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Model of computation

Definition (Local model) [Linial, 1992]

communication network is abstracted as an undirected graph G = (V,E)

communication happens in synchronous rounds

message size and local computation is unlimited

each node outputs a (local part of a) solution

time complexity is the number of communication rounds

nodes have unique IDs, edges serve as communication channels
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Asymptotically optimal algorithms in LOCAL

Problem: Sinkless orientation

Input: A ∆-regular graph G = (V,E).

Output: An orientation of the edges such that each vertex has at
least one outgoing edge.

[Brandt et al. STOC’16]
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DetLOCAL

RandLOCAL

Algorithms Lower bounds
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Ω(log∆ log n)
[Ghaffari & Su, 2017]

O(log∆ log n)

Ω(log∆ n)
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Algorithm design technique

Hall’s Theorem
A bipartite graph with node sets V and U has a U -saturating
matching if and only if |N(S)| ≥ |S| for all S ⊆ U .

[Hall 1935]
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Algorithm design technique

Hall’s Theorem
A bipartite graph with node sets V and U has a U -saturating
matching if and only if |N(S)| ≥ |S| for all S ⊆ U .

V

U

[Hall 1935]

|S| = 4

|N(S)| = 3

Hall violator:
|N(S)| < |S|
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Algorithm design technique

Hall’s Theorem
A bipartite graph with node sets V and U has a U -saturating
matching if and only if |N(S)| ≥ |S| for all S ⊆ U .

Hall graph

V

U

[Hall 1935]
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generalization of a graph, each edge may contain arbitrarily many vertices
the degree deg(v) of a vertex v ∈ V is the number of incident edges
the rank rank(e) of an edge e ∈ E is the number of vertices in the edge
δ := minv∈V deg(v) is the minimum degree of H
r := maxe∈E rank(e) is the maximum rank of H

Definition (Hypergraph H = (V,E))
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generalization of a graph, each edge may contain arbitrarily many vertices
the degree deg(v) of a vertex v ∈ V is the number of incident edges
the rank rank(e) of an edge e ∈ E is the number of vertices in the edge
δ := minv∈V deg(v) is the minimum degree of H
r := maxe∈E rank(e) is the maximum rank of H

Definition (Hypergraph H = (V,E))

Bipartite representation

BH = (V,E, F )

(v, e) ∈ F
⇐⇒
v ∈ e

Example (δ = 2, r = 4)

H
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Every vertex is contained in a small-diameter Hall graph

Ball-growing argument: |V (BG
x+1(v))| ≤ δ−1

r−1 |V (BG
x (v))|Lemma 1: Many edges

Let r < δ and x = log(δ−1)/(r−1) n. For any v ∈ V there exists

a subgraph (V ′, E′) ⊆ BG
x (v) such that v ∈ V ′ and |E′| ≥ |V ′|.
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Every vertex is contained in a small-diameter Hall graph

Distributed Hall’s Theorem
Each node in any n-node hypergraph with minimum degree δ and ma-
ximum rank r < δ is contained in a Hall graph with diameter logδ/r n.

Ball-growing argument: |V (BG
x+1(v))| ≤ δ−1

r−1 |V (BG
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8 / 14

Non-empty Hall subgraph

Let G = (V,E) such that |V | ≤ |E|.

∈ V ∈ E
G
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Non-empty Hall subgraph

If G is not a Hall graph, there exists a Hall violator S ⊆ V .

∈ V ∈ E

S

N(S)

Hall violator:
|N(S)| < |S|

G
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Non-empty Hall subgraph

∈ V ∈ E

Define V ′ := V \ S and E := E|V ′ .

|V ′| = |V | − |S| < |V | − |N(S)| ≤ |E| − |N(S)| ≤ |E′|.



8 / 14

Non-empty Hall subgraph

∈ V ∈ E

Repeat for G′ = (V ′, E′).

G′

S

N(S)



8 / 14

Non-empty Hall subgraph

∈ V ∈ E
H

Since |V ′| < |E′|, this process cannot end with an empty
graph.
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Distributed Hall’s algorithm

G

v
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Distributed Hall’s algorithm

G

v Bx(v) = G0(v)
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Distributed Hall’s algorithm

G

v

G′
0(v)

Lemma 1: Find a subgraph v ∈ G′
0(v) ⊆ G0(v) with |V ′| ≥ |E′|.
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Distributed Hall’s algorithm

G

v
H0(v)

Lemma 2: Find Hall subgraph H0 ⊆ G′
0(v).
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Distributed Hall’s algorithm

G

v G1(v) = G0(v) \H0(v)

Invariant: δ(Gi(v)) > r(Gi(v))
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Distributed Hall’s algorithm

G

v

G′
1(v)

Lemma 1: Find a subgraph v ∈ G′
1(v) ⊆ G1(v) with |V ′| ≥ |E′|.
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Distributed Hall’s algorithm

G

v

H2(v)
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Distributed Hall’s algorithm

G

v
H0(v)

H2(v)
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Distributed Hall’s algorithm

G

v
H(v)
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Problem: Hypergraph sinkless orientation (HSO)
Input: A hypergraph H with min. degree δ and max. rank r.
Output: An orientation of the hyperedges such that every vertex
has at least one outgoing hyperedge.
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Problem: Hypergraph sinkless orientation (HSO)
Input: A hypergraph H with min. degree δ and max. rank r.
Output: A node saturating matching in BH = (V,E, F ).

BH

V

E
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Deterministic HSO algorithm

Sequential algorithm

for v ∈ V :
Find a local Hall graph H(v) ∋ v.
Compute a HSO of H(v).
Orient the edges in H(v) accordingly.

end for
Orient all remaining hyperedges arbitrarily
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Deterministic HSO algorithm

Sequential algorithm

for v ∈ V :
Find a local Hall graph H(v) ∋ v.
Compute a HSO of H(v).
Orient the edges in H(v) accordingly.

end for
Orient all remaining hyperedges arbitrarily

What happens if we reorient edges?

Orienting edges in a HSO cannot create a sink!
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Deterministic HSO algorithm

LOCAL algorithm

for v ∈ V :
Compute H(u) for all u ∈ BG

x (v).
Order these Hall graphs according to the vertex IDs.
for e ∋ v

Find the Hall graph H⋆ with the largest index
containing e and orient e according to a HSO of H⋆.

end for
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Deterministic HSO algorithm

LOCAL algorithm

for v ∈ V :
Compute H(u) for all u ∈ BG

x (v).
Order these Hall graphs according to the vertex IDs.
for e ∋ v

Find the Hall graph H⋆ with the largest index
containing e and orient e according to a HSO of H⋆.

end for

Runtime: 2x = O(logδ/r n)
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HSO results

Problem: Hypergraph sinkless orientation
Input: A hypergraph H with min. degree δ and max. rank r.
Output: A node saturating matching in BH = (V,E, F ).
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HSO results

Complexity:

DetLOCAL RandLOCAL

Algorithms

Lower bounds

Problem: Hypergraph sinkless orientation
Input: A hypergraph H with min. degree δ and max. rank r.
Output: A node saturating matching in BH = (V,E, F ).

δ > r



12 / 14

HSO results

Complexity:

DetLOCAL RandLOCAL

Algorithms

Lower bounds

[new result]

O(logδ/r n)

Problem: Hypergraph sinkless orientation
Input: A hypergraph H with min. degree δ and max. rank r.
Output: A node saturating matching in BH = (V,E, F ).

[Balliu, Brandt, Kuhn & Olivetti, STOC’22]

Ω(logδ·r n)

δ > r



12 / 14

HSO results

Complexity:

DetLOCAL RandLOCAL

Algorithms

Lower bounds

[new result]

O(logδ/r δ + logδ/r log n)
[new result]

O(logδ/r n)

Problem: Hypergraph sinkless orientation
Input: A hypergraph H with min. degree δ and max. rank r.
Output: A node saturating matching in BH = (V,E, F ).

[Balliu, Brandt, Kuhn & Olivetti, STOC’22]

Ω(logδ·r n) Ω(logδ·r log n)
[Balliu, Brandt, Kuhn & Olivetti, STOC’22]

δ > r



12 / 14

HSO results

Complexity:

DetLOCAL RandLOCAL

Algorithms

Lower bounds

[new result]

O(logδ/r δ + logδ/r log n)
[new result]

O(logδ/r n)

Problem: Hypergraph sinkless orientation
Input: A hypergraph H with min. degree δ and max. rank r.
Output: A node saturating matching in BH = (V,E, F ).

[Balliu, Brandt, Kuhn & Olivetti, STOC’22]

Ω(logδ·r n) Ω(logδ·r log n)
[Balliu, Brandt, Kuhn & Olivetti, STOC’22]

δ > r

δ = r
[new result]

Ω(n)
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