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Model of computation

Definition (LOCAL model) [Linial, 1992]

communication network is abstracted as an undirected graph G = (V, F)
nodes have unique IDs, edges serve as communication channels
communication happens in synchronous rounds

message size and local computation is unlimited

each node outputs a (local part of a) solution
time complexity is the number of communication rounds
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Asymptotically optimal algorithms in LOCAL

Problem: Sinkless orientation [Brandt et al. STOC’16]

Input: A A-regular graph G = (V, E).
Output: An orientation of the edges such that each vertex has at
least one outgoing edge.
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Asymptotically optimal algorithms in LOCAL

Problem: Sinkless orientation [Brandt et al. STOC'16]

Input: A A-regular graph G = (V, E).
Output: An orientation of the edges such that each vertex has at
least one outgoing edge.

Complexity:
Algorithms Lower bounds

O(loga 1) (loga 1)

[Ghaffari & Su, 2017] [Chang, Kopelowitz & Pettie, FOCS'16]

RandLOCAL = ©Uogalogn) | Q(log logn)

[Ghaffari & Su, 2017] [Brandt et al. STOC'16]

DetLOCAL
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Algorithm design technique

Hall’s Theorem [Hall 1935]

A bipartite graph with node sets V' and U has a U-saturating
matching if and only if |[N(S)| > |S| for all S C U.
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Definition (Hypergraph H = (V, F))

generalization of a graph, each edge may contain arbitrarily many vertices
the degree deg(v) of a vertex v € V' is the number of incident edges

the rank rank(e) of an edge e € E is the number of vertices in the edge
d := min,cy deg(v) is the minimum degree of H

r := max.cp rank(e) is the maximum rank of H
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Definition (Hypergraph H = (V, F))

generalization of a graph, each edge may contain arbitrarily many vertices
the degree deg(v) of a vertex v € V' is the number of incident edges

the rank rank(e) of an edge e € E is the number of vertices in the edge
0 := min,cy deg(v) is the minimum degree of H

r := maX.cp rank(e) is the maximum rank of H

Bipartite representation

&p4uﬂp)// \\

(v,e) € F [ I
S
v E e




Every vertex is contained in a small-diameter Hall graph

Lemma 1: Many edges
Let » < 0 and x = log5_1) /(1) 1. For any v € V' there exists

a subgraph (V',E') C B¢ (v) such that v € V' and |E’| > |V"].
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Every vertex is contained in a small-diameter Hall graph

Lemma 1: Many edges
Let » < 0 and x = log5_1) /(1) 1. For any v € V' there exists

a subgraph (V',E') C B¢ (v) such that v € V' and |E’| > |V"].

Lemma 2: Non-empty Hall subgraph
Any non-empty hypergraph G = (V, E/) with |V| < |E| contains
a non-empty Hall subgraph.

Distributed Hall’'s Theorem

Each node in any n-node hypergraph with minimum degree 0 and ma-
ximum rank r < 0 is contained in a Hall graph with diameter log;,,. n.
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Non-empty Hall subgraph
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If G is not a Hall graph, there exists a Hall violator S C V.
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Non-empty Hall subgraph
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Define V' 1= V\S and £ := E|V/.
VI = [VI =S| < VI = IN(S)| < [E| = [N(5)| < [E].
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Non-empty Hall subgraph

Repeat for G' = (V', E').
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Non-empty Hall subgraph
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Since |V’| < |FE’|, this process cannot end with an empty
graph.
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Distributed Hall’s algorithm
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Distributed Hall’s algorithm
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Distributed Hall’s algorithm
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Lemma 1: Find a subgraph v € G(v) C Go(v) with |V'| > |E'|.
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Distributed Hall’s algorithm
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Lemma 2: Find Hall subgraph Hy C G{(v).
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Distributed Hall’s algorithm
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Distributed Hall’s algorithm
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Lemma 1: Find a subgraph v € G (v) C G1(v) with |V'| > |E'].
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Distributed Hall’s algorithm
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Distributed Hall’s algorithm
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Distributed Hall’s algorithm
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Problem: Hypergraph sinkless orientation (HSO)

Input: A hypergraph H with min. degree 0 and max. rank r.
Output: An orientation of the hyperedges such that every vertex

has at least one outgoing hyperedge.
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Problem: Hypergraph sinkless orientation (HSO)

Input: A hypergraph H with min. degree 0 and max. rank r.
Output: A node saturating matching in By = (V, E, F)).

RN
>
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Deterministic HSO algorithm

Sequential algorithm

for v e V:
Find a local Hall graph H(v) 3 v.
Compute a HSO of H(v).
Orient the edges in H(v) accordingly.
end for
Orient all remaining hyperedges arbitrarily
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Deterministic HSO algorithm

Sequential algorithm

for v € V:
Find a local

Compute a HSO of H (v

Hall graph H(v) 3> v.

)
)

Orient the edges in H(v) accordingly.

end for

Orient all remaining hyperedges arbitrarily

What happens if we reorient edges?

Orienting edges in a HSO cannot create a sink!
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Deterministic HSO algorithm

LOCAL algorithm

for v e V:
Compute H(u) for all u € BY (v).
Order these Hall graphs according to the vertex IDs.
for e > v
Find the Hall graph H* with the largest index
containing e and orient e according to a HSO of H*.
end for
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Deterministic HSO algorithm

LOCAL algorithm

for v e V:
Compute H(u) for all u € BY (v).
Order these Hall graphs according to the vertex IDs.
for e > v
Find the Hall graph H* with the largest index
containing e and orient e according to a HSO of H*.
end for

Runtime: 2z = O(log;, n)
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HSO results

Problem: Hypergraph sinkless orientation

Input: A hypergraph H with min. degree 0 and max. rank r.
Output: A node saturating matching in By = (V, E, F)).
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HSO results

Problem: Hypergraph sinkless orientation

Input: A hypergraph H with min. degree 0 and max. rank r.
Output: A node saturating matching in By = (V, E, F)).

Complexity:
o>r DetLOCAL RandLOCAL
Algorithms O(log(S/r n)

Q(logé-r n)

[Balliu, Brandt, Kuhn & Olivetti, STOC'22]
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HSO results

Problem: Hypergraph sinkless orientation

Input: A hypergraph H with min. degree 0 and max. rank r.
Output: A node saturating matching in By = (V, E, F)).

Complexity:
o> DetLOCAL
Algorithms 0(1[05%5/';,; n)
Lower bounds  “8s 1)
o=r Q(n)
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RandLOCAL

O(loch/r 0 + 10g5/r lOg n)

Q(logs... logn)

[Balliu, Brandt, Kuhn & Olivetti, STOC'22]
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State-of-the-art edge coloring in DetLOCAL for const. A

Time complexity

3 [Ghaffari, Kuhn, Maus & Uitto, STOC'18]
10g® 1 - Q

o
10g4 N Q [Bernshteyn & Dhawan, 2024]

[Ghaffari & Grunau, 2023]

[new result]

log T :' """"""" O' """""""""""""""""" :

:[Chang, He, Li, Pettie & Uitto, 2020]:

[Panconesi & Rizzi, 2001]5 ;
* ' -
= [Linial, 1992] -
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