
1

Tree Decompositions & Graph Decompositions

www.tugraz.atTU Graz - Graz University of Technology



Benedikt Hahn – Graph decompositions Institute for Software Technology -TU Graz2

Tree decompositions



Benedikt Hahn – Graph decompositions Institute for Software Technology -TU Graz2

Tree decompositions

How to capture the tree structure of a graph?



Benedikt Hahn – Graph decompositions Institute for Software Technology -TU Graz2

Tree decompositions

How to capture the tree structure of a graph?
A tree decomposition of a graph G is a tree T and a collection
of bags (Bt)t∈V (T ); Bt ⊆ V (G) such that

1. V (G) = ∪t∈V (T )Bt

2. For every edge uv ∈ E(G), there exists a bag Vt ⊇ {u; v}.
3. For any v , the bags containing v form a subtree in T .
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Tree decompositions

How to capture the tree structure of a graph?
A tree decomposition of a graph G is a tree T and a collection
of bags (Bt)t∈V (T ); Bt ⊆ V (G) such that

1. V (G) = ∪t∈V (T )Bt

2. For every edge uv ∈ E(G), there exists a bag Vt ⊇ {u; v}.
3. For any v , the bags containing v form a subtree in T .

How does this differ from “T is induced minor of G”?
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1
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The treewidth of a graph measures its tree-likeness
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all bags contain at most k vertices } − 1

tw(G) = 1 ⇔ G is a forest
tw(Kn) = n − 1

The treewidth of a graph measures its tree-likeness
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tw(G) = min{!(H) | H is chordal, G ⊆ H} − 1
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tw(G) := min{k | There is a tree-decomp. of G in which
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tw(Kn) = n − 1

The treewidth of a graph measures its tree-likeness

Alternative definitions
tw(G) = min{!(H) | H is chordal, G ⊆ H} − 1

tw(G) = cop-number of G in a variant of “cops and robbers”.
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

tw(G) = 1 ⇔ G is a forest
tw(Kn) = n − 1

The treewidth of a graph measures its tree-likeness

Alternative definitions
tw(G) = min{!(H) | H is chordal, G ⊆ H} − 1

tw(G) = cop-number of G in a variant of “cops and robbers”.

One cop announces a vertex he will fly towards with a heli-
copter and is removed from the graph
The robber may move to any vertex reachable via a path that
isn’t blocked by the cops
The cop in the helicopter lands on his chosen vertex.

First choose starting positions (first cops, then robber). Then, each turn



Benedikt Hahn – Graph decompositions Institute for Software Technology -TU Graz3

Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Computational interest
Many NP-hard problems on graphs can be solved in running time
≤ f (tw(G)) · nO(1). (Fixed parameter tractable)
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Computational interest
Many NP-hard problems on graphs can be solved in running time
≤ f (tw(G)) · nO(1). (Fixed parameter tractable)
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INDEPENDENT SET

DOMINATING SET ODD CYCLE TRANSVERSAL

MAXCUT STEINER TREE

FEEDBACK VERTEX SET HAMILTON PATH

HAMILTON CYCLE

LONGEST PATH

LONGEST CYCLE

CHROMATIC NUMBER

CYCLE PACKING

CONNECTED DOMINATING SET

CONNECTED VERTEX COVER

CONNECTED FEEDBACK VERTEX SET

Idea: Run a dynamic program on the tree-decomposition of G What could this look
like for 3-COLOR?
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tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Computational interest
Many NP-hard problems on graphs can be solved in running time
≤ f (tw(G)) · nO(1). (Fixed parameter tractable)
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Idea: Run a dynamic program on the tree-decomposition of G
Problem: Finding tw(G) and a tree-decomposition is NP-hard

What could this look
like for 3-COLOR?
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Computational interest
Many NP-hard problems on graphs can be solved in running time
≤ f (tw(G)) · nO(1). (Fixed parameter tractable)
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Idea: Run a dynamic program on the tree-decomposition of G
Problem: Finding tw(G) and a tree-decomposition is NP-hard
Solution: There is an k · 2O(k2) · n4 algorithm for both

What could this look
like for 3-COLOR?
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Computational interest
Many NP-hard problems on graphs can be solved in running time
≤ f (tw(G)) · nO(1). (Fixed parameter tractable)

VERTEX COVER
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CONNECTED VERTEX COVER
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Courcelle’s theorem (1990)
Let ’ be an MSO2-formula and G some graph. Then, there is an
f (|’|; tw(G)) · n algorithm for testing whether G satisfies ’ (for some com-
putable function f )

Idea: Run a dynamic program on the tree-decomposition of G
Problem: Finding tw(G) and a tree-decomposition is NP-hard
Solution: There is an k · 2O(k2) · n4 algorithm for both

What could this look
like for 3-COLOR?
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Structural interest
Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors HG.
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Structural interest
Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors HG.
Hplanar graphs = {K3; K5;5}
Hgraphs of tw ≤1 = {K3}
Hgraphs of tw ≤2 = {K4}
|Hgraphs of tw ≤3| = 4
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Structural interest
Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors HG.
Hplanar graphs = {K3; K5;5}
Hgraphs of tw ≤1 = {K3}
Hgraphs of tw ≤2 = {K4}
|Hgraphs of tw ≤3| = 4
|Htoroidal graphs| ≥ 17523
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Structural interest
Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors HG.

G has a Kn-minor ⇒ tw(G) ≥ n − 1. On the other hand, ̸⇐.
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Structural interest
Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors HG.

G has a Kn-minor ⇒ tw(G) ≥ n − 1. On the other hand, ̸⇐.
However, there is a function f (k) = O(k98+o(1)) such that every graph
with treewidth f (k) contains a k × k-grid as a minor.
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } − 1

Structural interest
Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors HG.

G has a Kn-minor ⇒ tw(G) ≥ n − 1. On the other hand, ̸⇐.
However, there is a function f (k) = O(k98+o(1)) such that every graph
with treewidth f (k) contains a k × k-grid as a minor.
Getting further into modern structural graph theory (of minors), one ar-
rives at brambles, blocks and especially tangles
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Graph decompositions

What if the global structure of G is better explained by some graph that
is not a tree?
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Graph decompositions

Let G;H be two graphs and (Gh)h∈V (H) a family of subgraphs of Gh ⊆ G.
The pair (H; (Gh)h∈V (H)) is called a H-decomposition of G if

1. G = ∪h∈V (H)Gh

2. For any v , the bags containing v form a connected subgraph in H.

What if the global structure of G is better explained by some graph that
is not a tree?
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Graph decompositions

Let G;H be two graphs and (Gh)h∈V (H) a family of subgraphs of Gh ⊆ G.
The pair (H; (Gh)h∈V (H)) is called a H-decomposition of G if

1. G = ∪h∈V (H)Gh

2. For any v , the bags containing v form a connected subgraph in H.

What if the global structure of G is better explained by some graph that
is not a tree?

How global?

Given a graph G, is there a canonical choice of H which witnesses the
global structure of G?

Idea:
Consider all cycles of length ≤
r and their “compositions” as
local.
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Canonical graph decompositions via coverings
REINHARD DIESTEL, RAPHAEL W. JACOBS, PAUL KNAPPE, AND JAN KURKOFKA, arffliv 2022

G
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Canonical graph decompositions via coverings
REINHARD DIESTEL, RAPHAEL W. JACOBS, PAUL KNAPPE, AND JAN KURKOFKA, arffliv 2022

Construction idea
Use the fundamental group ı1(G; x0): The group of closed walks from x0 up to local
reductions.

G

ı1(G) = F4
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Canonical graph decompositions via coverings
REINHARD DIESTEL, RAPHAEL W. JACOBS, PAUL KNAPPE, AND JAN KURKOFKA, arffliv 2022

Construction idea
Use the fundamental group ı1(G; x0): The group of closed walks from x0 up to local
reductions.
Let ır

1(G; x0) ≤ ı1(G; x0) be generated by all closed walks of length ≤ r .

G

ı1(G) = F4

ır
1(G) = F2
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Construction idea
Use the fundamental group ı1(G; x0): The group of closed walks from x0 up to local
reductions.
Let ır

1(G; x0) ≤ ı1(G; x0) be generated by all closed walks of length ≤ r .

G

ı1(G) = F4

Consider the universal covering G̃. Its isometry group (of Deck transformations) is ex-
actly ı1(G; x0).

ır
1(G) = F2
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ı1(G) = F4

Consider the universal covering G̃. Its isometry group (of Deck transformations) is ex-
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Canonical graph decompositions via coverings
REINHARD DIESTEL, RAPHAEL W. JACOBS, PAUL KNAPPE, AND JAN KURKOFKA, arffliv 2022

Construction idea
Use the fundamental group ı1(G; x0): The group of closed walks from x0 up to local
reductions.
Let ır

1(G; x0) ≤ ı1(G; x0) be generated by all closed walks of length ≤ r .

G

ı1(G) = F4

Consider the universal covering G̃. Its isometry group (of Deck transformations) is ex-
actly ı1(G; x0).

Find a canonical tree decomposition (Tr ;VTr ) of Gr using the theory of ends and tangles.
Define the r -local covering Gr := G̃=ır

1(G; x0). Let Dr be its isometry group.

ır
1(G) = F2

G̃

Gr
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Canonical graph decompositions via coverings
REINHARD DIESTEL, RAPHAEL W. JACOBS, PAUL KNAPPE, AND JAN KURKOFKA, arffliv 2022

Construction idea
Use the fundamental group ı1(G; x0): The group of closed walks from x0 up to local
reductions.
Let ır

1(G; x0) ≤ ı1(G; x0) be generated by all closed walks of length ≤ r .

G

ı1(G) = F4

Consider the universal covering G̃. Its isometry group (of Deck transformations) is ex-
actly ı1(G; x0).

Find a canonical tree decomposition (Tr ;VTr ) of Gr using the theory of ends and tangles.
Define the r -local covering Gr := G̃=ır

1(G; x0). Let Dr be its isometry group.

Let H = Tr=Dr and similarly project the bags back to G.

ır
1(G) = F2

G̃

Gr

H
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Closing thoughts

The canonical tree decomposition on the covering space is somewhat
mysterious to me.
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For r = |G|, H is a tree.
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