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® How to capture the tree structure of a graph?

m A iree decomposition of a graph G is a tree T and a collection
of bags (B:)+ev (1), B: € V(G) such that

1. V(G) — UtEV(T) Bt
2. For every edge uv € E(G), there exists abag V; O {u, v}.
3. For any v, the bags containing v form a subtree in T.
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® How to capture the tree structure of a graph?

m A iree decomposition of a graph G is a tree T and a collection
of bags (B:)+ev (1), B: € V(G) such that

1. V(G) — UtEV(T) Bt
2. For every edge uv € E(G), there exists abag V; D {u, v}.
3. For any v, the bags containing v form a subtree in T.

How does this differ from “T is induced minor of G”?
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1
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tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1

® The treewidth of a graph measures its tree-likeness

atw(G) =1« G is a forest
etw(K,) =n—1
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tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1

® The treewidth of a graph measures its tree-likeness

2 tw(G) = 1 < G is a forest o, —#—(o
= tw(K,) =n—1 < N\ \,—’ Q"@ Q@@

Alternative definitions
®tw(G) = min{w(H) | Hischordal, G C H} — 1

3 Benedikt Hahn — Graph decompositions Institute for Software Technology -TU Graz



3

Treewidth

TU

Grazm

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1

® The treewidth of a graph measures its tree-likeness

2 tw(G) = 1 < G is a forest . ‘@ o
eitw(K,)=n—-1 e \_o o ® '@
Alternative definitions

®tw(G) = min{w(H) | Hischordal, G C H} — 1
® tw(G) = cop-number of G in a variant of “cops and robbers”.
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1

® The treewidth of a graph measures its tree-likeness

2 tw(G) = 1 < G is a forest o, —#—(o
= tw(K,) =n—1 < N\ \,—’ *?'5@ Q@@

Alternative definitions

®tw(G) = min{w(H) | Hischordal, G C H} — 1

® tw(G) = cop-number of G in a variant of “cops and robbers”.

m First choose starting positions (first cops, then robber). Then, each turn

= One cop announces a vertex he will fly towards with a heli-
copter and is removed from the graph

® The robber may move to any vertex reachable via a path that
Isn’'t blocked by the cops

= The cop in the helicopter lands on his chosen vertex.
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1

Computational interest

= Many NP-hard problems on graphs can be solved in running time
< f(tw(G)) - n®N), (Fixed parameter tractable)
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tw(G) := min{k | There is a tree-decomp. of G in which

all bags contain at most k vertices } — 1
Computational interest

= Many NP-hard problems on graphs can be solved in running time
< f(tw(G)) - n®N), (Fixed parameter tractable)

VERTEX COVER MAXCUT STEINER TREE
DOMINATING SET ODD CYCLE TRANSVERSAL

INDEPENDENT SET FEEDBACK VERTEX SET
CHROMATIC NUMBER

HAMILTON CYCLE LONGEST CYCLE
LONGEST PATH

HAMILTON PATH
CONNECTED FEEDBACK VERTEX SET

CYCLE PACKING
CONNECTED DOMINATING SET
CONNECTED VERTEX COVER

. " What Id this look
m [dea: Run a dynamic program on the tree-decomposition of G i for 3-COLOR?
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tw(G) := min{k | There is a tree-decomp. of G in which

all bags contain at most k vertices } — 1
Computational interest

= Many NP-hard problems on graphs can be solved in running time
< f(tw(G)) - n®N), (Fixed parameter tractable)

VERTEX COVER MAXCUT STEINER TREE
DOMINATING SET ODD CYCLE TRANSVERSAL

INDEPENDENT SET FEEDBACK VERTEX SET
CHROMATIC NUMBER

HAMILTON CYCLE LONGEST CYCLE
LONGEST PATH

HAMILTON PATH
CONNECTED FEEDBACK VERTEX SET

CYCLE PACKING
CONNECTED DOMINATING SET
CONNECTED VERTEX COVER

= Idea: Run a dynamic program on the tree-decomposition of G |ike for s-00L RS
® Problem: Finding tw(G) and a tree-decomposition is NP-hard
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tw(G) := min{k | There is a tree-decomp. of G in which

all bags contain at most k vertices } — 1
Computational interest

= Many NP-hard problems on graphs can be solved in running time
< f(tw(G)) - n®N), (Fixed parameter tractable)

VERTEX COVER MAXCUT STEINER TREE
DOMINATING SET ODD CYCLE TRANSVERSAL

INDEPENDENT SET FEEDBACK VERTEX SET
CHROMATIC NUMBER

HAMILTON CYCLE LONGEST CYCLE
LONGEST PATH

HAMILTON PATH
CONNECTED FEEDBACK VERTEX SET

CYCLE PACKING
CONNECTED DOMINATING SET
CONNECTED VERTEX COVER

= Idea: Run a dynamic program on the tree-decomposition of G |ike for s-00L RS
® Problem: Finding tw(G) and a tree-decomposition is NP-hard

= Solution: There is an k - 2°() . p* algorithm for both
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1

Computational interest

= Many NP-hard problems on graphs can be solved in running time
< f(tw(G)) - n®N), (Fixed parameter tractable)

VERTEX COVER MAXCUT STEINER TREE HAMILTON CYCLE LONGEST CYCLE CYCLE PACKING
DOMINATING SET ODD CYCLE TRANSVERSAL LONGEST PATH CONNECTED DOMINATING SET

INDEPENDENT SET FEEDBACK VERTEX SET HAMILTON PATH CONNECTED VERTEX COVER
CHROMATIC NUMBER CONNECTED FEEDBACK VERTEX SET

. " What Id this look
m [dea: Run a dynamic program on the tree-decomposition of G i for 3-COLOR?

® Problem: Finding tw(G) and a tree-decomposition is NP-hard

= Solution: There is an k - 2°() . p* algorithm for both

Courcelle’s theorem (1990)
Let ¢ be an MSO,-formula and G some graph. Then, there is an

f(|e|, tw(G)) - n algorithm for testing whether G satisfies ¢ (for some com-
putable function f)
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1
Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors Hg.
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Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors Hg.

- leanargraphs = {K3, K5,5}
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Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors Hg.

® Hplanar graphs = {K3, K5,5}
® Hgraphs of tw <1 = {Ks3}
® Hyraphs of tw <2 = {Ka}

3 Benedikt Hahn — Graph decompositions Institute for Software Technology -TU Graz



TU

Grazm

Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1
Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors Hg.

® Hplanar graphs = {K3, K5,5}
® Hgraphs of tw <1 = {Ks3}

® Hgraphs of tw <2 = {Ka}

- ‘ngaphs of tw §3‘ =4
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1
Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors Hg.

® Hplanar graphs = {K3, K5,5}
® Hgraphs of tw <1 = {Ks3}
® Hyraphs of tw <2 = {Ka}

- ‘ngaphs of tw §3‘ =
® | Hioroidal graphs| > 17523
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tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1
Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by

a finite set of forbidden minors Hg.
® G has a K,-minor = tw(G) > n — 1. On the other hand, .
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Treewidth

tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1
Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by
a finite set of forbidden minors Hg.
® G has a K,-minor = tw(G) > n — 1. On the other hand, £.

m However, there is a function f(k) = O(k%+°(1)) such that every graph
with treewidth f (k) contains a k x k-grid as a minor.
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tw(G) := min{k | There is a tree-decomp. of G in which
all bags contain at most k vertices } — 1
Structural interest

® Treewidth was a central notion in the 23-paper spanning Graph Minor
program of Robertson and Seymour (1983-2010).

= One main result: Any minor-closed graph family G is characterized by

a finite set of forbidden minors Hg.
® G has a K,-minor = tw(G) > n — 1. On the other hand, .

m However, there is a function f(k) = O(k%+°(1)) such that every graph
with treewidth f (k) contains a k x k-grid as a minor.

m Getting further into modern structural graph theory (of minors), one ar-
rives at brambles, blocks and especially tangles
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m What if the global structure of G is better explained by some graph that
is not a tree?

Graph decompositions
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m What if the global structure of G is better explained by some graph that
is not a tree?

m Let G, H be two graphs and (Gp)nev (1) @ family of subgraphs of G, C G.
The pair (H, (Ghn)rev () is called a H-decomposition of G if

1. G = UheV(H)Gh
2. For any v, the bags containing v form a connected subgraph in H.

Graph decompositions
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The pair (H, (Ghn)rev () is called a H-decomposition of G if
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global structure of G?
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m What if the global structure of G is better explained by some graph that
is not a tree?

m Let G, H be two graphs and (Gp)nev (1) @ family of subgraphs of G, C G.
The pair (H, (Ghn)rev () is called a H-decomposition of G if
1. G = UheV(H)Gh
2. For any v, the bags containing v form a connected subgraph in H.

m Given a graph G, is there a canonical choice of H which witnesses the
global structure of G?

= How global?

Benedikt Hahn — Graph decompositions Institute for Software Technology -TU Graz



4

TU

Grazm

m What if the global structure of G is better explained by some graph that
is not a tree?

m Let G, H be two graphs and (Gp)nev (1) @ family of subgraphs of G, C G.
The pair (H, (Ghn)rev () is called a H-decomposition of G if
1. G = UheV(H)Gh
2. For any v, the bags containing v form a connected subaraph in H.

m Given a graph G, is there a canonical choice of H which witnesses the
global structure of G?

= How global? o

Graph decompositions

Benedikt Hahn — Graph decompositions Institute for Software Technology -TU Graz



4

TU

Grazm

m What if the global structure of G is better explained by some graph that
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m Let G, H be two graphs and (Gp)nev (1) @ family of subgraphs of G, C G.
The pair (H, (Ghn)rev () is called a H-decomposition of G if

1. G = UheV(H)Gh
2. For any v, the bags containing v form a connected subaraph in H.
m Given a graph G, is there a canonical choice of H which witnesses the

Graph decompositions

global structure of G? L
@ How global? -< >-
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m What if the global structure of G is better explained by some graph that
is not a tree?

m Let G, H be two graphs and (Gp)nev (1) @ family of subgraphs of G, C G.
The pair (H, (Ghn)rev () is called a H-decomposition of G if

1. G = UheV(H)Gh
2. For any v, the bags containing v form a connected subaraph in H.
m Given a graph G, is there a canonical choice of H which witnesses the

Graph decompositions

global structure of G? amLy
@ How global? -< >-
= |dea: RS ==
Consider all cycles of length < Jom v za )
r and their “compositions” as '/ / \
| E-EH-EH-E [ |
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Theorem 1. Let G be any finite graph, and r > 0 an integer. Then G has a unique canonical decomposition

modelled on another finite graph H = H(G,r) that displays its r-global structure,
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Theorem 1. Let G be any finite graph, and r > 0 an integer. Then G has a unique canonical decomposition

modelled on another finite graph H = H(G,r) that displays its r-global structure,

Construction idea
® Use the fundamental group 71(G, x0): The group of closed walks from x; up to local

reductions.

7T1(G) = F4
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Canonical graph decompositions via coverings
REINHARD DIESTEL, RAPHAEL W. JACOBS, PAUL KNAPPE, AND JAN KURKOFKA, arxiv 2022

Theorem 1. Let G be any finite graph, and r > 0 an integer. Then G has a unique canonical decomposition

modelled on another finite graph H = H(G,r) that displays its r-global structure,

Construction idea
® Use the fundamental group 71(G, x0): The group of closed walks from x; up to local

reductions.
®let (G, x) < 71(G, x0) be generated by all closed walks of length < r.

7T1(G) = F4
G ﬂ{(G):FQ
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REINHARD DIESTEL, RAPHAEL W. JACOBS, PAUL KNAPPE, AND JAN KURKOFKA, arxiv 2022

Theorem 1. Let G be any finite graph, and r > 0 an integer. Then G has a unique canonical decomposition

modelled on another finite graph H = H(G,r) that displays its r-global structure,

Construction idea

® Use the fundamental group 71(G, x0): The group of closed walks from x; up to local
reductions.

mlet m1(G, x) < 71(G, x0) be generated by all closed walks of length < r.

® Consider the universal covering G. lts isometry group (of Deck transformations) is ex-
actly 7T1(G, Xo).

7T1(G): F4 (N;
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Theorem 1. Let G be any finite graph, and r > 0 an integer. Then G has a unique canonical decomposition

modelled on another finite graph H = H(G,r) that displays its r-global structure,

Construction idea

® Use the fundamental group 71(G, x0): The group of closed walks from x; up to local
reductions.

mlet m1(G, x) < 71(G, x0) be generated by all closed walks of length < r.

® Consider the universal covering G. lts isometry group (of Deck transformations) is ex-
actly 7T1(G, Xo).

® Define the r-local covering G, .= G /7 (G, xo). Let D, be its isometry group.

(Y

7T1(G) — F4
G 7T{(G) = F2
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Theorem 1. Let G be any finite graph, and r > 0 an integer. Then G has a unique canonical decomposition

modelled on another finite graph H = H(G,r) that displays its r-global structure,

Construction idea

® Use the fundamental group 71(G, x0): The group of closed walks from x; up to local
reductions.

®let (G, x) < 71(G, x0) be generated by all closed walks of length < r.

® Consider the universal covering G. lts isometry group (of Deck transformations) is ex-
actly 7T1(G, Xo).

® Define the r-local covering G, .= G /7 (G, xo). Let D, be its isometry group.

® Find a canonical tree decomposition (T,, Vr, ) of G" using the theory of ends and tangles.

Y
"‘0
‘

m1(G) = F4 >4 \
¢ me)=F 2, o" ".‘0 J
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Theorem 1. Let G be any finite graph, and r > 0 an integer. Then G has a unique canonical decomposition

modelled on another finite graph H = H(G,r) that displays its r-global structure,

Construction idea

® Use the fundamental group 71(G, x0): The group of closed walks from x; up to local
reductions.

mlet m1(G, x) < 71(G, x0) be generated by all closed walks of length < r.

® Consider the universal covering G. lts isometry group (of Deck transformations) is ex-
actly 7T1(G, Xo).

® Define the r-local covering G, .= G /7 (G, xo). Let D, be its isometry group.
® Find a canonical tree decomposition (T,, Vr, ) of G" using the theory of ends and tangles.
®wlet H=T,/D, and similarly project the bags back to G.

m(G) = F4 G > 0,"’\ I’ >
G "(G) = F o o
m1(G) 2 p C é v,
. i=<( s (
H % : p ¥ oo’ p ¥ oo’
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mysterious to me.
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® The canonical tree decomposition on the covering space is somewhat
mysterious to me.

® Nice properties of H )
= H respects all symmetries of G.
m For r = |G|, H is a tree.

® Tangles! Tangles

A Structural Approach
to Arfificial Infelligence
in the Empirical Sciences

6 Benedikt Hahn — Graph decompositions Institute for Software Technology -TU Graz



TU

losi h h
Closing thoughts Graze

® The canonical tree decomposition on the covering space is somewhat
mysterious to me.

® Nice properties of H “
= H respects all symmetries of G. s
m For r = |G|, H is a tree.

m Tangles!

® Applications?

6 Benedikt Hahn — Graph decompositions Institute for Software Technology -TU Graz



TU

losi h h
Closing thoughts Graze

® The canonical tree decomposition on the covering space is somewhat
mysterious to me.

® Nice properties of H

REINHARD * * "%

® H respects all symmetries of G.
» Forr= |G|, His atree.
= Tangles! “Tangles

m Applications?

A Structural Approach
to Arfificial Infelligence
in the Empirical Sciences

(b)
1.6. Applications. We think of the decomposition theory advanced in this paper, and in particular of

Theorem 1, not so much as a tool with which to attack existing problems in graph theory, but as a
natural way to view graphs and to analyse their structure from first principles. We do believe that our
decompositions have the potential to interact with other graph invariants, by splitting them into a local
and a global aspect as indicated after the statement of Theorem 1. But how exactly this can happen may
not be straightforward, and may require non-trivial structural analysis. This will be worthwhile if, but also
only if, our new invariant of H(G,r) and the associated decomposition of G are considered as a natural

lens through which graph structure may be viewed. We believe they are.
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