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Setup: distributed A-Coloring
LOCAL-model

e unbounded communication in syn-
crounouse rounds
. e each vertex needs to output its part of the
solution
e complexity is the number of communica-
tion rounds

A-Coloring

o color vertices with colors {1,..., A} s..t.
no adjacent vertices get the same color

Assumptions::
e # vertices and A is known to all vertices

e max. degree A is constant

A :=max. degree (here: A = 4)
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(A +1) - Coloring / deg + 1 - Coloring
O(log™ n) [Linial "92]
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Why 1s (A + 1)-coloring so much faster?

(A + 1)-coloring: Vv € V : slack(v) > 1 = greedy solvable
A-coloring: Vo eV :slack(v) > 0
natural slack temporal slack Slack Triad

N R Ren

permanent slack propagation of slack
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Proof:

“ﬂ (2) @
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Algorithm (simplified):
1. each vertex finds all DCCs in a log n neighborhood and selects one a%rary
2. compute an independent set of DCCs
3. color vertices in decreasing distance to the closest DCC ((A + 1)-coloring)

Runtime: O(logn - log™ n)
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Reduction to MIS

--------------------------------------------------- [Bourreau, Brandt, Nolin ’26]
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Algorithm (simplified):

1. compute a MIS on G°
define Cpcoco clusters
compute MIS to get C'tjer and Cj;

2.
3. n
4. define Slack Triads in Cje, (HSO)
5. (A + 1)-coloring

k Runtime: O(logn)
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Thanks!



