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Setup: distributed ∆-Coloring
LOCAL-model

∆-Coloring

Assumptions::

• unbounded communication in syn-
crounouse rounds

• each vertex needs to output its part of the
solution

• complexity is the number of communica-
tion rounds

• max. degree ∆ is constant

• color vertices with colors {1, . . . , ∆} s..t.
no adjacent vertices get the same color

∆ :=max. degree (here: ∆ = 4)

• # vertices and ∆ is known to all vertices

=
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[Chang, Kopelowitz, Pettie ’16]

Upper Bound:

O(log3 n) rounds
[Panconesi, Sirinivasan ’93]

O(log2 n) rounds [Ghaffari, Hirvonen, Kuhn, Maus ’18]

Ω(log n) rounds

O(log n · log∗ n) rounds [Bourreau, Brandt, Nolin ’25]

O(log n) rounds on dense graphs [J, Maus ’25]

O(log n) rounds [Bourreau, Brandt, Nolin ’26]
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Preliminaries/Tools
Brooks Theorem:
A graph G can be ∆-colored if it doesn’t contain a
clique of size ∆ + 1 or an odd cycle with ∆ = 2

Maximal Independent Set (MIS):
A set of non-adjacent vertices that cannot be ex-
tended further. O(log∗ n)

(∆ + 1) - Coloring / deg + 1 - Coloring
O(log∗ n)

(Hyper-)Edge Sinkless Orientation (H)SO:
An orientation of (hyper-)edges where no vertex is
a sink. O(logδ/r n)

[Brooks ’41]

[Faour, Ghaffari, Grunau, Kuhn,
Rozhon ’23]

[Brandt, Maus, Narayanan, Schager ’25]

[Linial ’92]
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Why is (∆ + 1)-coloring so much faster?
Definition: slack(v)
slack(v) := # available colors to v − # uncolored vertices in N(v)

(∆ + 1)-coloring:
∆-coloring:

∀v ∈ V : slack(v) ≥ 1
∀v ∈ V : slack(v) ≥ 0

⇒ greedy solvable

natural slack

permanent slack

temporal slack

propagation of slack

Slack Triad
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Definition: Degree Choosable Component (DCC)
is a graph for which it is always possible to complete a proper ∆-coloring

Proof:
(1) (2)
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Problem: DCCs can overlap...

Algorithm (simplified):
1. each vertex finds all DCCs in a log n neighborhood and selects one arbitrary
2. compute an independent set of DCCs
3. color vertices in decreasing distance to the closest DCC ((∆ + 1)-coloring)

Runtime: O(log n · log∗ n)
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[Bourreau, Brandt, Nolin ’26]

Algorithm (simplified):
1. compute a MIS on Gc

2. define CDCC clusters
3. compute MIS to get Cflex and Clink
4. define Slack Triads in Cflex (HSO)
5. (∆ + 1)-coloring

Runtime: O(log n)
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Summary
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∆-coloring is tight Θ(log n) rounds for const. ∆

What was missing?
∆-coloring for ∆ = f(n)
randomized ∆-coloring

Thanks!


