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Constraint Satisfaction Problems



Constraint Satisfaction Problems

Definition
A A consists of
e a finite domain A
e a set of relations Ry,..., R, on A.
An of A consists of
e a finite variable set X
e for each relation R; of arity k; a clause set C; C Xki

Is there a map X — A that satisfies all clauses?
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Constraint Satisfaction Problems

Examples
Fix k >2. Let A={1,...,k} and R = {(i,j) € A% | i # j}
~> (A, R) is the k-colourability problem

Let B = {0, 1} and for i,j, k € {0, 1} let R,'7J-7k = {O, 1}3 \ {(I_/k)}
Then (X1,X2,X3) € Roo1 & x1 V xo V X3
~ (B, {Rjj}) is equivalent to 3-SAT

SAT is not equivalent to any CSP template.



Polymorphisms

Definition
Let A be a CSP template and f: A” — A a map. We call f a of A if
for every relation R of A and every aj,...,a, € R we have that

f(a1,...,an) = (f(al,a3,...,aL),f(a3,a5,...,a%),...) ER
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Polymorphisms

Definition
Let A be a CSP template and f: A” — A a map. We call f a of A if
for every relation R of A and every aj,...,a, € R we have that
f(a1,...,an) = (f(al,a3,...,aL),f(a3,a5,...,a%),...) ER
Examples

Projections are polymorphisms of every CSP template.

Let n be odd and consider the f:{0,1}" — {0, 1} which returns
its most repeated argument. Then f is a polymorphism for 2-SAT.



,Cm) be an instance of a CSP template (A, Ry, ..., Rm). Consider

Let X = (X,Cl,...
the following ILP:
Is x assigned value a?

wy(a) € {0,1} Vx e X,ac A
pc(y) € {0,1} VCeCi,y €R; Is C satisfied by y?

Z wy(a) =1 Vx e X

acA

> pcly) =1 vCed

YER;

> pcly) =wi(a) VxeX,acACeg

YER;

y\x:a

ILP has a solution < X is satisfiable



Idea for polynomial time algorithm: accept iff LP relaxation of the ILP has a solution

Theorem 1

Let A be a CSP template with symmetric polymorphisms of all arities. Then the basic
LP relaxation correctly decides CSP(A).



Idea for polynomial time algorithm: accept iff LP relaxation of the ILP has a solution

Theorem 1
Let A be a CSP template with symmetric polymorphisms of all arities. Then the basic
LP relaxation correctly decides CSP(A).

Proof: Let w, p be a rational solution to the LP. Choose k € N* such that
W= k-w,p:= k- p are integral.



LP rounding

We now have a solution to

wy(a) € N
pc(y) €N
> in(a) = k
acA
pcly) =k
YER;
Pc(y) = wx(a)

Vx e X,ae A
VCEC;,yER,-
Vx € X

vVC e(;

Vxe X,ae A Ce(;



LP rounding

We now have a solution to

wy(a) € N Vxe X,ac A
pc(y) e N VCeCi,yeR
> in(a) = k Vx € X
acA
pely) = k VC €C;
YER;
pc(y) = wi(a) Vxe X,ac A Ce(;
yeR;
Y|x=a

Let f be a k-ary symmetric polymorphism of A. For x € X let al,a2,...,aX be such

)
that any a occurs Wy (a) many times. Assign x the value f(al,a2,...,a%).
This yields a satisfying assignment.
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CSP dichotomy

Theorem 2 [Bulatov 2017, Zhuk 2017]

CSP(A) is in P iff A admits a k-ary polymorphism f with k > 2 satisfying the identities
fy,x,x,...,x) = F(x, ¥, %, %, ..., x) = F(X, X, X, ..., X, ¥).

Otherwise it is NP-hard.

In particular, CSP(A) never has intermediate complexity.
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PCSP

Definition
Let A= (AR ...,R3) and B = (B,RE, ..., RE) be CSP templates such that for
each i we have ar(RA) = ar(RB). A from A to B is a map h such

that for each i
if (a1, .-, ay(ray) € R, then (h(a1),-. ., h(a,(ra)) € R

Notation: A — B if a homomorphism exists.



PCSP

Definition
Let A= (AR ...,R3) and B = (B,RE, ..., RE) be CSP templates such that for
each i we have ar(RA) = ar(RB). A from A to B is a map h such

that for each i
if (a1, .-, ay(ray) € R, then (h(a1),-. ., h(a,(ra)) € R

Notation: A — B if a homomorphism exists.
A consists of a pair (A, B) such that A — B. Given an instance X,
decide whether X is satisfiable over A or unsatisfiable over B.



PCSP

Examples
e PCSP(A,A) = CSP(A)
e Let A =({0,1};{(1,0,0),(0,1,0),(0,0,1)}) be 1-in-3-SAT
and B = ({0,1};{0,1}3\ {(0,0,0)(1,1,1)}) be NAE-SAT

o Let Kk = ({1,.... k5 {(i,J) | i #J})-
For k < ¢, PCSP(Ky, K¢) is the approximate graph colouring problem.



Polymorphisms

Definition
Let (A,B) be a PCSP template and f : A” — B a map. We call f a of
(A,B) if for every relation RA of A and every ay,...,a, € R we have that

f(ay,...,an) = (f(a},a3,...,a),f(a%, a3,...,a%),...) € RB

»y“n »r%n
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Polymorphisms

Definition

Let (A,B) be a PCSP template and f : A” — B a map. We call f a of

(A,B) if for every relation RA of A and every ay,...,a, € R we have that
f(ay,...,an) = (f(a},a3,...,a),f(a%, a3,...,a%),...) € RB

Example

Consider 1-in-3-SAT vs NAE-SAT. For k > 1, define

1, if at least k of the a; are 1

fk . {07 1}3k71 — {07 1}5 (alv ey a3k—l) —
0, else
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Hardness of PCSP

Theorem 1’

Let (A,B) be a PCSP template with symmetric polymorphisms of all arities. Then the
basic LP relaxation correctly decides PCSP(A,B).
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Hardness of PCSP

Theorem 1’

Let (A,B) be a PCSP template with symmetric polymorphisms of all arities. Then the
basic LP relaxation correctly decides PCSP(A,B).

Not all results from CSP apply to PCSP. In particular, there is no (known) dichotomy.
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Approximate Graph Colouring




Known results

Deciding whether a graph is k-colourable or not c-colourable is NP-hard for
1
e k sufficiently large, ¢ < 29(k*) [Huang 2013]
e k >3,c <2k — 2 [Brakensiek, Guruswami 2016]
e k >3,¢c =2k —1 [Barto, Bulin, Krokhin, Opr3sal 2019]

In polynomial time, one can colour 3-colourable n-vertex graphs using O(n%1999)

colours [Kawarabayashi, Thorup 2017]
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OI8ak polymorphisms

Definition
An is a 6-ary polymorphism o satisfying the identities

o(x,x,y,y,y,x) = o(x,y,x,y,x,¥) = o(y, X, X, X, y, ¥).

Lemma

Let (A,B) be a PCSP template that does not admit an OI3dk polymorphism. Then
PCSP(A,B) is NP-hard.
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Polymorphisms for approximate graph colouring

Recall: Ky = ({1,...,k};{(i,J) | i #j}).

A homomorphism K, — K. corresponds to a graph homomorphism K, — K.
Similarly, an n-ary polymorphism f of (K, K.) corresponds to a graph homomorphism

F oKD — Ke.
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Recall: Ky = ({1,...,k};{(i,J) | i #j}).

A homomorphism K, — K. corresponds to a graph homomorphism K, — K.
Similarly, an n-ary polymorphism f of (K, K.) corresponds to a graph homomorphism
f': K = Ke.

Assume f is an OI8ak polymorphism. It maps tuples of the form

(x, %, y,¥,¥,%x),(x,y,x,y,x,¥), and (y, x, x, x,y,y) to the same value
— we can glue the corresponding vertices of KE to get a c-colourable graph G.
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Polymorphisms for approximate graph colouring

Recall: Ky = ({1,...,k};{(i,J) | i #j}).

A homomorphism K, — K. corresponds to a graph homomorphism K, — K.
Similarly, an n-ary polymorphism f of (K, K.) corresponds to a graph homomorphism
f': K = Ke.

Assume f is an OI8ak polymorphism. It maps tuples of the form
(x, %, y,¥,¥,%x),(x,y,x,y,x,¥), and (y, x, x, x,y,y) to the same value
— we can glue the corresponding vertices of KE to get a c-colourable graph G.

Claim: G is not (2k — 1)-colourable.
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Hardness of approximate graph colouring

Claim: G obtained by glueing vertices of the form (x, x, y,y,y,x), (x,y,x,y,x,y), and
(y,x,x,x,y,y) is not (2k — 1)-colourable.

Consider the 2k vertices a; = (i,i+1,i+2,i+1,i+2,i) and
b=+, 0,0, i+1,i+1)=0G,i+1ii+1ii+1)=(ii+1,i+1i+1/1).
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Hardness of approximate graph colouring

Claim: G obtained by glueing vertices of the form (x, x, y,y,y,x), (x,y,x,y,x,y), and
(y,x,x,x,y,y) is not (2k — 1)-colourable.

Consider the 2k vertices a; = (i,i+1,i+2,i+1,i+2,i) and
b=+, 0,0, i+1,i+1)=0G,i+1ii+1ii+1)=(ii+1,i+1i+1/1).
For i # j, aj is a neighbour of a; and b; of b;.

For any i/, /, a; and b; are neighbours.
— G contains a 2k-clique.
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Hardness of approximate graph colouring

Theorem 3 [Barto, Bulin, Krokhin, Opr3al 2019]
PCSP (K, Kok—1) is NP-hard.

Remark
PCSP(Ky, Kyk) has an Olsak polymorphism.
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