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huge difference between greedy
and non-greedy problems

Question: When can we extend
partial (2A — 2)-colorings?

optimal reduction from
non-greedy edge coloring to
greedy edge coloring

LOCAL
2A — 1 2A — 2
EASY | HARD

O(log*n) | Q(logn)

extendable?
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When can we extend a partial coloring to an uncolored star?

Lemma 1 (reaching for the stars)

a graph G = (V, F) and a partial (2A — 2)-edge coloring ¢
an uncolored star graph S C G

If |o(Ng(Vs))| > A, then we can extend ¢ to S.

extendable: not extendable:
S om '
o o —
: o ' :
__________ o
p(Neg(Vs))={m,=,n}

Hall’s theorem: dU-saturating matching < |N(S)| > |S| forall S CU
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Model of computation

Definition (LOCAL model) [Linial, 1992]

B communication network: undirected graph
® nodes have unique IDs
B communication happens in synchronous rounds

B message size and local computation is unlimited
® time complexity: # of synchronous rounds




High level overview of our algorithm

Phase 1: Partition vertices into clusters

®m compute MIS on power graph G*
W every vertex joins the cluster of its closest MIS-node
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High level overview of our algorithm

Phase 1: Partition vertices into clusters

compute MIS on power graph G*
every vertex joins the cluster of its closest MIS-node
compute (2A — 3)-edge coloring of intercluster edges

Phase 2: Assign two exclusive edges to each cluster

compute maximal matching of intercluster edges
modify the matching via hypergraph sinkless orientation

Phase 3: Switch colors and complete the coloring

adapt colors of assigned edges in order to
complete the coloring on the intracluster edges
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Phase 1: Partition vertices into clusters

Goal: symmetry breaking + every cluster gets sufficiently many vertices

Technique: compute a maximal independent set Z on G°
every vertex joins the cluster of its closest node in Z
compute greedy edge coloring of intercluster edges

Result: every cluster C' € C has diam(C') < 8
for every v € Z : N*(v) C C(v)
intercluster edges are colored with just 2A — 3 colors

Runtime: Tys(n, poly(A)) + Tha_1(n) = Tais(A? - n, poly(A))
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Phase 1: Partition vertices into clusters

Goal: symmetry breaking + every cluster gets sufficiently many vertices

Technique: compute a maximal independent set Z on G®
every vertex joins the cluster of its closest node in Z
compute greedy edge coloring of intercluster edges

Standard techniques

Result: every cluster C' € C has diam(C') < 8
for every v € Z : N*(v) C C(v)
intercluster edges are colored with just 2A — 3 colors
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Phase 2: Assign two exclusive edges to each cluster
Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

each cluster sends requests to all matching
PETN edges in its 2-hop neighborhood
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Phase 2: Assigh two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

each cluster sends requests to all matching
edges in its 2-hop neighborhood

Technique: compute a maximal matching of the colored edges
each cluster sends at least § := 2A?
requests

assign two maximal edges to each cluster via HSO
each edge in the matching receives at

1 |

o/

.\ most 7 := 2 requests
> l

’ I efficiently solvable via HSO
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Phase 2: Assign two exclusive edges to each cluster
Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

each cluster sends requests to all matching
edges in its 2-hop neighborhood

each cluster sends at least § := 2A?
requests

each edge in the matching receives at
most 7 := 2A requests

'

efficiently solvable via HSO
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Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

Result:

each cluster gets exclusive access to
two edges in its 2-hop neighborhood

Runtime:
Tvm(n) + Taso(n, 24%,2A)

TMIS(A -1, 20\ — 2) R O(lOgA n)
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Technique: move assigned edges to the immediate neighborhood
of the cluster

change colors of assigned edges to satisfy:

Lemma 2: If 3k e N: |o(Ng(Vx))| > A, then we can extend ¢ to T

Result: each cluster can now independently extend the coloring

Runtime: O(1)
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High level overview of our algorithm

Phase 1: Partition vertices into clusters Tavris(n)

Phase 2: Assign two exclusive edges to each cluster Tynvi(n) + O(loga n)

Phase 3: Switch colors and complete the coloring O(1)

Reduction from 2A — 2-edge coloring to MIS Tys(n) + O(loga n)
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Reduction to greedy edge coloring

Phase 1: Partition vertices into clusters O(log A) + Toa_1(n)

S T

compute a O(log A)-ruling set on G®

Phase 2: Assign two exclusive edges to each cluster O(log A - loga n)

- P I

compute 2-edge ruling set of intercluster edges
Phase 3: Switch colors and complete the coloring O(1)
nothing changes
Reduction from 2A — 2 to 2A — 1-edge coloring Toan_1(n) + O(logn)
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Wrapping up

optimal reduction from greedy 2872
Result edge coloring to non-greedy edge O(logn) >l
coloring ----- 2 A _1
Open problem
Given Goal
4-regular graph G = (V, F) find small-diameter subgraph H
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such that H can still be properly

matching M C E 5-colored at the end
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