

Der RessourcenPlan -

ein Instrument zur ressourceneffizienten wasserwirtschaftlichen Quartiersentwicklung

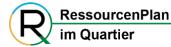
Aqua Urbanica Innsbruck 2021, 13.09.2021

Birgitta Hörnschemeyer

FH Münster Institut für Infrastruktur-Wasser-Ressourcen-Umwelt (IWARU)

Sowie

Andreas Matzinger, Wolfgang Seis, Stefanie Maßmann, Jonas Kleckers, Jens Haberkamp, Anne Söfker-Rieniets, Mathias Uhl


GEFÖRDERT VOM

Eine Initiative des Bundesministeriums für Bildung und Forschung

RessourcenPlan - Ziel

ein der Praxis verpflichteter Planungsansatz

zur sukzessiven Entwicklung

eines nachhaltigen, effizienten Ressourceneinsatzes

in unterschiedlichen Quartierstypologien

Praxisbezug:

verständlich und anwendungsorientiert

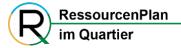
Integration:

weitgehend verbindlich in kommunale Verwaltungsstrukturen

Daueraufgabe:

Ressourcenschutz wird zur kommunalen Daueraufgabe

Inter-/ Transdisziplinarität:

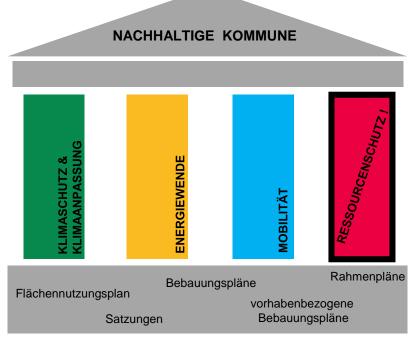

frühzeitige und integrative Zusammenarbeit aller Fachbereiche

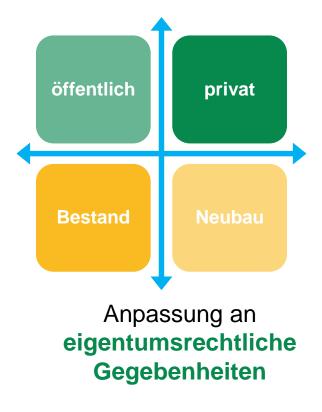
Zukunftsfähigkeit:

fortschreibbar und übertragbar

Kommunikationsmittel:

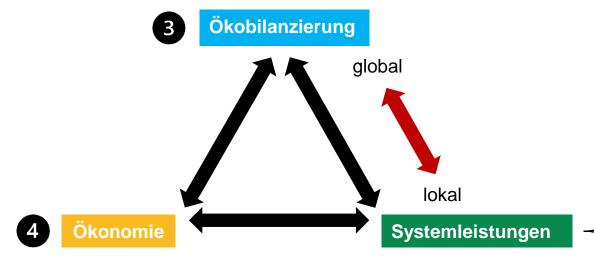
Transparenz für Adressaten: verwaltungsintern, Bürger, Investoren

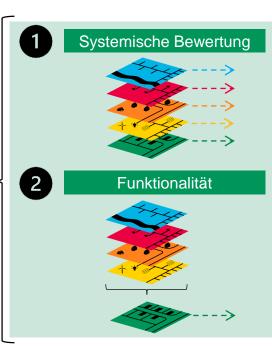



RessourcenPlan - Konzeption

Der RessourcenPlan behandelt die **Ressourcen** Wasser (Niederschlags- und Schmutzwasser), Baustoffe, Energie und Fläche.

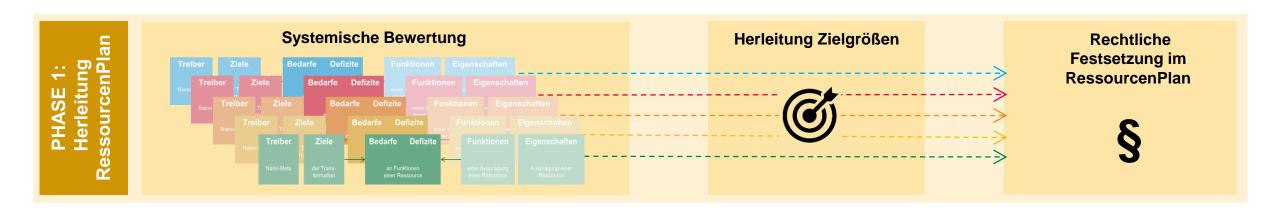
Interkommunale Umsetzung mit verschiedenen (bereits bestehenden) rechtlichen Instrumenten





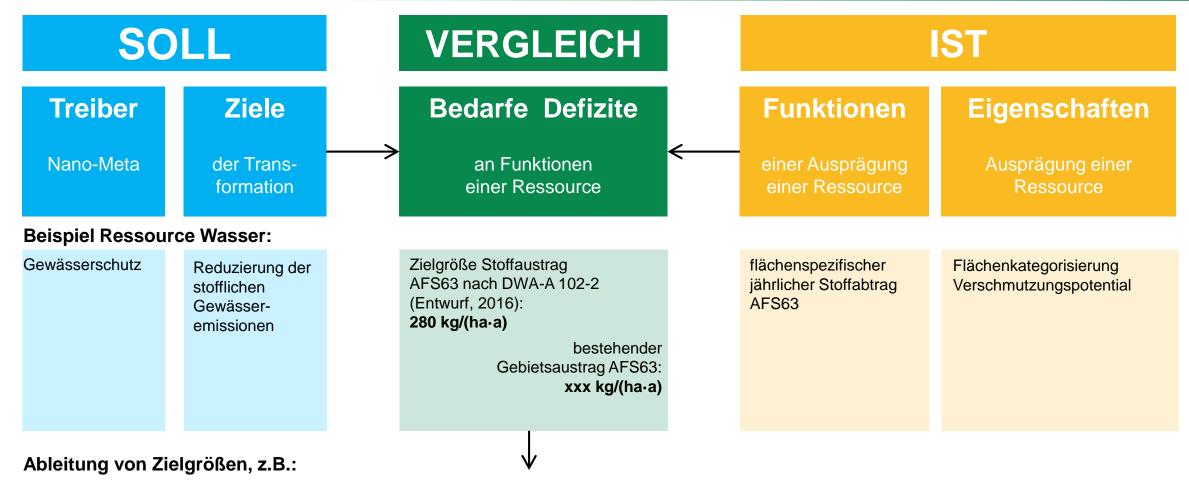
Wie wird der RessourcenPlan aufgestellt und umgesetzt?

Bewertungsansatz

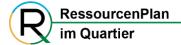


Das Ziel ist ein Quartier mit

- gutem ökologischen Zustand
- resiliente Systemwirkung
- hoher Lebensqualität
- geringer Umweltbelastung entlang der Lieferkette
- betriebs- & volkwirtschaftlicherEffizienz
- transparente Betrachtung der Kosten



Vorgehen Bewertung



Vorgehen Bewertung

erforderliche AFS63-Reduktion (in kg/a) erforderliche Abkopplung der aktuell angeschlossenen Fläche (in %) Minderung angeschlossene versiegelte Fläche (in ha)

Indikatoren – Ressource Wasser

Gewässeremissionen

- Erhalt d. lokalen Wasserhaushalts
- Schmutzfracht (AFS₆₃)

Überflutung

- Überflutungsgefahr
- Schadenspotential
- Überflutungsrisiko

DWA-M 119

Gewässerimmissionen

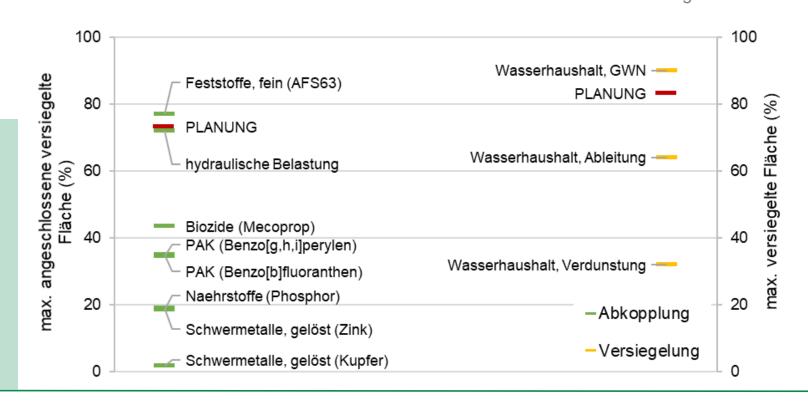
- Hydr. Belastung
- Schmutzfracht
- Nährstoffe
- Schwermetalle
- Biozide
- PAK

DWA-A 102-3 (Entwurf)

- Orientierung an praxisrelevanten **Nachweisen**
- Individuell erweiterbar

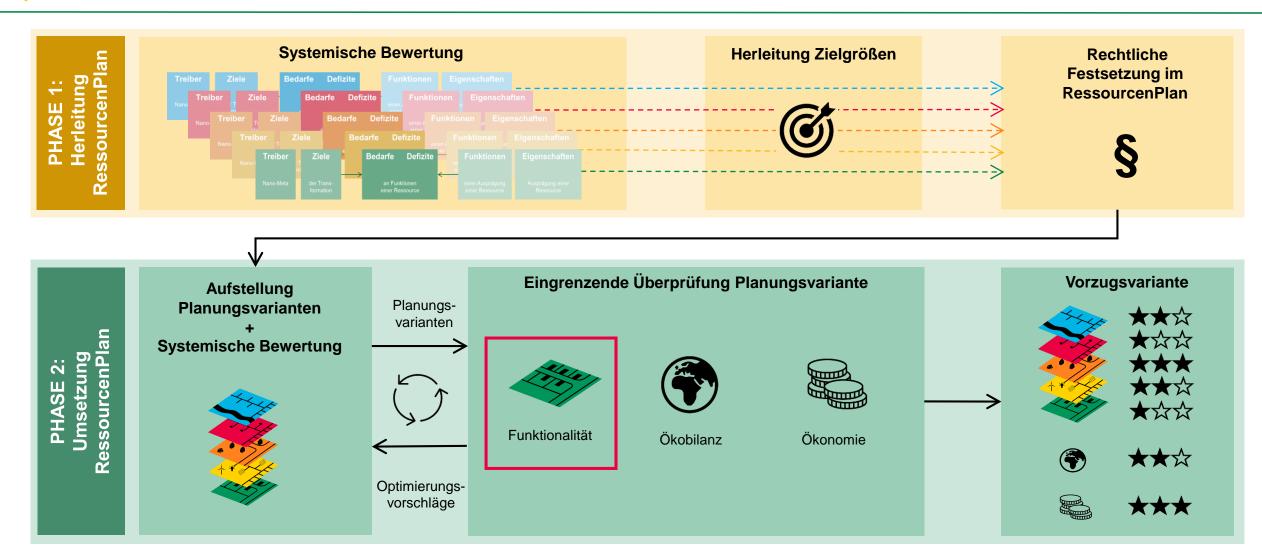
Zielgrößen

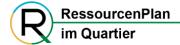
Direkte Zielgrößen

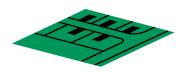

- Wirkungsgrad Behandlungsanlage
- Erforderliche Schadstoffreduktion
- Bindung/ Empfehlung von RWB-Maßnahmen
- Verbot von Maßnahmen
- ...

- → einfache Erfolgskontrolle
- kommunal individuell anpassbar und rechtlich einbindbar

Indirekte Zielgrößen


- Versiegelungsgrad
- Abkopplung
- ...


Unten: Zielgrößen "Abkopplung" und "Versiegelung" als Anteil der aktuell angeschlossenen, versiegelten Fläche, bzw. der aktuell versiegelten Fläche


Vorgehen Bewertung

und Forschung

Bewertung Funktionalität

Ressourceneffizienz durch "Nutzenstiftung"

→ Je höher der Nutzen einer Fläche, desto höher ist ihre Ressourceneffizienz.

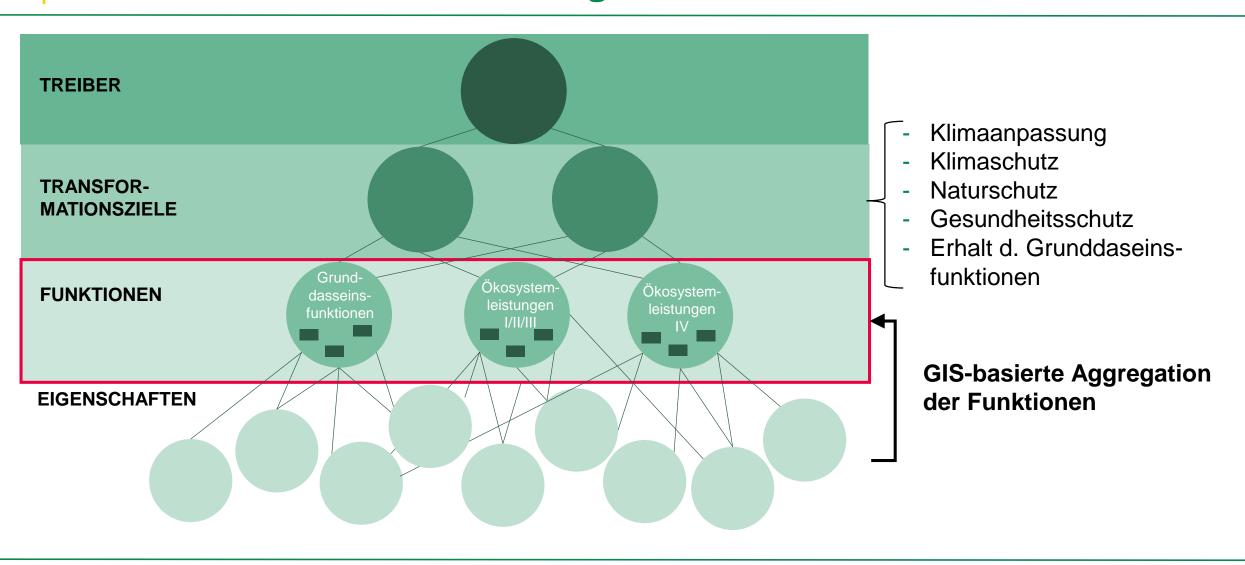
Primärfunktion: Stellplatz für PKW

Regenwasserrückhalt, Versickerung, Sekundärfunktion:

Biodiversität, Co2-Speicherung...

5 Punkte

0 Punkte

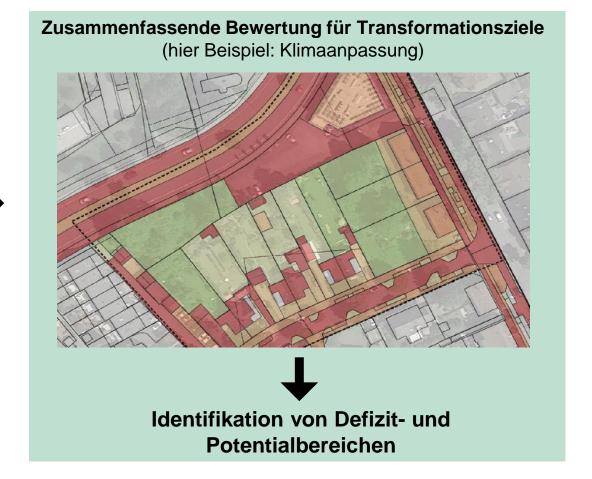

20 Punkte

5 Punkte

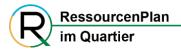
5 Punkte 25 Punkte

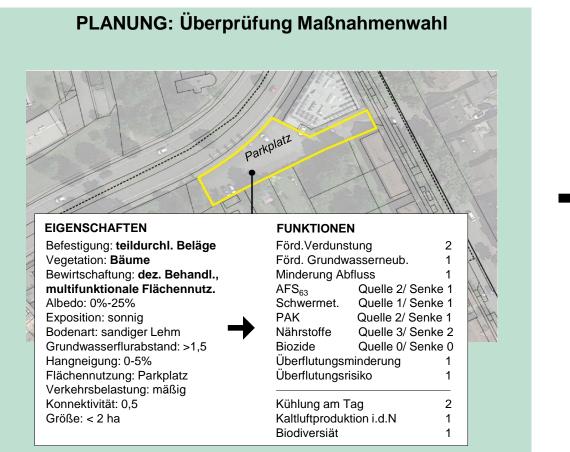
Bewertung Funktionalität

Funktionen – Ressource Wasser


Wasserwirtschftliches Transformationsziel	Funktion
Wasserhaushalt	Verdunstung
	Grundwasserneubildung
	Abfluss
Minderung Gewässerbelastung	Quelle AFS ₆₃
	Quelle Schwermetalle
	Quelle PAK
	Quelle Biozide
	Quelle Nährstoffe
	Senke Schadstoffe
Überflutungsvorsorge	Überflutungsminderung
	Überflutungsrisiko

- Entwicklung einerFlächenkategorisierung
- Automatisierte Bewertung der wasserwirtschaftlichen
 Funktionen
- Manuelles Eingreifen möglich
 - → Verortung Maßnahmen & deren Wirkungsgrad
 - → Integration weitergehender Datensätze


Anwendung Bewertung Funktionalität



- kein Wirkpotential
- 1 geringes Wirkpotential(Gilt sowohl für positive Funktionen (z.B.
- 2 mittleres Wirkpotential Kühlung am Tag) als auch für negative
- 3 hohes Wirkpotential Funktionen (z.B. Quelle Schwermetalle).)

Anwendung Bewertung Funktionalität

- geringes Wirkpotential(Gilt sowohl für positive Funktionen (z.B.
- 2 mittleres Wirkpotential Kühlung am Tag) als auch für negative
- 3 hohes Wirkpotential Funktionen (z.B. Quelle Schwermetalle).)

Zusammenfassende Bewertung für Transformationsziele (hier Beispiel: Klimaanpassung)

Vergleich verschiedener Varianten, auch interdisziplinär

- Energieerzeugung
- Nährstoffrückgewinnung
 - Baustoffrecycling

. . . .

Legende Funktionen:

Zusammenfassung & Ausblick

Kommunale Planungsprozesse

von Ressourcen

transparente
Argumentationshilfe
für Kommunen zur
Durchsetzung
ressourceneffizienter
Entscheidung

Praxisrelevante
Zielgrößen bieten
Orientierung für
Vorplanung +
Projektentwicklung

Wasserwirtschaft

Flächenscharfe Identifikation von Defiziten

Entscheidungsfindung im interdisziplinären Kontext

adaptiv erweiterbar

Ausblick

Validierung

Monetarisierung

Feedback durch die Kommunen

Vielen Dank für Ihre Aufmerksamkeit!

Birgitta Hörnschemeyer

FH Münster Institut für Infrastruktur-Wasser-Ressourcen-Umwelt (IWARU)

Mail b.hoernschemeyer@fh-muenster.de

+49 251 83 65590 Telefon

www.fh-muenster.de/r2q

Jung Stadtkonzepte

