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Motivation
huge difference between greedy

and non-greedy problems

There is a huge difference in techniques and runtimes of distributed algorithms for problems
that can be solved by a sequential greedy algorithm and those that cannot.

Technique
Question: When can we extend

partial (2∆− 2)-colorings?
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Contributions

Result
optimal reduction from

non-greedy edge coloring to
greedy edge coloring

Motivation
huge difference between greedy

and non-greedy problems

I think that there current figures are just confusing, needs something simpler

I would like to create some visual separation here as well

the image that I have in my head here is the (2∆′−
1)-edge coloring of the intercluster edges, but it is
probably too complex to depict here

There is a huge difference in techniques and runtimes of distributed algorithms for problems
that can be solved by a sequential greedy algorithm and those that cannot.
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Runtimes

O(log12 ∆+ log n)Õ(log5/3 n)

Deterministic:

Randomized:

O(log12 ∆+ log log n)Õ(log5/3 log n)

Õ(log8/3 log n)

Õ(log19/9 n)OLD

NEW

???

OLD

NEW

???

[4]

[1,2,3]

NEW OLD∆-regime

general graphs

∆ ≤ 2log
1/12 n

∆ ≤ 2log
1/12 logn

∆-regime

Time complexity T (n,∆)

log⋆ n

log n

[Chang, He, Li, Pettie & Uitto, 2020]

(2∆− 2)-edge coloring

∆ = O(1) ∆ = O(2log logn) ∆ = O(2logn)

poly log n

log2 ∆ · log2 n

Sources

deterministic randomized
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Deterministic:

Randomized:

O(log12 ∆+ log log n)Õ(log5/3 log n)
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Deterministic:

Randomized:

O(log12 ∆+ log log n)Õ(log5/3 log n)
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Õ(log19/9 n)

∆-regime

general graphs
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Result
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Lemma 1 (reaching for the stars)

a graph G = (V,E) and a partial (2∆− 2)-edge coloring φ
an uncolored star graph S ⊆ G
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extendable:

Lemma 1 (reaching for the stars)

a graph G = (V,E) and a partial (2∆− 2)-edge coloring φ
an uncolored star graph S ⊆ G

not extendable:

If |φ(NE(VS))| ≥ ∆, then we can extend φ to S.
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When can we extend a partial coloring to an uncolored tree?

Lemma 2 (colorful leaves make any tree happy)

Let G = (V,E) be a ∆-regular graph, T a tree, r ∈ VT and φ :
E \ ET → [2∆− 2] be a partial edge coloring of G. Let

Vk := {v ∈ VT : dist(v, r) = k}, Ek := {e ∈ ET : distT (e, r) = k}.

If there is a k ∈ N such that |φ(NE(Vk))| ≥ ∆, then we can extend φ
to G.

∆-regular graph G, rooted tree T ∋ r
φ : E \ ET → [2∆− 2] partial edge coloring
Vk := {v ∈ VT : dist(v, r) = k}
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Let G = (V,E) be a ∆-regular graph, T a tree, r ∈ VT and φ :
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φ : E \ ET → [2∆− 2] partial edge coloring
Vk := {v ∈ VT : dist(v, r) = k}

If ∃k ∈ N : |φ(NE(Vk))| ≥ ∆, then we can extend φ to T .

Lemma 1

φ is extendable to T ✓

|φ(NE(V1))| ≥ 3 ✓
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Model of computation

Definition (Local model) [Linial, 1992]

communication network: undirected graph

communication happens in synchronous rounds

message size and local computation is unlimited

time complexity: # of synchronous rounds

nodes have unique IDs

1 9

8

12

2

5

4
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∞

∞

∞
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High level overview of our algorithm

Phase 1: Partition vertices into clusters

compute MIS on power graph Gk

every vertex joins the cluster of its closest MIS-node
compute (2∆− 3)-edge coloring of intercluster edges
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High level overview of our algorithm

Phase 1: Partition vertices into clusters

Phase 2: Assign two exclusive edges to each cluster

Phase 3: Switch colors and complete the coloring

compute MIS on power graph Gk

every vertex joins the cluster of its closest MIS-node
compute (2∆− 3)-edge coloring of intercluster edges

compute maximal matching of intercluster edges
modify the matching via hypergraph sinkless orientation

adapt colors of assigned edges in order to
complete the coloring on the intracluster edges

Before After



10 / 15

Phase 1: Partition vertices into clusters

Goal: symmetry breaking + every cluster gets sufficiently many vertices

Technique:

Runtime:

Result:

TMIS(n, poly(∆)) + T2∆−1(n) = TMIS(∆
2 · n, poly(∆))

compute a maximal independent set I on G8

every vertex joins the cluster of its closest node in I
compute greedy edge coloring of intercluster edges

every cluster C ∈ C has diam(C) ≤ 8
for every v ∈ I : N4(v) ⊆ C(v)
intercluster edges are colored with just 2∆− 3 colors
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every cluster C ∈ C has diam(C) ≤ 8
for every v ∈ I : N4(v) ⊆ C(v)
intercluster edges are colored with just 2∆− 3 colors

Standard techniques
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Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges



11 / 15

Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO



11 / 15

Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO



11 / 15

Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

each cluster sends requests to all matching
edges in its 2-hop neighborhood
each cluster sends at least δ := 2∆2

requests
each edge in the matching receives at
most r := 2∆ requests



11 / 15

Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

each cluster sends requests to all matching
edges in its 2-hop neighborhood
each cluster sends at least δ := 2∆2

requests
each edge in the matching receives at
most r := 2∆ requests

efficiently solvable via HSO



11 / 15

Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

each cluster sends requests to all matching
edges in its 2-hop neighborhood
each cluster sends at least δ := 2∆2

requests
each edge in the matching receives at
most r := 2∆ requests

efficiently solvable via HSO



11 / 15

Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

Technique: compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

Result:
each cluster gets exclusive access to
two edges in its 2-hop neighborhood



11 / 15

Phase 2: Assign two exclusive edges to each cluster

Goal: get each cluster exclusive access to change colors of two edges

Technique:

Runtime:

compute a maximal matching of the colored edges
assign two maximal edges to each cluster via HSO

for the final presentation I would like a figure to illustrate the 2-hop neighborhood

Result:
each cluster gets exclusive access to
two edges in its 2-hop neighborhood

TMM(n) + THSO(n, 2∆
2, 2∆)

=
TMIS(∆ · n, 2∆− 2) +O(log∆ n)
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Phase 3: Switch colors in order to complete the coloring

Goal: extend the coloring inside the clusters
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If ∃k ∈ N : |φ(NE(Vk))| ≥ ∆, then we can extend φ to TLemma 2:

move assigned edges to the immediate neighborhood
of the cluster
change colors of assigned edges to satisfy:
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Phase 3: Switch colors in order to complete the coloring

Goal: extend the coloring inside the clusters

Technique:

Result: each cluster can now independently extend the coloring

Runtime: O(1)

If ∃k ∈ N : |φ(NE(Vk))| ≥ ∆, then we can extend φ to TLemma 2:

move assigned edges to the immediate neighborhood
of the cluster
change colors of assigned edges to satisfy:
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High level overview of our algorithm

Phase 1: Partition vertices into clusters TMIS(n)
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High level overview of our algorithm

Phase 1: Partition vertices into clusters

Phase 2: Assign two exclusive edges to each cluster

Phase 3: Switch colors and complete the coloring

Reduction from 2∆− 2-edge coloring to MIS

TMIS(n)

TMM(n) +O(log∆ n)

O(1)

TMIS(n) +O(log∆ n)
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Reduction to greedy edge coloring

Phase 1: Partition vertices into clusters

Phase 2: Assign two exclusive edges to each cluster

Phase 3: Switch colors and complete the coloring

compute MIS on power graph Gk

compute a O(log∆)-ruling set on G8

compute maximal matching of intercluster edges

compute 2-edge ruling set of intercluster edges

O(log∆) + T2∆−1(n)

O(log∆ · log∆ n)

nothing changes

O(1)

Reduction from 2∆− 2 to 2∆− 1-edge coloring T2∆−1(n) +O(log n)
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and non-greedy problems

Technique
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edge coloring to non-greedy edge
coloring

Motivation
huge difference between greedy

and non-greedy problems

Technique
Question: When can we extend

partial (2∆− 2)-colorings?

O(log n)

2∆− 2

2∆− 1

extendable?

Ω(log n) O(log⋆ n)

2∆− 2 2∆− 1

hard easy

4-regular graph G = (V,E)

matching M ⊆ E

Given Goal

find small-diameter subgraph H

such that H can still be properly
5-colored at the end

Open problem


