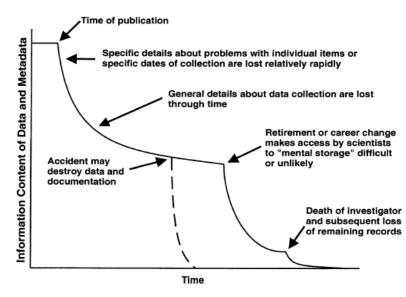


Content


- Introduction
 - o Why is documentation important?
 - o What is metadata?
 - Metadata categories
- Metadata in practice
 - Documentation planning
 - Documentation of research processes
 - Save metadata
 - Automatically captured metadata
 - Metadata extraction
 - Data management software
- Metadata schema and standards

Why is documentation important?

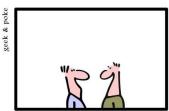
- most of the data is useless without a description
- over time, information is forgotten - documentation enables long-term understanding of data no archiving without metadata
- Overview of versions and different formats is lost
- Documentation is the essential element of good data management and facilitates data exchange
- structured metadata enable **machine processing of** data (search, automation)
- Despite initial extra work, future work is made easier

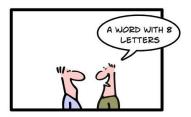
MICHENER, William K., et al. Nongeospatial metadata for the ecological sciences. Ecological Applications, 1997, 7. Jg., Nr. 1, S. 330-342.

What is metadata?

Metadata are

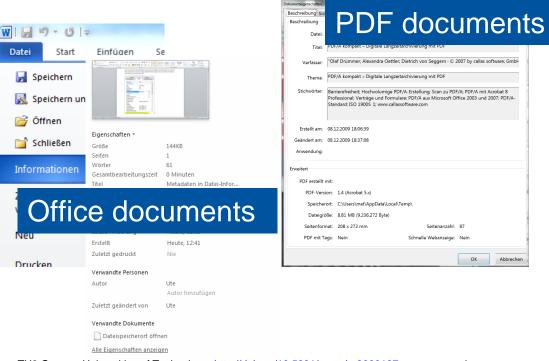
- "Data about data"
- serve the documentation
- contain descriptive information about the context of data

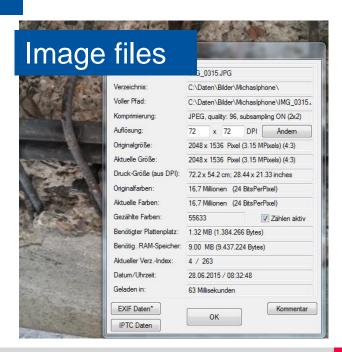

Context is e.g.


- ... Technology used for data generation (hardware/software)
- ...administrative details (project, participants, institution, etc.)
- ...relations to publications, other data, persons, projects etc.

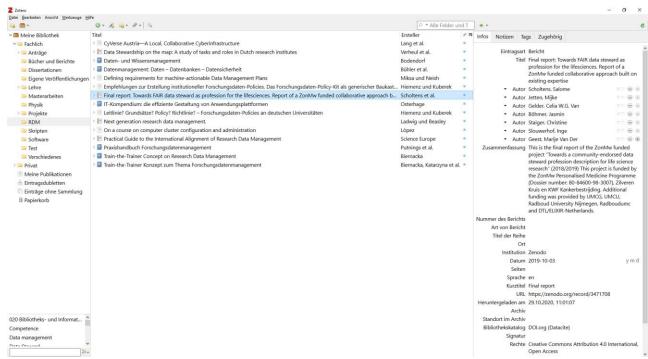
Source: TU9 German Universities of Technology, http://doi.org/10.5281/zenodo.2660187; german version

SIMPLY EXPLAINED:

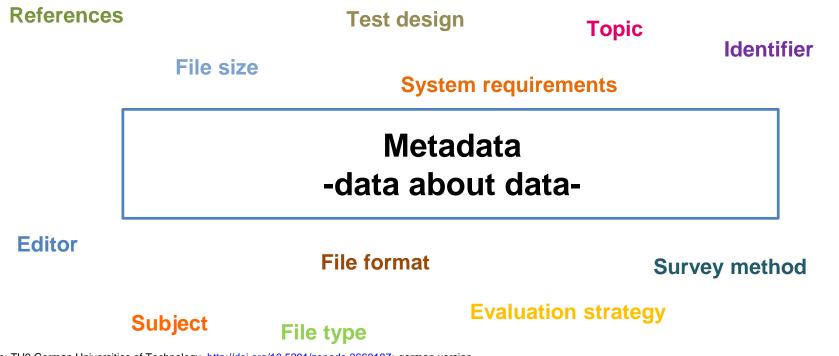



by Geek and Poke, CC-BY-3.0

Examples Metadata in File Information


Abbrechen

Examples of literature management


- EndNote
- Zotero
- Citavi
- Mendeley
- JabRef

Examples of metadata for research data

Metadata categories

Administrative metadata

- Technical specifications and parameters, legal information
- Examples: File format, file size, date and time of creation, licences, access rights.

Structuring metadata

- Structure of the data and linkage with other data
- Examples: Table description, chapters and pages in a book

Descriptive metadata

- Describe the content of the data
- Examples: Description of the experimental set-up, vocabulary (predefined wording).

Documentation planning

- What information do you want to map?
- What standards are there for this?
- Are there regulations in the working group/plojec/institute for the description of data?
- Where do you want to reuse the new least and ? Do you want/need to publish/share the data later? Should it be available to one win the working group?
- What can facilitate documentation?
 - Automation scripts
 - orms for frequently used data sets
 - Metadata tools
 - Databases, interfaces

What do you need to ...

... to find data

- General search criteria: Link to publication, author, year, project
- General search criteria for the research question: variables collected/simulated/observed, controlled variables, boundary conditions and parameters
- Subject-specific search criteria: Parameters of the system under consideration (e.g. force fields in thermodynamics), parameters of the survey method (e.g. temporal and spatial resolution, geographical classification).

... understand data

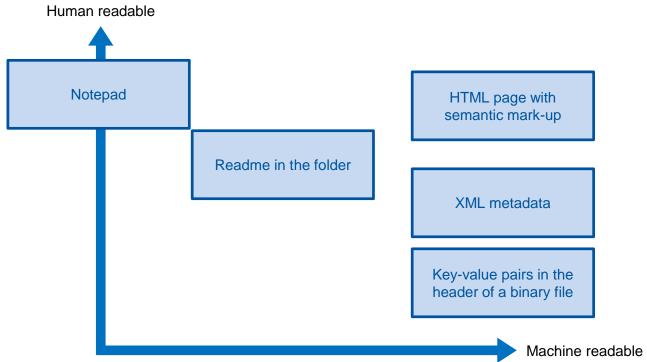
- Mapping the research process: steps, methods, software, hardware, parameters
- Variables collected/observed/simulated
- Controlled variables

Documentation of research processes

A process is a sequence of activities that have a temporal beginning and an end

- Process thinking fits well with the scientific way of working
- Flowcharts serve to visualise processes and are suitable for documenting research processes in a comprehensible way.
- Visualisation supports structured work!
- The simplest representation of a process is the black box as a symbol for "input-processing-output" (EVA principle).
- Modularisation of complex contexts

Structured metadata preferred

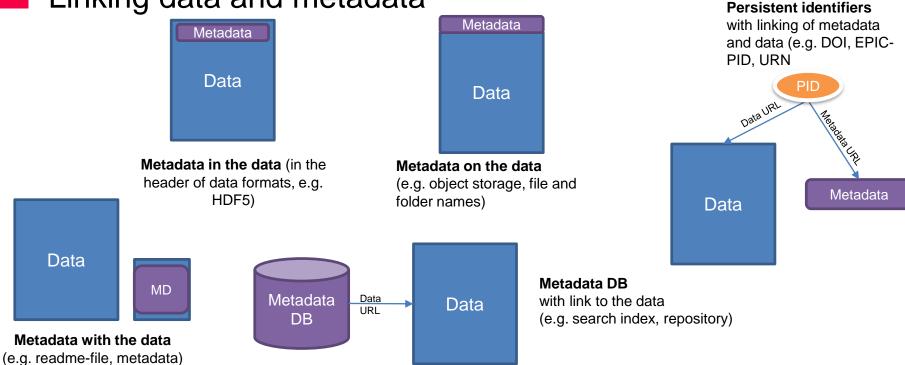

- Both human- and machine-readable
- Supplementary short textual description possible
 - Full text indexing and search possible
 - But: Search results less precise (Remember the usefulness of many Google search results).
 - o In the case of data publication: add a link to the paper or report (description, metadata, use, sources....).
- Metadata schema (e.g. <u>ICAD</u>)
 - Use a standard or offer a mapping

Unstructured	Structured			
"The experiment was conducted in Dresden on 12 th May 2016"	"Date: 20160512; Place: Dresden"			
Easy to read for humans, but difficult to process by machine	Can be read by both humans and machines.			

Structuring metadata

Save metadata

- Within the file (there are standards for many file formats)
- In a README file or other text file, table, XML file...
- Database
- Data management system (e.g. <u>ICAT</u>, <u>MASI-Metadata Management for Applied Sciences</u>)...


Challenges

- Scalability with growing data volume
- Linking data and metadata (using links and PIDs)

Linking data and metadata

Table documentation

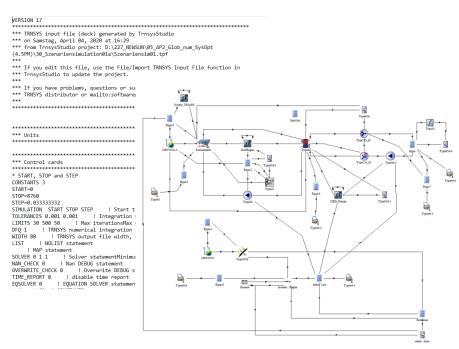
Recommendation: Information in file itself (e.g. first spreadsheet)

Metadata	Description			
Description of table/worksheets	What is the purpose of the table/ worksheets?			
Worksheets name	Listing of the names of the worksheets.			
Column heading	Each column of a table must have a name.			
Column description	Description and listing of format specifications, abbreviations, codes, value lists, input conventions, specialized vocabularies, characters for empty cells or measurement units used in the respective column.			
Number of columns/rows/worksheets	How many columns/rows/sheets does the table/spreadsheet contain?			
Relations/Formulas/Macros	What relations/formulas/macros exist in the spreadsheet			

Automatically captured metadata - Measurements

- In some cases, devices/software record relevant metadata.
 - Camera automatically writes metadata to the generated image file
 - Measuring instruments write metadata in the header to the measurement data
 - Units generate separate configuration files/ metadata files in addition to the measurement data
- In some cases, metadata collection can be configured in the unit software.
- In some cases, the export of metadata must be deliberately initiated.
- Electronic lab books (e.g. eLabFTW, https://www.elabftw.net/; or https://elabftw.vice.cyverse.tugraz.at/login.php)

1	A	1	В	C	D	E	F		G	
1	~Vers	ion In	formation							
2	VERS. C WLS log ASCII Standard - VERSION 2.00									
3	~Well	Infor	mation Blo	ck						
4	#MNE	M.UNI	IT D	Description	n					
5	#									
6	STRT.M			217.7796: Starting Depth						
7	STOP.M			1267.0536: Ending Depth						
8	NULL.			-999.2500: Absent Value						
9	COMP	. RV	VTH	: Compan	y					
10	WELL.	RW	/TH 1	: Well						
11	FLD .	Aacl	hen	: Field						
12	DATE.	02-	Nov-2005	: Log Date						
13	~Curv	e Info	rmation Blo	ck						
14	#MNEM.UNI es		Curve Desc	ription						
15	#					-				
16	DEPT	.M	01:00	Depth						
17	GR	.GAPI	01:00	Gamma Ra	y counts					
18	BIT	.IN	01:00	Bit size						
19	CAL	.IN	01:00	Caliper						
20	ANI	.%	01:00	Anisotropy						
21	ANIA	.%	01:00	Average an	isotropy					
22	AZSH	.deg	01:00	Corrected 1	Tool Azimut	h				
23	DAZ	.DEG	01:00	Borehole D	Borehole Drift Azimuth (with respect to Magnetic North)					
24	DEV	.DEG	01:00	Deviation	Deviation Angle (with respect to vertical)					
25	DTSF	.US/	01:00	Fast Shear						
26	DTSS	.US/	01:00	Slow Shear	r					
27	FACR	.deg	01:00	Fast Shear	Azimuth					
28	SACR	.deg	01:00	Slow Shear	r Azimuth					
29	S1IS	.%		QC Curve						
	S1S2	.%		QC Curve						
	S2IS	.%		QC Curve						
32	# Cur	ve Dat	ta							
33	~A DE		T	CAL AN		AZSH			TSF	DTSS
34	217.77			0 -999.2500						
35	217.93			0 -999.2500						
36	218.08			0 -999.2500						
	218 23		250	n -999 2500 anisotro	999 2500	-999 2500	-999 2500	-999 250	-999	2500 -


Example: Metadata in the header to the data log of an acoustic borehole logging probe

Automatically captured metadata - Simulation

- In part, simulation programmes output metadata
 - Date and time
 - Start, stop and step size of the simulation
 - Convergence tolerances
- In automatic variant studies (e.g. with Excel), parameters and designations are also written down
- Choose names of output files and column labels sensibly
- UNITS!
- Electronic lab books (e.g. eLabFTW, https://www.elabftw.net/; or https://elabftw.vice.cyverse.tugraz.at/login.php)

Example: Metadata in the header of the input file for a TRNSYS simulation (www.trnsys.com)

Metadata extraction

Automatic extraction of metadata - no more manual work!

Supports the collection of metadata for uniform data sets!

Collect metadata in your own working environment!

- Where is the metadata hidden?
- Can they be extracted automatically? With a script?
- Extraction for literature management programmes (e.g. Zotero)
- Cyverse also extracts metadata

Metadata extraction software - example: Apache Tika

- Based on Java → Windows, Linux, Mac
- Extracts from many file types
- Output of metadata in different formats
- Graphical user interface and command line tool or server

PROGRAMME DIGITAL TU GRAZ - FIELD OF ACTION RESEARCH

Data management software

Stores both metadata and data

Required functions

- Search function (find data via metadata)
- Support for metadata extraction, creation, editing
- Integration into the user environment (e.g. browser-based)
- Interfaces for accessing the data to be integrated into the analysis environment (e.g. POSIX, http, REST-API)

Attention: Prevent dependence on software - Can data/metadata be exported from the system?

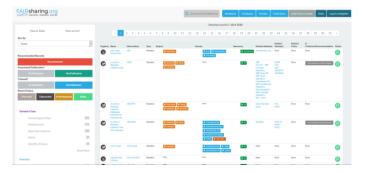
Examples: <u>ICAT</u>, <u>MASI</u>, <u>KIT Datamanager</u>

Metadata schema and standards

- Metadata schema
 - Defines the structure and content of the metadata fields
- Metadata standards
 - o are standardised metadata formats
 - ensure comparability
 - facilitate the exchange of metadata (interoperability)
 - o enable machine readability
- Quasi-standards
 - No official standard adopted by a standards body (such as ISO or W3C)
 - o but widespread and accepted

Example metadata schema DataCite

- http://schema.datacite.org/
- Metadata scheme for publication and citation of research data
- Includes metadata core elements and recommendations for use
- used for DOI registration
- Metadata generator: https://dhvlab.gwi.uni-muenchen.de/datacite-generator/
- Used at invenioRDM (institutional repository at TU Graz)



Search for metadata standards

https://rd-alliance.github.io/metadata-directory/

https://fairsharing.org/

Advantages and disadvantages of standards

Advantages

- Clearly defined meaning of fields
- Partially controlled vocabularies
- Machine readability
- Easy interchangeability

Disadvantages

- Low flexibility
- Sometimes high complexity

Further information

Interactive online course on metadata

https://mantra.edina.ac.uk/documentation_metadata_citation/

 Train-the-trainer concept on research data management version 3.1, unit 8: documentation and metadata (page 88); good summary with further literature

https://doi.org/10.5281/zenodo.4322849

- Videos (2 8 min):
 - https://www.youtube.com/watch?v=4HJENeUY4Uc
 - https://www.youtube.com/watch?v=JDueeDrQdLU
 - https://www.youtube.com/watch?v=y7Xullpa6gk

