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Constraint Satisfaction Problems



Constraint Satisfaction Problems

Definition

A CSP template A consists of

• a finite domain A

• a set of relations R1, . . . ,Rm on A.

An instance of A consists of

• a finite variable set X

• for each relation Ri of arity ki a clause set Ci ⊆ X ki

Is there a map X → A that satisfies all clauses?
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Constraint Satisfaction Problems

Examples

Fix k ≥ 2. Let A = {1, . . . , k} and R = {(i , j) ∈ A2 | i ̸= j}

⇝ (A,R) is the k-colourability problem

Let B = {0, 1} and for i , j , k ∈ {0, 1} let Ri ,j ,k = {0, 1}3 \ {(ijk)}
Then (x1, x2, x3) ∈ R001 ⇔ x1 ∨ x2 ∨ x3
⇝ (B, {Rijk}) is equivalent to 3-SAT

SAT is not equivalent to any CSP template.
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Polymorphisms

Definition

Let A be a CSP template and f : An → A a map. We call f a polymorphism of A if
for every relation R of A and every a1, . . . , an ∈ R we have that

f (a1, . . . , an) := (f (a11, a
1
2, . . . , a

1
n), f (a

2
1, a

2
2, . . . , a

2
n), . . . ) ∈ R

Examples

Projections are polymorphisms of every CSP template.

Let n be odd and consider the majority operation f : {0, 1}n → {0, 1} which returns
its most repeated argument. Then f is a polymorphism for 2-SAT.
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Basic LP

Let X = (X , C1, . . . , Cm) be an instance of a CSP template (A,R1, . . . ,Rm). Consider
the following ILP:

wx(a) ∈ {0, 1} ∀x ∈ X , a ∈ A Is x assigned value a?

pC (y) ∈ {0, 1} ∀C ∈ Ci , y ∈ Ri Is C satisfied by y?∑
a∈A

wx(a) = 1 ∀x ∈ X∑
y∈Ri

pC (y) = 1 ∀C ∈ Ci∑
y∈Ri
y|x=a

pC (y) = wx(a) ∀x ∈ X , a ∈ A,C ∈ Ci

ILP has a solution ⇔ X is satisfiable
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Basic LP

Idea for polynomial time algorithm: accept iff LP relaxation of the ILP has a solution

Theorem 1

Let A be a CSP template with symmetric polymorphisms of all arities. Then the basic
LP relaxation correctly decides CSP(A).

Proof: Let w , p be a rational solution to the LP. Choose k ∈ N+ such that
ŵ := k · w , p̂ := k · p are integral.
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LP rounding

We now have a solution to

ŵx(a) ∈ N ∀x ∈ X , a ∈ A

p̂C (y) ∈ N ∀C ∈ Ci , y ∈ Ri∑
a∈A

ŵx(a) = k ∀x ∈ X∑
y∈Ri

p̂C (y) = k ∀C ∈ Ci∑
y∈Ri
y|x=a

p̂C (y) = ŵx(a) ∀x ∈ X , a ∈ A,C ∈ Ci

Let f be a k-ary symmetric polymorphism of A. For x ∈ X let a1x , a
2
x , . . . , a

k
x be such

that any a occurs ŵx(a) many times. Assign x the value f (a1x , a
2
x , . . . , a

k
x ).

This yields a satisfying assignment.
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that any a occurs ŵx(a) many times. Assign x the value f (a1x , a
2
x , . . . , a

k
x ).

This yields a satisfying assignment.
6



CSP dichotomy

Theorem 2 [Bulatov 2017, Zhuk 2017]

CSP(A) is in P iff A admits a k-ary polymorphism f with k ≥ 2 satisfying the identities

f (y , x , x , . . . , x) = f (x , y , x , x , . . . , x) = f (x , x , x , . . . , x , y).

Otherwise it is NP-hard.

In particular, CSP(A) never has intermediate complexity.
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Promise Constraint Satisfaction



PCSP

Definition

Let A = (A,RA
1 , . . . ,R

A
m) and B = (B,RB

1 , . . . ,R
B
m) be CSP templates such that for

each i we have ar(RA
i ) = ar(RB

i ). A homomorphism from A to B is a map h such
that for each i

if (a1, . . . , aar(RA
i )
) ∈ RA

i , then (h(a1), . . . , h(aar(RA
i )
)) ∈ RB

i .

Notation: A → B if a homomorphism exists.

A PCSP template consists of a pair (A,B) such that A → B. Given an instance X,
decide whether X is satisfiable over A or unsatisfiable over B.
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PCSP

Examples

• PCSP(A,A) = CSP(A)
• Let A = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}) be 1-in-3-SAT
and B = ({0, 1}; {0, 1}3 \ {(0, 0, 0) (1, 1, 1)}) be NAE-SAT

• Let Kk = ({1, . . . , k}; {(i , j) | i ̸= j}).
For k < c, PCSP(Kk,Kc) is the approximate graph colouring problem.
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Polymorphisms

Definition

Let (A,B) be a PCSP template and f : An → B a map. We call f a polymorphism of
(A,B) if for every relation RA of A and every a1, . . . , an ∈ RA we have that

f (a1, . . . , an) := (f (a11, a
1
2, . . . , a

1
n), f (a

2
1, a

2
2, . . . , a

2
n), . . . ) ∈ RB

Example

Consider 1-in-3-SAT vs NAE-SAT. For k ≥ 1, define

fk : {0, 1}3k−1 → {0, 1}, (a1, . . . , a3k−1) 7→

{
1, if at least k of the ai are 1

0, else
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Hardness of PCSP

Theorem 1’

Let (A,B) be a PCSP template with symmetric polymorphisms of all arities. Then the
basic LP relaxation correctly decides PCSP(A,B).

Not all results from CSP apply to PCSP. In particular, there is no (known) dichotomy.
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Approximate Graph Colouring



Known results

Deciding whether a graph is k-colourable or not c-colourable is NP-hard for

• k sufficiently large, c ≤ 2Θ(k
1
3 ) [Huang 2013]

• k ≥ 3, c ≤ 2k − 2 [Brakensiek, Guruswami 2016]

• k ≥ 3, c = 2k − 1 [Barto, Buĺın, Krokhin, Opřsal 2019]

In polynomial time, one can colour 3-colourable n-vertex graphs using O(n0.1999)
colours [Kawarabayashi, Thorup 2017]
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Oľsák polymorphisms

Definition

An Oľsák polymorphism is a 6-ary polymorphism o satisfying the identities

o(x , x , y , y , y , x) = o(x , y , x , y , x , y) = o(y , x , x , x , y , y).

Lemma

Let (A,B) be a PCSP template that does not admit an Oľsák polymorphism. Then
PCSP(A,B) is NP-hard.
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Polymorphisms for approximate graph colouring

Recall: Kk = ({1, . . . , k}; {(i , j) | i ̸= j}).

A homomorphism Kk → Kc corresponds to a graph homomorphism Kk → Kc .
Similarly, an n-ary polymorphism f of (Kk ,Kc) corresponds to a graph homomorphism
f ′ : Kn

k → Kc .

Assume f is an Oľsák polymorphism. It maps tuples of the form
(x , x , y , y , y , x), (x , y , x , y , x , y), and (y , x , x , x , y , y) to the same value
=⇒ we can glue the corresponding vertices of K 6

k to get a c-colourable graph G .

Claim: G is not (2k − 1)-colourable.
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Hardness of approximate graph colouring

Claim: G obtained by glueing vertices of the form (x , x , y , y , y , x), (x , y , x , y , x , y), and
(y , x , x , x , y , y) is not (2k − 1)-colourable.

Consider the 2k vertices ai = (i , i + 1, i + 2, i + 1, i + 2, i) and
bi = (i + 1, i , i , i , i + 1, i + 1) = (i , i + 1, i , i + 1, i , i + 1) = (i , i , i + 1, i + 1, i + 1, i).

For i ̸= j , ai is a neighbour of aj and bi of bj .
For any i , j , ai and bj are neighbours.
=⇒ G contains a 2k-clique.
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Hardness of approximate graph colouring

Theorem 3 [Barto, Buĺın, Krokhin, Opřsal 2019]

PCSP(Kk ,K2k−1) is NP-hard.

Remark
PCSP(Kk ,K2k) has an Oľsák polymorphism.
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