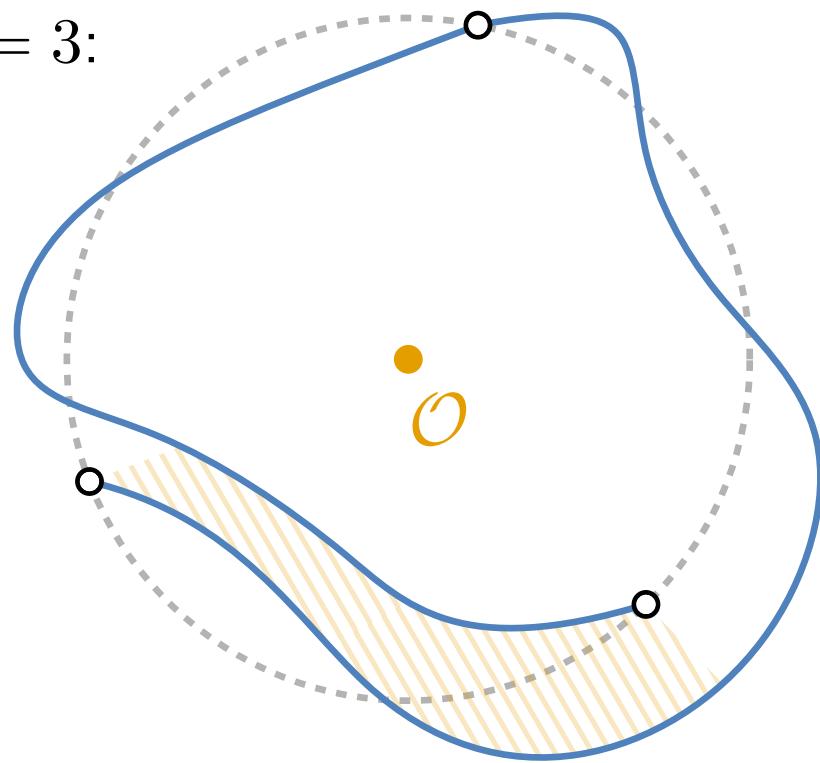


c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

Base case for $n = 3$:

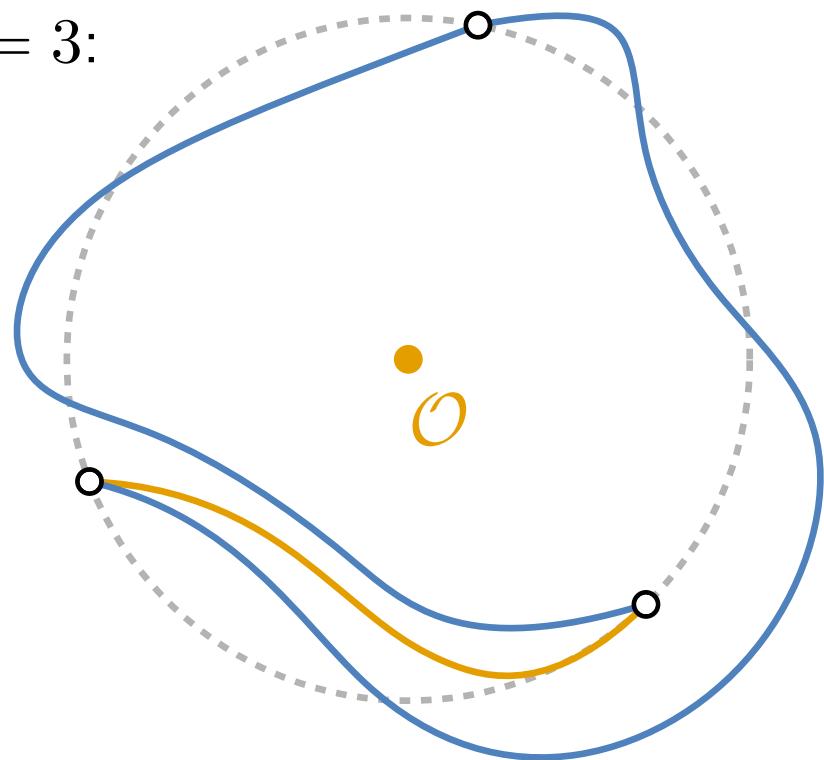


c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

Base case for $n = 3$:



c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

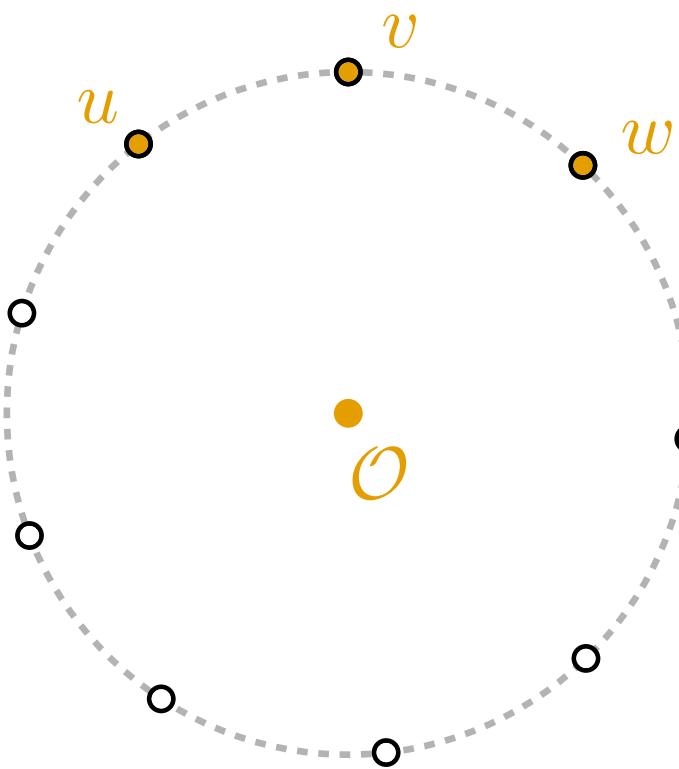


Assume we have a c -monotone drawing of K_n where all edges between neighboring vertices are *long*.

c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

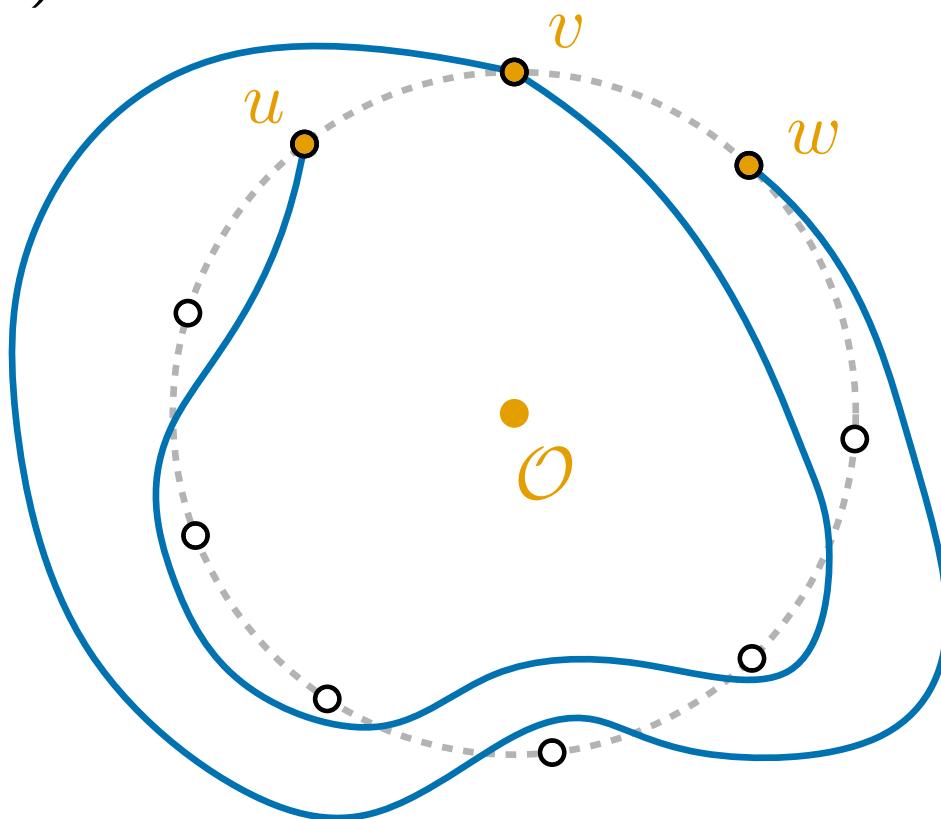


Fix a vertex v with
neighbors u, w .

c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n



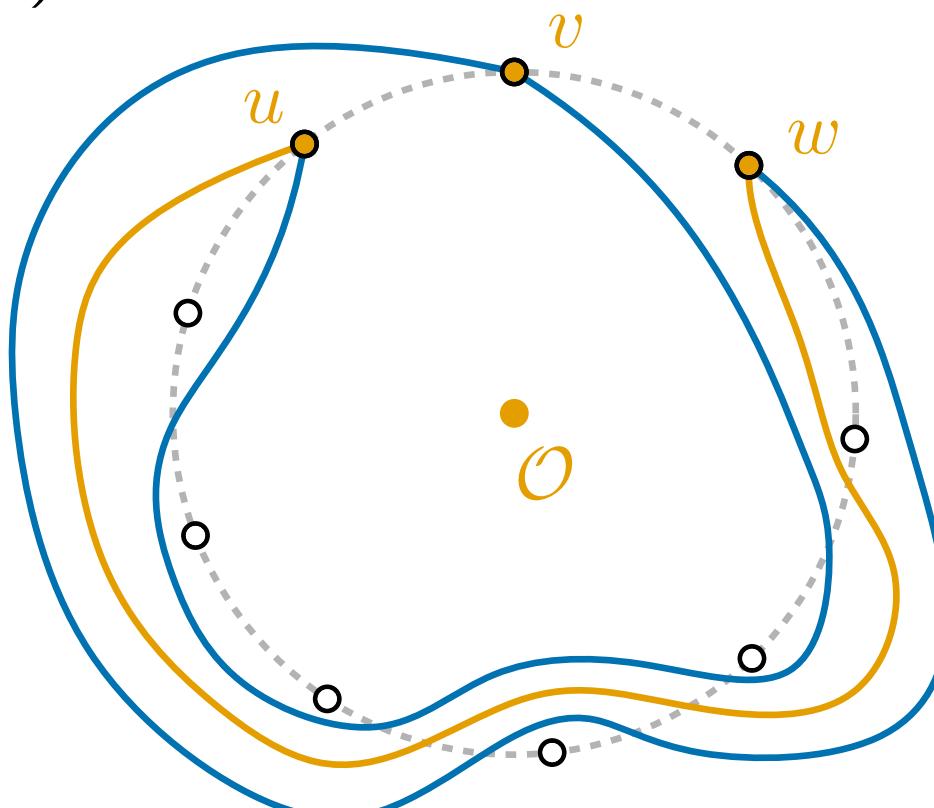
Fix a vertex v with neighbors u, w .

By assumption, edges uv and vw are long.

c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n



Fix a vertex v with neighbors u, w .

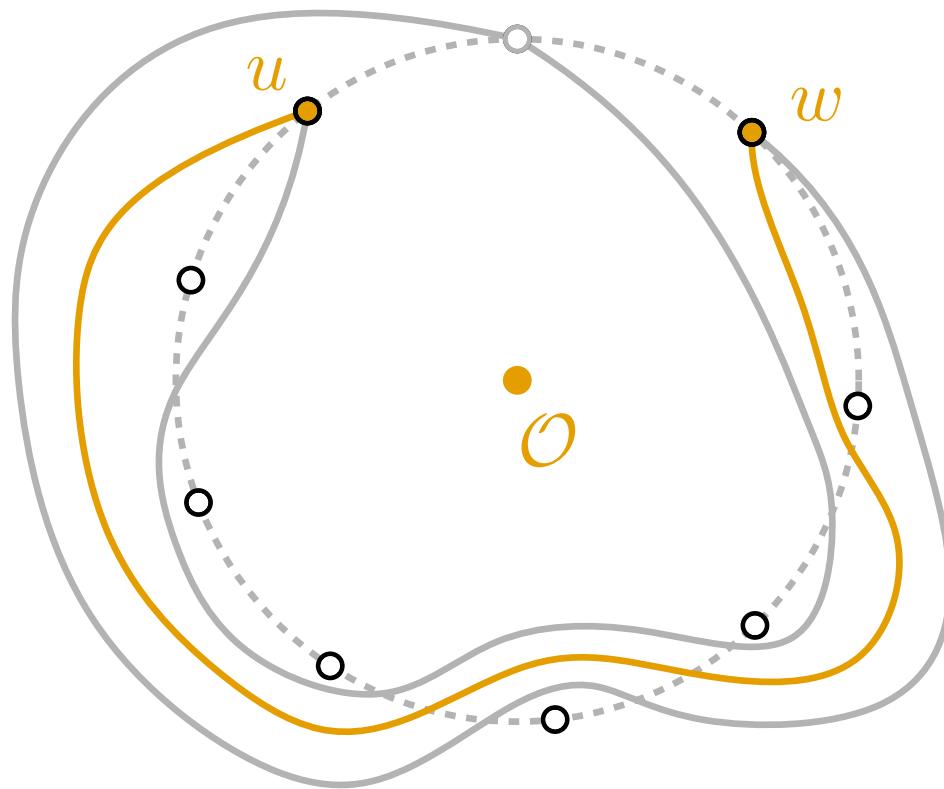
By assumption,
edges uv and vw
are long.

⇒ Edge uw is forced
to go in between uv
and vw .

c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n

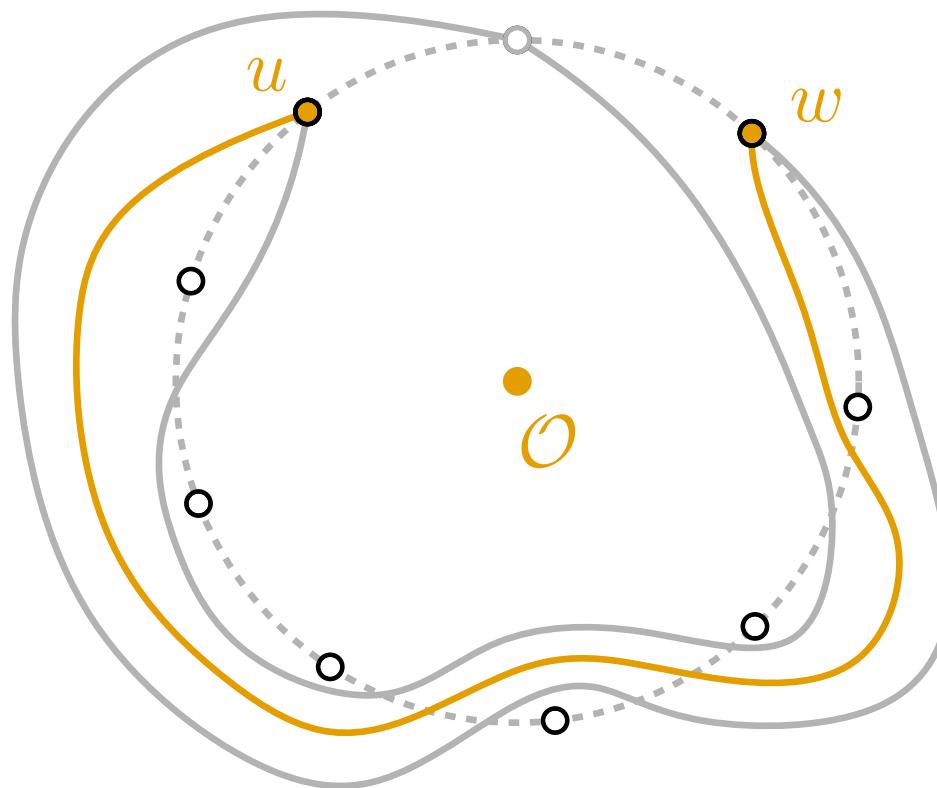


Remove vertex v and incident edges \rightarrow in resulting drawing of K_{n-1} edge uw is a long edge between neighboring vertices.

c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n



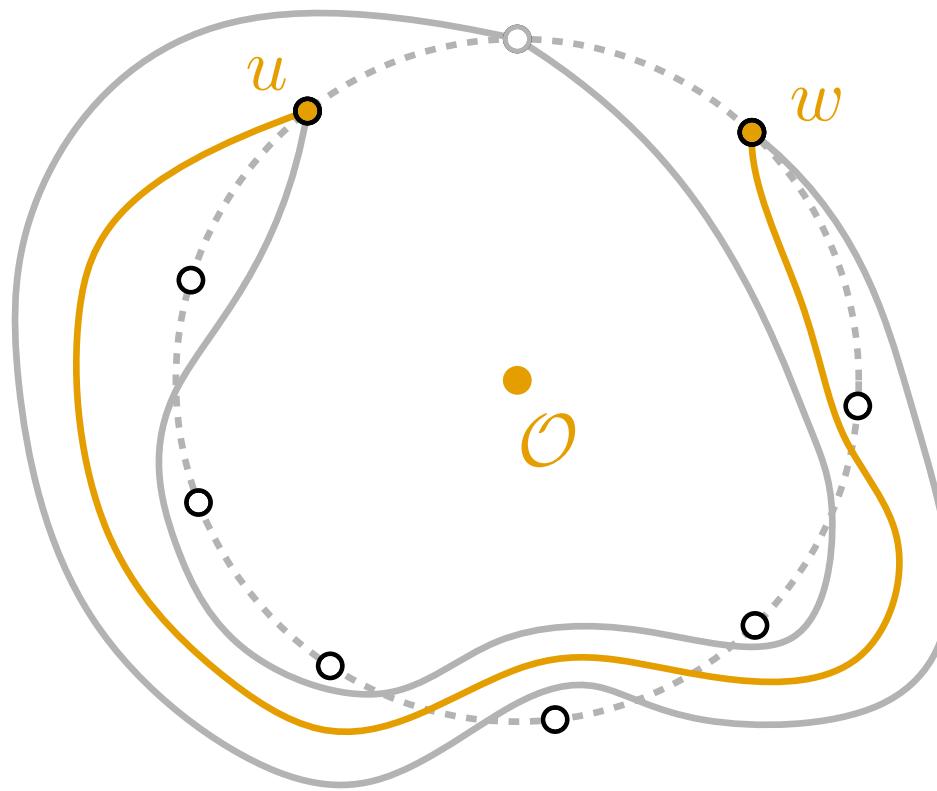
Remove vertex v and incident edges \rightarrow in resulting drawing of K_{n-1} edge uw is a long edge between neighboring vertices.

\Rightarrow Get a c -monotone drawing of K_{n-1} without any short edges between neighboring vertices.

c -Monotone Drawings

Lemma: Every c -monotone drawing of K_n for $n \geq 3$ contains a short edge between a pair of neighboring vertices.

Proof (Sketch): via induction on n



Remove vertex v and incident edges \rightarrow in resulting drawing of K_{n-1} edge uw is a long edge between neighboring vertices.

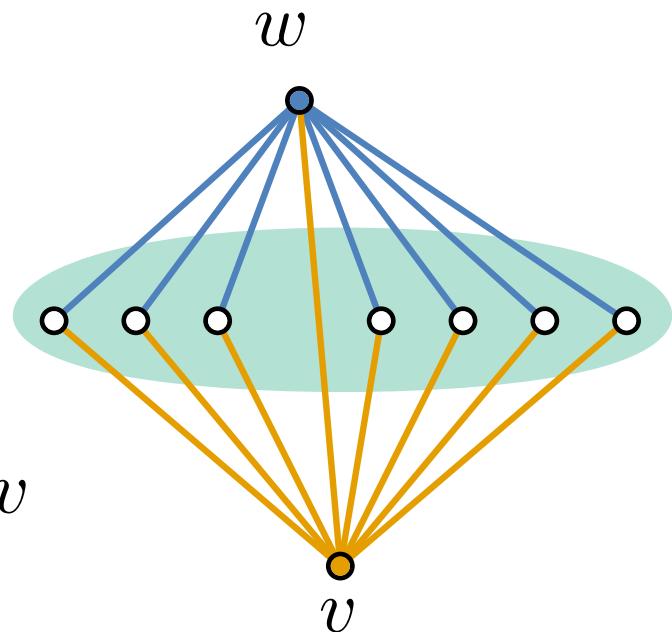
\Rightarrow Get a c -monotone drawing of K_{n-1} without any short edges between neighboring vertices.

Short edges in c -monotone drawings of K_n

Details on how to guarantee the “good” edge in the plane double-star:

- The sub-drawing of D induced by the vertices $V \setminus \{v, w\}$ is strongly isomorphic to a c -monotone drawing.

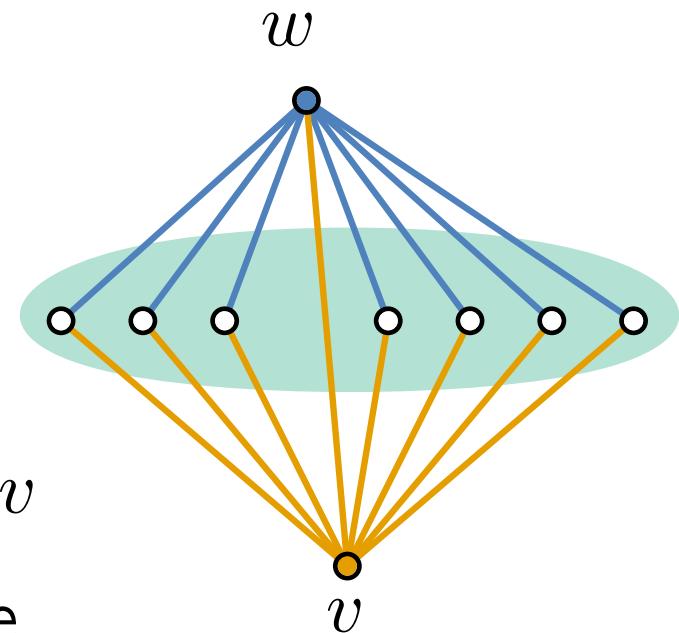
In particular: c -monotone w.r.t. v



Short edges in c -monotone drawings of K_n

Details on how to guarantee the “good” edge in the plane double-star:

- The sub-drawing of D induced by the vertices $V \setminus \{v, w\}$ is strongly isomorphic to a c -monotone drawing.

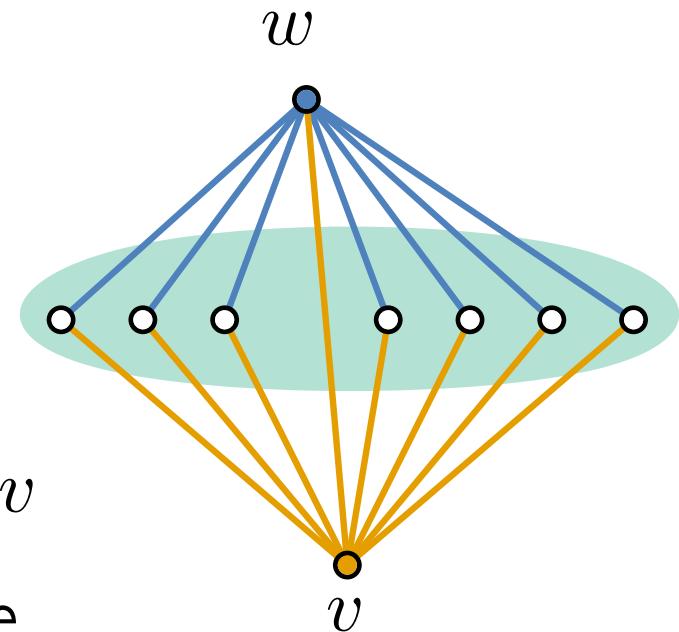


In particular: c -monotone w.r.t. v
→ the order of vertices along the circle corresponds to the linear order from left to right in the double star

Short edges in c -monotone drawings of K_n

Details on how to guarantee the “good” edge in the plane double-star:

- The sub-drawing of D induced by the vertices $V \setminus \{v, w\}$ is strongly isomorphic to a c -monotone drawing.



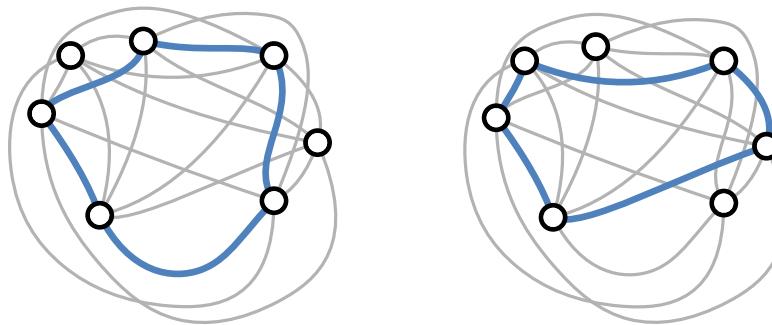
In particular: c -monotone w.r.t. v

→ the order of vertices along the circle corresponds to the linear order from left to right in the double star

⇒ There exists a “good” edge, crossing at most vw

Conclusion

Theorem: Every simple drawing of K_n for $n \geq 5$ contains an empty plane k -cycle of length $k = 5$ or $k = 6$ *at every vertex*.



Open Problem [Orthaber 2025]:

Every simple drawing of K_n contains *two* empty plane k -cycles for $k = 3, \dots, n$ *at every vertex*.

Lemma: Every c -monotone drawing (of K_n) for $n \geq 3$ contains a pair of neighboring vertices which are not joined by a long edge.

Thank you for your attention!