

Algebraic Approach to Promise Constraint Satisfaction

Iris Hebbeker

Institute of Algorithms and Theory

January 20, 2026

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Definition

A **CSP template** \mathbb{A} consists of

- a finite domain A
- a set of relations R_1, \dots, R_m on A .

An **instance** of \mathbb{A} consists of

- a finite variable set X
- for each relation R_i of arity k_i a clause set $\mathcal{C}_i \subseteq X^{k_i}$

Is there a map $X \rightarrow A$ that satisfies all clauses?

Constraint Satisfaction Problems

Examples

Fix $k \geq 2$. Let $A = \{1, \dots, k\}$ and $R = \{(i, j) \in A^2 \mid i \neq j\}$

Constraint Satisfaction Problems

Examples

Fix $k \geq 2$. Let $A = \{1, \dots, k\}$ and $R = \{(i, j) \in A^2 \mid i \neq j\}$
 $\rightsquigarrow (A, R)$ is the k -colourability problem

Constraint Satisfaction Problems

Examples

Fix $k \geq 2$. Let $A = \{1, \dots, k\}$ and $R = \{(i, j) \in A^2 \mid i \neq j\}$
 $\rightsquigarrow (A, R)$ is the k -colourability problem

Let $B = \{0, 1\}$ and for $i, j, k \in \{0, 1\}$ let $R_{i,j,k} = \{0, 1\}^3 \setminus \{(ijk)\}$
Then $(x_1, x_2, x_3) \in R_{001} \Leftrightarrow x_1 \vee x_2 \vee \bar{x}_3$

Constraint Satisfaction Problems

Examples

Fix $k \geq 2$. Let $A = \{1, \dots, k\}$ and $R = \{(i, j) \in A^2 \mid i \neq j\}$
 $\rightsquigarrow (A, R)$ is the k -colourability problem

Let $B = \{0, 1\}$ and for $i, j, k \in \{0, 1\}$ let $R_{i,j,k} = \{0, 1\}^3 \setminus \{(ijk)\}$
Then $(x_1, x_2, x_3) \in R_{001} \Leftrightarrow x_1 \vee x_2 \vee \bar{x}_3$
 $\rightsquigarrow (B, \{R_{ijk}\})$ is equivalent to 3-SAT

Constraint Satisfaction Problems

Examples

Fix $k \geq 2$. Let $A = \{1, \dots, k\}$ and $R = \{(i, j) \in A^2 \mid i \neq j\}$
 $\rightsquigarrow (A, R)$ is the k -colourability problem

Let $B = \{0, 1\}$ and for $i, j, k \in \{0, 1\}$ let $R_{i,j,k} = \{0, 1\}^3 \setminus \{(ijk)\}$
Then $(x_1, x_2, x_3) \in R_{001} \Leftrightarrow x_1 \vee x_2 \vee \bar{x}_3$
 $\rightsquigarrow (B, \{R_{ijk}\})$ is equivalent to 3-SAT

SAT is not equivalent to any CSP template.

Polymorphisms

Definition

Let \mathbb{A} be a CSP template and $f : A^n \rightarrow A$ a map. We call f a **polymorphism** of \mathbb{A} if for every relation R of \mathbb{A} and every $a_1, \dots, a_n \in R$ we have that

$$f(a_1, \dots, a_n) := (f(a_1^1, a_2^1, \dots, a_n^1), f(a_1^2, a_2^2, \dots, a_n^2), \dots) \in R$$

Polymorphisms

Definition

Let \mathbb{A} be a CSP template and $f : A^n \rightarrow A$ a map. We call f a **polymorphism** of \mathbb{A} if for every relation R of \mathbb{A} and every $a_1, \dots, a_n \in R$ we have that

$$f(a_1, \dots, a_n) := (f(a_1^1, a_2^1, \dots, a_n^1), f(a_1^2, a_2^2, \dots, a_n^2), \dots) \in R$$

Examples

Projections are polymorphisms of every CSP template.

Polymorphisms

Definition

Let \mathbb{A} be a CSP template and $f : A^n \rightarrow A$ a map. We call f a **polymorphism** of \mathbb{A} if for every relation R of \mathbb{A} and every $a_1, \dots, a_n \in R$ we have that

$$f(a_1, \dots, a_n) := (f(a_1^1, a_2^1, \dots, a_n^1), f(a_1^2, a_2^2, \dots, a_n^2), \dots) \in R$$

Examples

Projections are polymorphisms of every CSP template.

Let n be odd and consider the **majority operation** $f : \{0, 1\}^n \rightarrow \{0, 1\}$ which returns its most repeated argument. Then f is a polymorphism for 2-SAT.

Basic LP

Let $\mathbb{X} = (X, \mathcal{C}_1, \dots, \mathcal{C}_m)$ be an instance of a CSP template (A, R_1, \dots, R_m) . Consider the following ILP:

$$w_x(a) \in \{0, 1\} \quad \forall x \in X, a \in A \quad \text{Is } x \text{ assigned value } a?$$

$$p_C(y) \in \{0, 1\} \quad \forall C \in \mathcal{C}_i, y \in R_i \quad \text{Is } C \text{ satisfied by } y?$$

$$\sum_{a \in A} w_x(a) = 1 \quad \forall x \in X$$

$$\sum_{y \in R_i} p_C(y) = 1 \quad \forall C \in \mathcal{C}_i$$

$$\sum_{\substack{y \in R_i \\ y|_x=a}} p_C(y) = w_x(a) \quad \forall x \in X, a \in A, C \in \mathcal{C}_i$$

ILP has a solution $\Leftrightarrow \mathbb{X}$ is satisfiable

Idea for polynomial time algorithm: accept iff LP relaxation of the ILP has a solution

Theorem 1

Let \mathbb{A} be a CSP template with symmetric polymorphisms of all arities. Then the basic LP relaxation correctly decides $\text{CSP}(\mathbb{A})$.

Basic LP

Idea for polynomial time algorithm: accept iff LP relaxation of the ILP has a solution

Theorem 1

Let \mathbb{A} be a CSP template with symmetric polymorphisms of all arities. Then the basic LP relaxation correctly decides $\text{CSP}(\mathbb{A})$.

Proof: Let w, p be a rational solution to the LP. Choose $k \in \mathbb{N}^+$ such that $\hat{w} := k \cdot w, \hat{p} := k \cdot p$ are integral.

LP rounding

We now have a solution to

$$\hat{w}_x(a) \in \mathbb{N} \quad \forall x \in X, a \in A$$

$$\hat{p}_C(y) \in \mathbb{N} \quad \forall C \in \mathcal{C}_i, y \in R_i$$

$$\sum_{a \in A} \hat{w}_x(a) = k \quad \forall x \in X$$

$$\sum_{y \in R_i} \hat{p}_C(y) = k \quad \forall C \in \mathcal{C}_i$$

$$\sum_{\substack{y \in R_i \\ y|x=a}} \hat{p}_C(y) = \hat{w}_x(a) \quad \forall x \in X, a \in A, C \in \mathcal{C}_i$$

LP rounding

We now have a solution to

$$\hat{w}_x(a) \in \mathbb{N} \quad \forall x \in X, a \in A$$

$$\hat{p}_C(y) \in \mathbb{N} \quad \forall C \in \mathcal{C}_i, y \in R_i$$

$$\sum_{a \in A} \hat{w}_x(a) = k \quad \forall x \in X$$

$$\sum_{y \in R_i} \hat{p}_C(y) = k \quad \forall C \in \mathcal{C}_i$$

$$\sum_{\substack{y \in R_i \\ y|_x = a}} \hat{p}_C(y) = \hat{w}_x(a) \quad \forall x \in X, a \in A, C \in \mathcal{C}_i$$

Let f be a k -ary symmetric polymorphism of \mathbb{A} . For $x \in X$ let $a_x^1, a_x^2, \dots, a_x^k$ be such that any a occurs $\hat{w}_x(a)$ many times. Assign x the value $f(a_x^1, a_x^2, \dots, a_x^k)$. This yields a satisfying assignment.

Theorem 2 [Bulatov 2017, Zhuk 2017]

$\text{CSP}(\mathbb{A})$ is in P iff \mathbb{A} admits a k -ary polymorphism f with $k \geq 2$ satisfying the identities

$$f(y, x, x, \dots, x) = f(x, y, x, x, \dots, x) = f(x, x, x, \dots, x, y).$$

Otherwise it is NP-hard.

In particular, $\text{CSP}(\mathbb{A})$ never has intermediate complexity.

Promise Constraint Satisfaction

Definition

Let $\mathbb{A} = (A, R_1^A, \dots, R_m^A)$ and $\mathbb{B} = (B, R_1^B, \dots, R_m^B)$ be CSP templates such that for each i we have $\text{ar}(R_i^A) = \text{ar}(R_i^B)$. A **homomorphism** from \mathbb{A} to \mathbb{B} is a map h such that for each i

if $(a_1, \dots, a_{\text{ar}(R_i^A)}) \in R_i^A$, then $(h(a_1), \dots, h(a_{\text{ar}(R_i^A)})) \in R_i^B$.

Notation: $\mathbb{A} \rightarrow \mathbb{B}$ if a homomorphism exists.

Definition

Let $\mathbb{A} = (A, R_1^A, \dots, R_m^A)$ and $\mathbb{B} = (B, R_1^B, \dots, R_m^B)$ be CSP templates such that for each i we have $\text{ar}(R_i^A) = \text{ar}(R_i^B)$. A **homomorphism** from \mathbb{A} to \mathbb{B} is a map h such that for each i

$$\text{if } (a_1, \dots, a_{\text{ar}(R_i^A)}) \in R_i^A, \text{ then } (h(a_1), \dots, h(a_{\text{ar}(R_i^A)})) \in R_i^B.$$

Notation: $\mathbb{A} \rightarrow \mathbb{B}$ if a homomorphism exists.

A **PCSP template** consists of a pair (\mathbb{A}, \mathbb{B}) such that $\mathbb{A} \rightarrow \mathbb{B}$. Given an instance \mathbb{X} , decide whether \mathbb{X} is satisfiable over \mathbb{A} or unsatisfiable over \mathbb{B} .

Examples

- $\text{PCSP}(\mathbb{A}, \mathbb{A}) = \text{CSP}(\mathbb{A})$
- Let $\mathbb{A} = (\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\})$ be 1-in-3-SAT and $\mathbb{B} = (\{0, 1\}; \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\})$ be NAE-SAT
- Let $\mathbb{K}_k = (\{1, \dots, k\}; \{(i, j) \mid i \neq j\})$.
For $k < c$, $\text{PCSP}(\mathbb{K}_k, \mathbb{K}_c)$ is the approximate graph colouring problem.

Polymorphisms

Definition

Let (\mathbb{A}, \mathbb{B}) be a PCSP template and $f : A^n \rightarrow B$ a map. We call f a **polymorphism** of (\mathbb{A}, \mathbb{B}) if for every relation R^A of \mathbb{A} and every $a_1, \dots, a_n \in R^A$ we have that

$$f(a_1, \dots, a_n) := (f(a_1^1, a_2^1, \dots, a_n^1), f(a_1^2, a_2^2, \dots, a_n^2), \dots) \in R^B$$

Polymorphisms

Definition

Let (\mathbb{A}, \mathbb{B}) be a PCSP template and $f : A^n \rightarrow B$ a map. We call f a **polymorphism** of (\mathbb{A}, \mathbb{B}) if for every relation R^A of \mathbb{A} and every $a_1, \dots, a_n \in R^A$ we have that

$$f(a_1, \dots, a_n) := (f(a_1^1, a_2^1, \dots, a_n^1), f(a_1^2, a_2^2, \dots, a_n^2), \dots) \in R^B$$

Example

Consider 1-in-3-SAT vs NAE-SAT. For $k \geq 1$, define

$$f_k : \{0, 1\}^{3k-1} \rightarrow \{0, 1\}, (a_1, \dots, a_{3k-1}) \mapsto \begin{cases} 1, & \text{if at least } k \text{ of the } a_i \text{ are 1} \\ 0, & \text{else} \end{cases}$$

Theorem 1'

Let (\mathbb{A}, \mathbb{B}) be a PCSP template with symmetric polymorphisms of all arities. Then the basic LP relaxation correctly decides $\text{PCSP}(\mathbb{A}, \mathbb{B})$.

Theorem 1'

Let (\mathbb{A}, \mathbb{B}) be a PCSP template with symmetric polymorphisms of all arities. Then the basic LP relaxation correctly decides $\text{PCSP}(\mathbb{A}, \mathbb{B})$.

Not all results from CSP apply to PCSP. In particular, there is no (known) dichotomy.

Approximate Graph Colouring

Known results

Deciding whether a graph is k -colourable or not c -colourable is NP-hard for

- k sufficiently large, $c \leq 2^{\Theta(k^{\frac{1}{3}})}$ [Huang 2013]
- $k \geq 3, c \leq 2k - 2$ [Brakensiek, Guruswami 2016]
- $k \geq 3, c = 2k - 1$ [Barto, Bulín, Krokhin, Opršal 2019]

In polynomial time, one can colour 3-colourable n -vertex graphs using $\mathcal{O}(n^{0.1999})$ colours [Kawarabayashi, Thorup 2017]

Olšák polymorphisms

Definition

An **Olšák polymorphism** is a 6-ary polymorphism o satisfying the identities

$$o(x, x, y, y, y, x) = o(x, y, x, y, x, y) = o(y, x, x, x, y, y).$$

Lemma

Let (\mathbb{A}, \mathbb{B}) be a PCSP template that does not admit an Olšák polymorphism. Then $\text{PCSP}(\mathbb{A}, \mathbb{B})$ is NP-hard.

Polymorphisms for approximate graph colouring

Recall: $\mathbb{K}_k = (\{1, \dots, k\}; \{(i, j) \mid i \neq j\})$.

A homomorphism $\mathbb{K}_k \rightarrow \mathbb{K}_c$ corresponds to a graph homomorphism $K_k \rightarrow K_c$.

Similarly, an n -ary polymorphism f of $(\mathbb{K}_k, \mathbb{K}_c)$ corresponds to a graph homomorphism $f' : K_k^n \rightarrow K_c$.

Polymorphisms for approximate graph colouring

Recall: $\mathbb{K}_k = (\{1, \dots, k\}; \{(i, j) \mid i \neq j\})$.

A homomorphism $\mathbb{K}_k \rightarrow \mathbb{K}_c$ corresponds to a graph homomorphism $K_k \rightarrow K_c$.
Similarly, an n -ary polymorphism f of $(\mathbb{K}_k, \mathbb{K}_c)$ corresponds to a graph homomorphism $f' : K_k^n \rightarrow K_c$.

Assume f is an Olšák polymorphism. It maps tuples of the form $(x, x, y, y, y, x), (x, y, x, y, x, y)$, and (y, x, x, x, y, y) to the same value
 \implies we can glue the corresponding vertices of K_k^6 to get a c -colourable graph G .

Polymorphisms for approximate graph colouring

Recall: $\mathbb{K}_k = (\{1, \dots, k\}; \{(i, j) \mid i \neq j\})$.

A homomorphism $\mathbb{K}_k \rightarrow \mathbb{K}_c$ corresponds to a graph homomorphism $K_k \rightarrow K_c$.
Similarly, an n -ary polymorphism f of $(\mathbb{K}_k, \mathbb{K}_c)$ corresponds to a graph homomorphism $f' : K_k^n \rightarrow K_c$.

Assume f is an Olšák polymorphism. It maps tuples of the form $(x, x, y, y, y, x), (x, y, x, y, x, y)$, and (y, x, x, x, y, y) to the same value
 \implies we can glue the corresponding vertices of K_k^6 to get a c -colourable graph G .

Claim: G is not $(2k - 1)$ -colourable.

Hardness of approximate graph colouring

Claim: G obtained by glueing vertices of the form (x, x, y, y, y, x) , (x, y, x, y, x, y) , and (y, x, x, x, y, y) is not $(2k - 1)$ -colourable.

Consider the $2k$ vertices $a_i = (i, i + 1, i + 2, i + 1, i + 2, i)$ and $b_i = (i + 1, i, i, i, i + 1, i + 1) = (i, i + 1, i, i + 1, i, i + 1) = (i, i, i + 1, i + 1, i + 1, i)$.

Hardness of approximate graph colouring

Claim: G obtained by glueing vertices of the form (x, x, y, y, y, x) , (x, y, x, y, x, y) , and (y, x, x, x, y, y) is not $(2k - 1)$ -colourable.

Consider the $2k$ vertices $a_i = (i, i + 1, i + 2, i + 1, i + 2, i)$ and $b_i = (i + 1, i, i, i, i + 1, i + 1) = (i, i + 1, i, i + 1, i, i + 1) = (i, i, i + 1, i + 1, i + 1, i)$.

For $i \neq j$, a_i is a neighbour of a_j and b_i of b_j .

For any i, j , a_i and b_j are neighbours.

$\implies G$ contains a $2k$ -clique.

Theorem 3 [Barto, Bulín, Krokhin, Opršal 2019]

$\text{PCSP}(\mathbb{K}_k, \mathbb{K}_{2k-1})$ is NP-hard.

Remark

$\text{PCSP}(\mathbb{K}_k, \mathbb{K}_{2k})$ has an Olšák polymorphism.

References i

- L. Barto, J. Bulín, A. Krokhin, and J. Opršal.
Algebraic approach to promise constraint satisfaction.
Journal of the ACM, 68:1–66, 2021.
- L. Barto, A. Krokhin, and R. Willard.
Polymorphisms, and how to use them.
Journal of the ACM, 68:1–66, 2021.
- J. Brakensiek and V. Guruswami.
New hardness results for graph and hypergraph colorings.
Leibniz International Proceedings in Informatics, 50:1–27, 2016.

References ii

- S. Huang.
Improved hardness of approximating chromatic number.
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques: 16th International Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, pages 233–243, 2013.
- K. Kawarabayashi and M. Thorup.
Coloring 3-colorable graphs with less than $n^{1/5}$ colors.
Journal of the ACM, 64, 2017.