AQUA URBANICA 2021

Schwammstadt – Versickerung 2.0?

Validierung eines Starkregenüberflutungsmodells anhand von Beobachtungsdaten

Jonas Neumann

Agenda

- 1. Kurzvorstellung Projekt SENSARE
- 2. Validierung Starkregenüberflutungsmodell
 - Modellansatz
 - Validierungsdaten
 - Methodik
 - Ergebnisse
- 3. Ausblick

Kurzvorstellung des Projekts SENSARE (1)

SENSARE -

Sensorbasierte Stadtgebietsanalyse für Starkregengefährdungen zur Warnung und Resilienzverbesserung der Verkehrsinfrastruktur

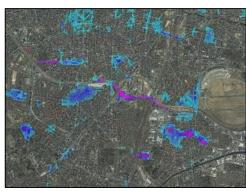
• **Förderung**: BMVI – mFUND (Modernitätsfonds)

Laufzeit: 10/2018 – 12/2021

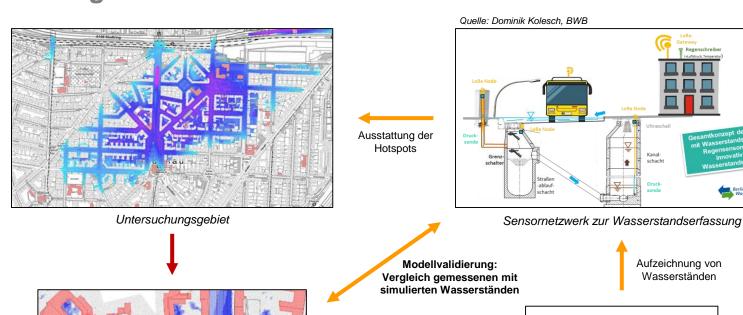
Standort: Berlin

Verbundpartner

Gefördert durch:


Kurzvorstellung des Projekts SENSARE (2)

Auswahl von 2


Starkregen-Hotspots

Ziel: Verbesserte Handlungsfähigkeit aller Verkehrsteilnehmer bei Überflutungsereignissen infolge von Starkregen im urbanen Raum

Voruntersuchung: Identifizierung von überflutungsgefährdeten Senkenlagen in Berlin

Aufbau eines Oberflächenabflusssimulationsmodells. zur Simulation von Wasserständen / Gefahrenkarten

Modellinput

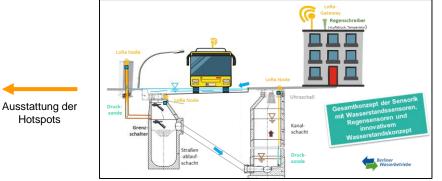
Aufzeichnung von

Wasserständen

Ereignisfall Starkregen: Validierungsereignis

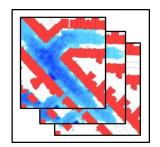
Kurzvorstellung des Projekts SENSARE (3)

Ziel: Verbesserte Handlungsfähigkeit aller Verkehrsteilnehmer bei Überflutungsereignissen infolge von Starkregen im urbanen Raum



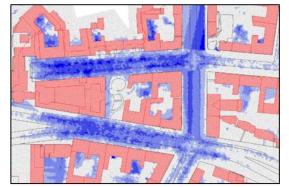
Voruntersuchung: Identifizierung von überflutungsgefährdeten Senkenlagen in Berlin

Untersuchungsgebiet



Quelle: Dominik Kolesch. BWB

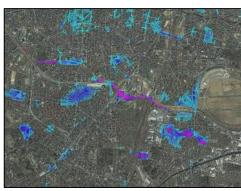
Hotspots


Modellinput

Sensornetzwerk zur Wasserstandserfassung

Szenarienkatalog mit Starkregengefahrenkarten infolge verschiedener Starkregenlastfällen

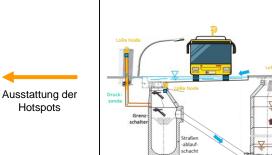
Validiertes Oberflächenabflusssimulationsmodells. zur Simulation von Gefahrenkarten



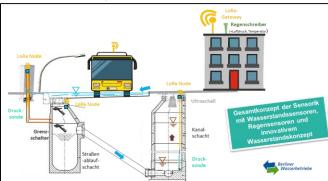
Kostra-Daten: Starkregenlastfälle

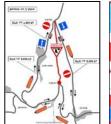
Kurzvorstellung des Projekts SENSARE (4)

Ziel: Verbesserte Handlungsfähigkeit aller Verkehrsteilnehmer bei Überflutungsereignissen infolge von Starkregen im urbanen Raum



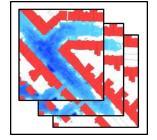
Voruntersuchung: Identifizierung von überflutungsgefährdeten Senkenlagen in Berlin

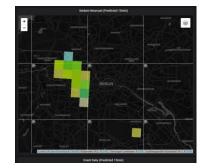

Untersuchungsgebiet


Hotspots

Auswahl

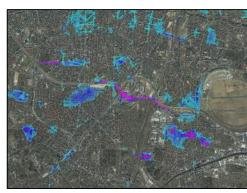
Quelle: Dominik Kolesch. BWB


Sensornetzwerk zur Wasserstandserfassung


Quelle: www.za.ch

Anzeige der Überflutungskarte auf web-basierter Plattform, Warnung BOS, Verkehrslenkung

Szenarienkatalog mit Starkregengefahrenkarten verschiedener Starkregenlastfällen



Ereignisfall Starkregen: Nowcasting Radardaten

Kurzvorstellung des Projekts SENSARE (5)

Ziel: Verbesserte Handlungsfähigkeit aller Verkehrsteilnehmer bei Überflutungsereignissen infolge von Starkregen im urbanen Raum

Voruntersuchung: Identifizierung von überflutungsgefährdeten Senkenlagen in Berlin

1: Auswahl der Hotspots

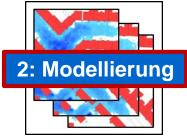
Hotspots

Ausstattung der

Sensornetzwerk zur Wasserstandserfassung

Untersuchungsgebiet

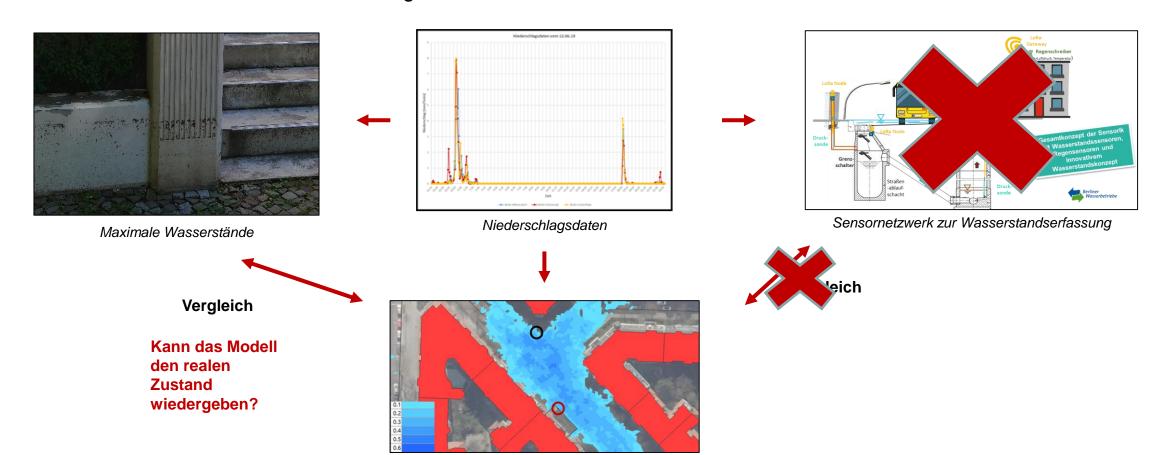
4: Validierung


Auswahl

Anzeige der Überflutungskarte auf web-basierter Plattform, Warnung BOS, Verkehrslenkung

Überflutungskarte

Szenarienkatalog mit Starkregengefahrenkarten verschiedener Starkregenlastfällen


Ereignisfall Starkregen: Nowcasting Radardaten

Validierung des Starkregenüberflutungsmodells

Überblick – Datengrundlage und Validierungsprozess

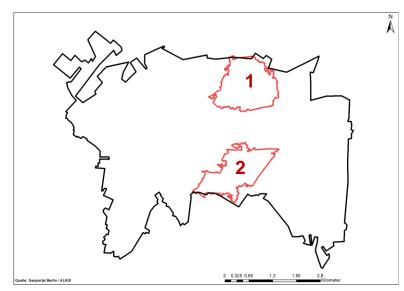
- Bilddaten mit maximalen Wasserständen von Starkregenereignis am 11. & 12.06.2019
- Noch keine sensorbasierten Validierungsdaten vorhanden

Simulationsergebnisse – maximale Wasserstände

Modellansatz (1)

1D/2D-Oberflächenabflussmodell

Für zwei Überflutungs-Hotspots wurde ein detailliertes bi-direktional gekoppeltes 1D/2D-Oberflächenabflussmodell aufgebaut


- Die Oberflächeneinzugsgebiete (1,9 km² und 1,7 km²) der Überflutungs-Hotspots wurden 2D modelliert
- Das Kanalnetzeinzugsgebiet (~ 30 km²) wurde
 1D modelliert
- Beide Hotspots befinden sich im selben Kanalnetz

 → gemeinsames Modell
- InfoWorks ICM (Version 11.0), Innovyze®
- Getrennte Erfassung und Modellierung von

Gebäudeflächen (Dächer)

Straßenflächen

Hofflächen

Oberflächeneinzugsgebiete der Starkregenüberflutungs-Hotspots 1 und 2 (rot umrandet), Kanaleinzugsgebiet (schwarz umrandet)

Modellansatz (2)

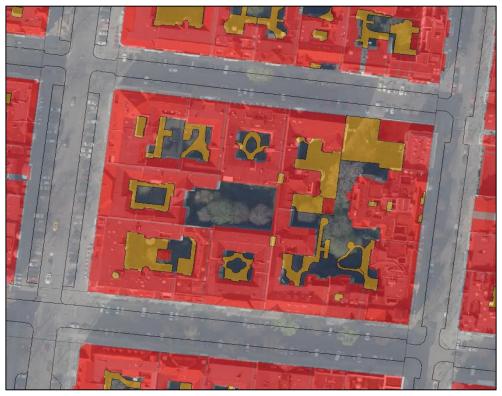
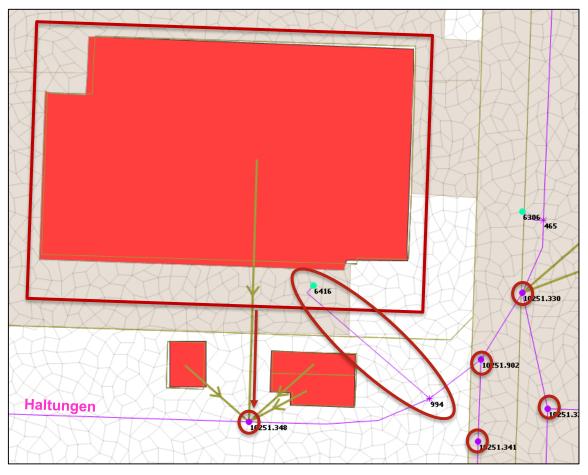


Abbildung der befestigten Flächen

Straßenflächen

Gebäudeflächen (Dächer)

Hofflächen



Darstellung der Gebäudeflächen (rot), der Hofflächen (orange), der Straßenflächen (hellgrau) und der Bruchkanten (schwarz); als Hintergrundlayer ist das zugehörige Orthophoto dargestellt

Modellansatz (3)

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Kopplung zwischen Kanal und Oberfläche

Ausschnitt aus gekoppelten Simulationsmodell

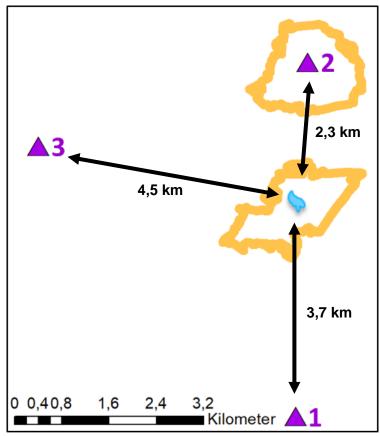
- Abfluss von Dachflächen direkt an Schacht angeschlossen → 1D
- Straßenabläufe (türkis) über Anschlussleitung an Haltungen angeschlossen
- Kopplungspunkte:
 - Straßenabläufe
 - Schächte

Validierungsdaten (1)

Beobachtungsdaten vom Starkregenereignis am 11. & 12.06.2019

Maximaler Wasserstand während Starkregenereignis vom 11. und 12.06.2019; ableitbar aus Blütenrückständen auf der Oberfläche (jeweils durch Pfeil markiert) (Fotos: Gunther Pahl, Berliner Wasserbetriebe)

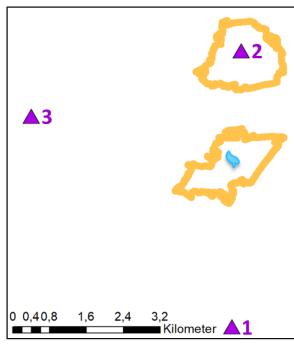
Zugesetzter Straßenablauf (Quelle: BWB)



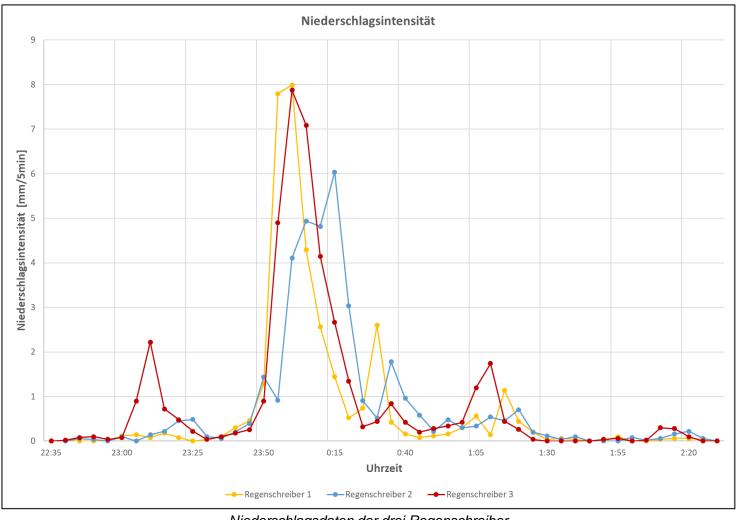
Einmessung der maximalen Wasserstände (Quelle: BWB)

Validierungsdaten (2)

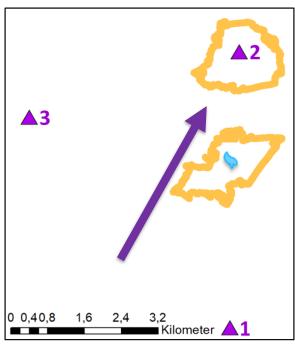
Niederschlagsdaten vom Starkregenereignis am 11. & 12.06.2019



Standorte der Regenschreiber 1 bis 3 (violette Dreiecke), Überflutungsbereich (blau), sowie die Abgrenzung der 1D/2D modellierten Überflutungs-Hotspots.

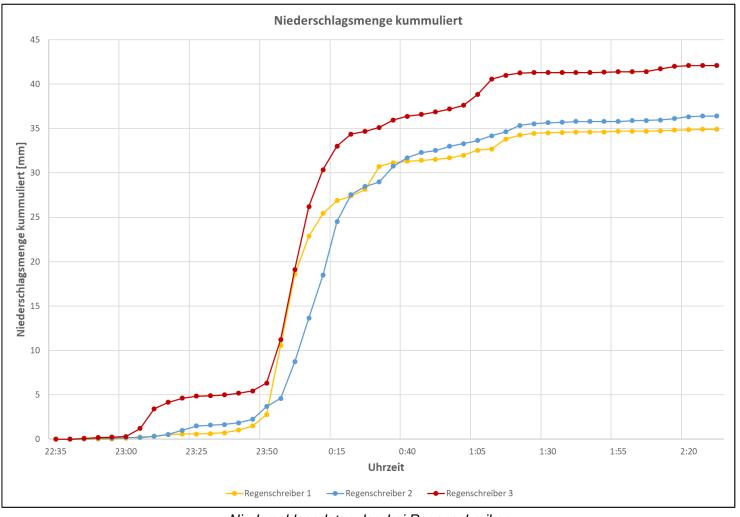

- Niederschlagsbelastung während des Starkregenereignisses bekannt:
 - angeeichte Radarniederschlagsdaten (5-Minuten)
 - Niederschlagszeitreihen von drei Regenschreibern vorhanden (5-Minuten)
- Entfernung der Regenschreiber zum Überflutungsbereich:
 - 1: ~ 3,7 km
 - 2: ~ 2,3 km
 - 3: ~ 4,5 km

Methodik (1)

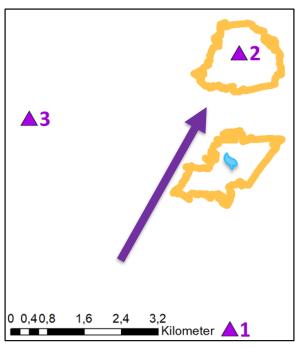

Standorte der Regenschreiber 1 bis 3 (violette Dreiecke), Überflutungsbereich (blau), sowie die Abgrenzung der 1D/2D modellierten Überflutungs-Hotspots.

Niederschlagsdaten der drei Regenschreiber

Methodik (2)

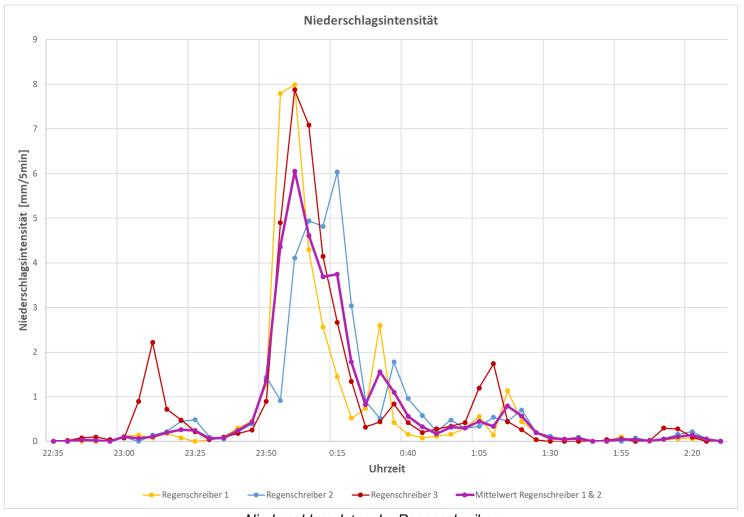


Standorte der Regenschreiber 1 bis 3 (violette Dreiecke), Überflutungsbereich (blau), sowie die Abgrenzung der 1D/2D modellierten Überflutungs-Hotspots.

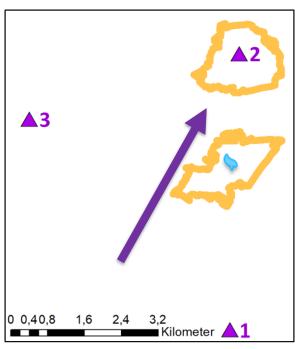

Zugrichtung des Regenereignisses

Niederschlagsdaten der drei Regenschreiber

Methodik (3)

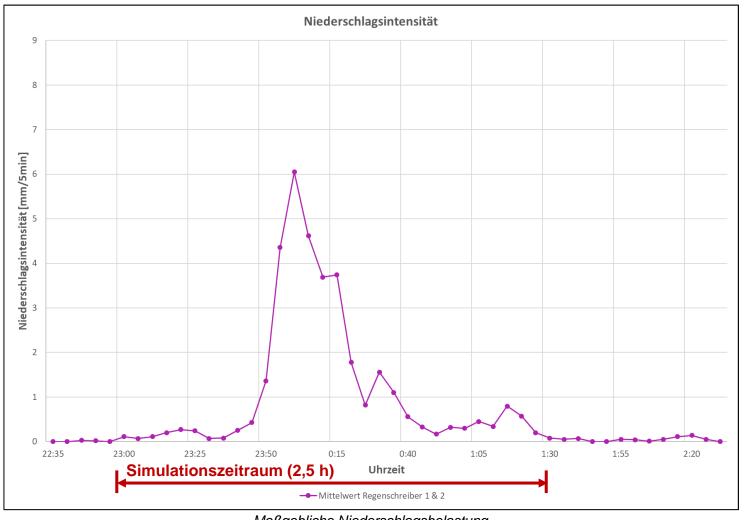


Standorte der Regenschreiber 1 bis 3 (violette Dreiecke), Überflutungsbereich (blau), sowie die Abgrenzung der 1D/2D modellierten Überflutungs-Hotspots.


Zugrichtung des Regenereignisses

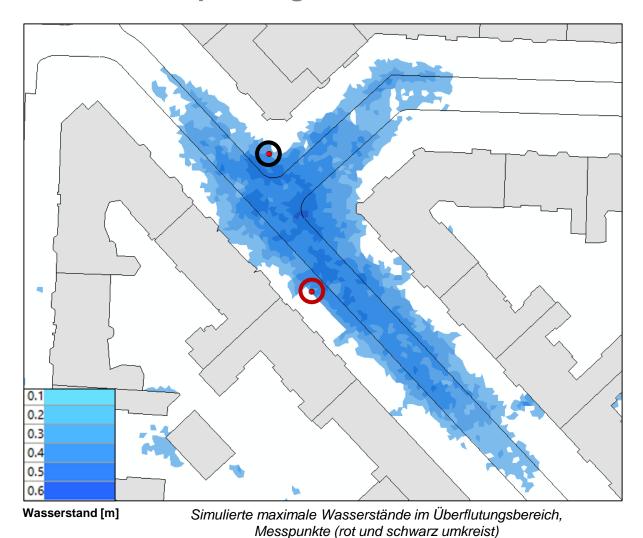
Niederschlagsdaten der Regenschreiber

Methodik (4)



Standorte der Regenschreiber 1 bis 3 (violette Dreiecke), Überflutungsbereich (blau), sowie die Abgrenzung der 1D/2D modellierten Überflutungs-Hotspots.

Zugrichtung des Regenereignisses



Maßgebliche Niederschlagsbelastung

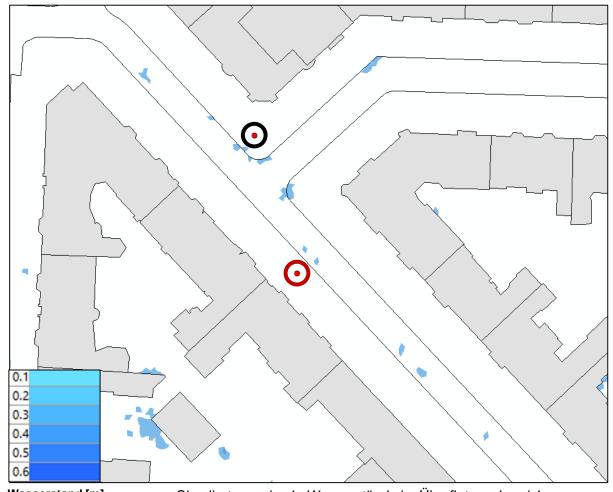
Ergebnis (1)

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Simulationsinput: Regenschreiberdaten

Maximale Wasserstände im Überflutungsbereich

Gegenüberstellung gemessene und simulierte Wasserstände


Wasserstand	gemessen	simuliert	Abweichung
rote Markierung	0,36 m	0,29 m	21,1 %
schwarze Markierung	0,31 m	0,27 m	11,7 %

 Das Modell kann den realen Zustand zufriedenstellend wiedergeben

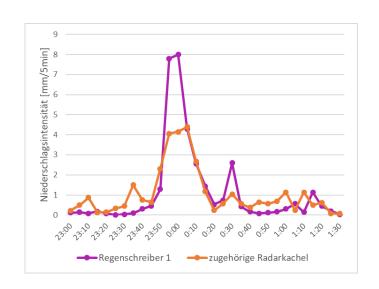
Ergebnis (2)

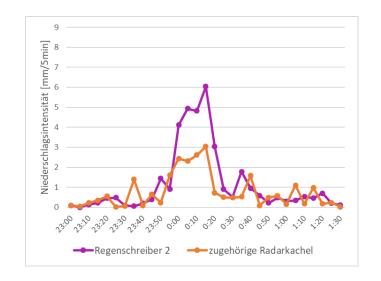
TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

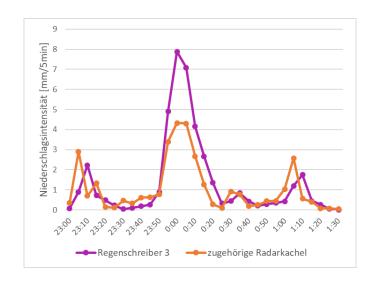
Simulationsinput: Radarniederschlagsdaten

Wasserstand [m]

Simulierte maximale Wasserstände im Überflutungsbereich, Messpunkte (rot und schwarz umkreist)


Maximale Wasserstände im Überflutungsbereich


 Bei der Simulation mit Radardaten wird keine nennenswerte Überflutung simuliert

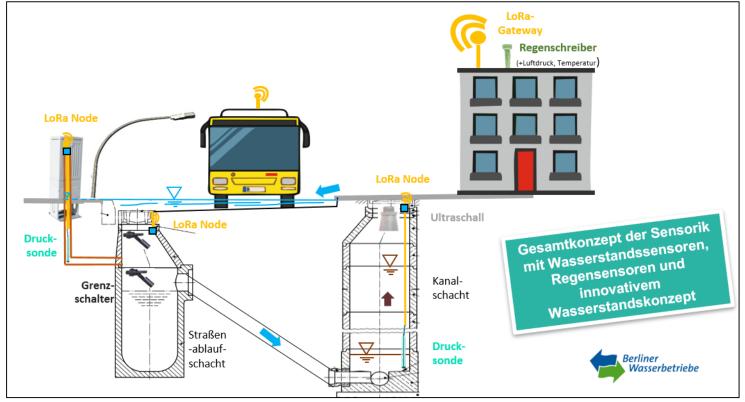

Ergebnis (3)

Vergleich der Radardaten mit den Regenschreiberdaten

- In den Radardaten werden die Intensitätsspitzen des Regenereignisses nicht erfasst
- Niederschlagsspitze in den Radardaten beträgt nur etwa 50 % der Intensität der Regenschreiber

Fazit

Validierung Starkregenüberflutungsmodell


- Regenschreiberdaten als Simulationsinput: Zufriedenstellende Übereinstimmung zwischen simulierten und gemessenen Wasserständen
- Leichte Unterschätzung maximaler Wasserstände, Abweichungen im cm Bereich
- Radarniederschlagsdaten als Simulationsinput: Keine nennenswerte Überflutungen, da Intensitätsspitzen des Regenereignisses nicht erfasst werden
- Für den besonderen Fall dieses Regenereignisses sind die Radardaten zur Modellvalidierung ungeeignet

Ausblick (1)

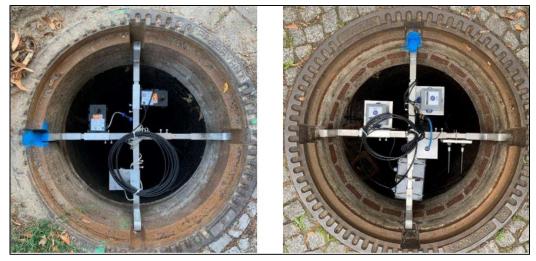
Modellvalidierung mit Sensordaten

- Erfassung von Überflutungsereignisse mit dem Sensornetzwerk
- Ziel: Vergleich sensorbasierter Messreihen mit Simulationsergebnissen für die Validierung

Sensornetzwerk zur Wasserstandserfassung (Quelle: Dominik Kolesch)

Ausblick (2)

Sensorik zur Wasserstanderfassung


Installation der Wasserstandssensoren im Kanalschacht. Links: Kontaktloser Sensor (hier: Radar) auf justierbarer Edelstahlplatte; Rechts: Druck-Sensor mit Vierkant-Schutzrohr aus Edelstahl (Quelle: Dominik Kolesch, BWB)

Nähere Informationen:

https://sensare.infralab.berlin/

Messtelle zur Erfassung des Wasserstands auf der Straßenoberfläche im Bau (links, mitte) und im Endzustand (Quelle: Dominik Kolesch, BWB)

Sensorinstallationen in den Kanalschächten. Links: Haltkreuz mit Ultraschall-Sensor und LoRaWAN-Sendeeinheiten; Rechts: Haltekreuz mit Radar-Sensor und Sendeeinheiten (Quelle: Dominik Kolesch, BWB)

Vielen Dank für ihre Aufmerksamkeit!

Kontakt:

- Jonas Neumann¹⁾: jonas.neumann@bauing.uni-kl.de
- Christian Scheid¹⁾: christian.scheid@bauing.uni-kl.de
- Ulrich Dittmer¹⁾: <u>ulrich.dittmer@bauing.uni-kl.de</u>
 - ¹)Technische Universität Kaiserslautern, Fachgebiet Siedlungswasserwirtschaft, Paul-Ehrlich-Str. 14, 67663 Kaiserslautern
- Dominik Kolesch²: <u>dominik.kolesch@bwb.de</u>
 - ²⁾Berliner Wasserbetriebe AöR, Neue Jüdenstraße 1, 10179 Berlin

Ergebnis (4)

Simulationsinput: Regenschreiberdaten

Vergleich der Abweichungen zwischen gemessenen und simulierten maximal Wasserständen bei unterschiedlichen Kombinationen der Regenschreiberndaten, MW = Mittelwert

		Abweichung					
Wasser stand	gemessen	MW R1 & 2	R1	R2	R3	MW R1,2,3	
rote Markierung	0,36 m	21,1 %	24,4 %	17,5 %	-5,0 %	11,1 %	
schwarze Markierung	0,31 m	11,7 %	15,6 %	7,5 %	-18,9 %	0 %	