

Quasi-One-Dimensional Flow Analysis

Günter Brenn

ISW

Institute of Fluid Mechanics and Heat Transfer Graz University of Technology

Seminar for the Graz Center of Computational Engineering (GCCE)

June 29, 2022

ISW 2

Cases of application – flow in slender geometries

Flow in slender geometries (boundary layers, pipe flows, liquid jets in a gas, thin films) may be conveniently analysed as quasi-one-dimensional

Boundary layers

3

Three case studies

We look at three cases, using two different methods

1. Boundary-layer flow (near-wall external flow)

2. Flow through slender ducts (blood vessels, pipes, tunnels)

3. Free liquid jets (drop and spray formation, ink-jet printing)

Plane boundary layer – problem statement in 2D

Flow is governed by the 2D equations of motion in boundary-layer form We assume steady state, large Froude number, incompressible Newtonian fluid Formulation in Cartesian coordinates

Mass balance

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Boundary conditions

= constant

 $y = 0: \ u = v = 0$ $y \to \infty: u = U(x), p + \frac{\rho U^2(x)}{2}$

Balance of linear momentum in boundary-layer form

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) \equiv \rho\left(\frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y}\right) = -\frac{dp}{dx} + \mu\frac{\partial^2 u}{\partial y^2}$$
$$0 \approx -\frac{\partial p}{\partial y}$$

IISW

5

Boundary layer – quasi-one-dimensional mass balance

Quasi-one-dimensional form of mass balance is obtained by integration over the boundary-layer thickness. For thin films this is called "depth averaging". U(x)

Mass balance

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \qquad \qquad \int_{y=0}^{\delta(x)} dy$$
$$\int_{y=0}^{\delta(x)} \frac{\partial u}{\partial x} dy + \int_{y=0}^{\delta(x)} \frac{\partial v}{\partial y} dy = 0$$

ISW 6

Boundary layer – quasi-one-dimensional mass balance

For further developing the quasi-one-dimensional form of the mass balance

$$\int_{y=0}^{\delta(x)} \frac{\partial u}{\partial x} dy + \int_{y=0}^{\delta(x)} \frac{\partial v}{\partial y} dy = 0$$

it is the intention to exchange integration and differentiation $\partial/\partial x$ to achieve a statement about spatial change of a volume flux in the flow direction. For this we apply the Leibniz rule for derivatives of definite integrals:

$$\frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} F(x,y) \, dy = \int_{y=0}^{\delta(x)} \frac{\partial F(x,y)}{\partial x} \, dy + \frac{d\delta(x)}{dx} F(x,\delta(x)) - \frac{d0}{dx} F(x,0)$$

Boundary layer – quasi-one-dimensional mass balance

Applying the Leibniz rule turns the quasi-one-dimensional mass balance into

$$\frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} u dy - u \Big|_{y=\delta(x)} \frac{d\delta(x)}{dx} + v \Big|_{y=\delta(x)} = 0$$

This means that

$$-u\Big|_{y=\delta(x)}\frac{d\delta(x)}{dx}+v\Big|_{y=\delta(x)}=-\frac{\partial}{\partial x}\int_{y=0}^{\delta(x)}udy$$

8

Bound lay – quasi-one-dimensional x momentum balance

Quasi-one-dimensional form of x momentum balance is obtained by integration over the boundary-layer thickness

Balance of linear x momentum in boundary-layer form

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) \equiv \rho\left(\frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y}\right) = -\frac{dp}{dx} + \mu\frac{\partial^2 u}{\partial y^2}$$

$$\rho \int_{y=0}^{\delta(x)} \frac{\partial uu}{\partial x} dy + \rho \int_{y=0}^{\delta(x)} \frac{\partial uv}{\partial y} dy = -\int_{y=0}^{\delta(x)} \frac{dp}{dx} dy + \mu \int_{y=0}^{\delta(x)} \frac{\partial^2 u}{\partial y^2} dy$$

u(x,y)

X

U(x)

 $\delta(\mathbf{x})$

IISW 9

Bound lay – quasi-one-dimensional x momentum balance

Since the flow outside the boundary layer is potential, i.e. irrotational, i.e. inviscid, Bernoulli's equation states that

$$p + \rho \frac{U^2(x)}{2} = \text{constant}; \text{ therefore } -\frac{dp}{dx} = \rho U \frac{dU}{dx}$$

$$\rho \frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} uudy - \rho uu \Big|_{y=\delta(x)} \frac{d\delta(x)}{dx} + \rho uv \Big|_{y=\delta(x)} = \rho \int_{y=0}^{\delta(x)} U \frac{dU}{dx} dy - \mu \frac{\partial u}{\partial y} \Big|_{y=0}$$

Using the mass balance, we obtain furthermore

$$\rho \frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} u u dy - \rho \underbrace{u \Big|_{\substack{y=\delta(x)\\ \equiv U(x)}}}_{\equiv U(x)} \frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} u dy = \rho \int_{y=0}^{\delta(x)} U \frac{dU}{dx} dy - \tau_w$$

IISW 10

Bound lay – quasi-one-dimensional x momentum balance

This equation ...

$$\rho \frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} uudy - \rho \underbrace{u}_{y=\delta(x)} \frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} udy = \rho \int_{y=0}^{\delta(x)} U \frac{dU}{dx} dy - \tau_w$$

... we further develop into

$$\rho \frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} uudy - \rho \frac{\partial}{\partial x} \int_{y=0}^{\delta(x)} uUdy + \rho \frac{dU}{dx} \int_{y=0}^{\delta(x)} udy = \rho \int_{y=0}^{\delta(x)} U \frac{dU}{dx} dy - \tau_w$$

11**SW**

Bound lay – quasi-one-dimensional x momentum balance

In the formulation

$$\frac{\partial}{\partial x}(U^2\delta_2) + U\frac{dU}{dx}\delta_1 = \frac{\tau_w}{\rho}$$

... this is called the integral momentum balance of the boundary layer. Displacement and momentum loss thicknesses, δ_1 and δ_2 , usually defined with integration to ∞ .

Frequently used for flow analysis with the *Pohlhausen method*: Represent the velocity profile u/U(x) by a polynomial, defining $\tilde{\eta} = y/\delta(x)$ Polynomial must satisfy boundary conditions. Example: boundary-layer flow along a flat plate, $\rightarrow U(x) = U_{\infty} = \text{constant}$

$$\frac{u}{U}(\tilde{\eta}) = 2\tilde{\eta} - \tilde{\eta}^2 \qquad \delta_2(x) = \frac{2}{15}\delta(x) \quad \frac{\tau_w}{\rho} = 2\frac{\nu U_\infty}{\delta(x)} \quad \Longrightarrow \quad \left[\frac{\partial}{\partial x} \left(U_\infty^2 \delta(x) \frac{2}{15}\right) = 2\frac{\nu U_\infty}{\delta(x)}\right]$$

1**SW** 12

Bound lay – quasi-one-dimensional x momentum balance

This yields the boundary-layer thickness

$$\delta(x) = \sqrt{30} \sqrt{\nu x/U_{\infty}} \approx 5.477 \sqrt{\nu x/U_{\infty}}$$

... which compares favorably to the exact Blasius solution based on self-similarity of the flow, which reads

 $\delta(x) = 5\sqrt{\nu x/U_{\infty}}$

..., but with the agreement that $y = \delta(x)$ where $u/U_{\infty} = 0.99$.

Taking u/U_{∞} closer to unity ($u/U_{\infty} = 0.996$) yields from the Blasius solution

 $\delta(x) = 5.4 \sqrt{\nu x/U_{\infty}}$ little deviation, good agreement

Flow through a slender duct – problem statement in 3D

We assume axissymmetry, no swirl, large Froude number Pipe wall may be flexible Formulation in cylindrical coordinates (r, ϕ, z)

Mass balance

Institute of Fluid Mechanics and Heat Transfer

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r u_r) + \frac{\partial}{\partial z} (\rho u_z) = 0$$

Balance of linear z momentum

$$\frac{\partial}{\partial t}(\rho u_z) + \frac{1}{r}\frac{\partial}{\partial r}(\rho r u_r u_z) + \frac{\partial}{\partial z}(\rho u_z u_z) = -\frac{\partial p}{\partial z} + \frac{1}{r}\frac{\partial}{\partial r}(r\tau_{rz}) + \frac{\partial \tau_{zz}}{\partial z}$$

(balances of r and ϕ momentum become trivial)

Kinematic boundary condition

This problem is solved subject to boundary conditions.

Kinematic boundary condition emerges from material duct surface

$$F(t,r,z) = r - r_s(t,z)$$

The material surface implies that

$$\frac{\partial F}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}F\right) = 0$$

so that at the surface we have

$$-\frac{\partial r_s}{\partial t} + \left[u_r \frac{\partial F}{\partial r} + u_z \frac{\partial F}{\partial z} \right] \Big|_{r=r_s} = -\frac{\partial r_s}{\partial t} + \left[u_r - u_z \frac{\partial r_s}{\partial z} \right] \Big|_{r=r_s} = 0$$

For rigid pipe walls, this is replaced by the no-slip condition

Figure: Zhao et al. Thin-walled structures (2021)

15 -

Duct flow – quasi-one-dimensional mass balance

Quasi-one-dimensional form of mass balance is obtained by integration over the duct cross section

where we intentionally leave the factors 2π and the density ρ for the moment, although they are constants that may drop out

Figure: Zhao et al. Thin-walled structures (2021)

IISW

16

Duct flow – quasi-one-dimensional mass balance

It is the intention to exchange integration and differentiation, where appropriate. For this apply the Leibniz rule for deriving definite integrals.

$$\frac{\partial}{\partial z} \int_{r=0}^{r_s(t,z)} F(z,r) dr = \int_{r=0}^{r_s(t,z)} \frac{\partial F(z,r)}{\partial z} dr + \frac{\partial r_s(t,z)}{\partial z} F(z,r_s(z)) - \frac{\partial 0}{\partial z} F(z,0)$$

Applying this rule, we obtain the following form of the mass balance

$$2\pi \frac{\partial}{\partial t} \int_{r=0}^{r_s(t,z)} \rho r dr - 2\pi \rho r_s \frac{\partial r_s(t,z)}{\partial t} + 2\pi \rho r_s u_r \Big|_{r=r_s(t,z)} + 2\pi \frac{\partial}{\partial z} \int_{r=0}^{r_s(t,z)} \rho u_z r dr - 2\pi \rho r_s \frac{\partial r_s(t,z)}{\partial z} u_z \Big|_{r=r_s(t,z)} = 0$$

The three terms without "integral" are the left-hand side of the kinematic boundary condition, times $2\pi\rho r_s$, so that they cancel from the equation.

Quasi-one-dimensional flow analysis

 $2r_s(t,z)$

17

Duct flow – quasi-one-dimensional mass balance

Applying this boundary condition, the following terms are left from the integrated mass balance.

$$2\pi \frac{\partial}{\partial t} \int_{r=0}^{r_s(t,z)} \rho r dr + 2\pi \frac{\partial}{\partial z} \int_{r=0}^{r_s(t,z)} \rho u_z r dr = 0$$

They may be further developed into

Quasi-one-dimensional mass balance for the flow of a compressible fluid through a flexible duct, mass flux $\rho \bar{u}_z$

The equation states that a change of liquid mass flow rate $\rho \bar{u}_z A$ with the *z* coordinate along the duct, in case of an incompressible fluid, is possible only if the duct cross section can vary in time (e.g., elastic walls)

¹⁸ Duct flow – quasi-one-dimensional z momentum balance

Quasi-one-dimensional form of z momentum balance is obtained by integration over the jet cross section

We keep the factor 2π , although it is a constant that eventually drops out

IISW

19

Duct flow – quasi-one-dimensional z momentum balance

Again, applying the Leibniz rule, we exchange differentiation and integration to obtain

$$2\pi \frac{\partial}{\partial t} \int_{r=0}^{r_s(t,z)} \rho u_z r dr - 2\pi \rho u_z \Big|_{r=r_s} r_s \frac{\partial r_s}{\partial t} + 2\pi \rho r_s \left(u_r u_z \right) \Big|_{r=r_s} - 0 + 2\pi \frac{\partial}{\partial z} \int_{r=0}^{r_s(t,z)} \left(\rho u_z u_z \right) r dr - 2\pi \rho r_s \left(u_z u_z \right) \Big|_{r=r_s} \frac{\partial r_s}{\partial z} = -2\pi \frac{\partial}{\partial z} \int_{r=0}^{r_s(t,z)} p r dr + 2\pi r_s p \Big|_{r=r_s} \frac{\partial r_s}{\partial z} + 2\pi r_s \tau_{rz} \Big|_{r=r_s} + 2\pi \frac{\partial}{\partial z} \int_{r=0}^{r_s(t,z)} \tau_{zz} r dr - 2\pi r_s \tau_{zz} \Big|_{r=r_s} \frac{\partial r_s}{\partial z}$$

The three terms on the left-hand side without "integral" cancel because of the kinematic boundary condition (but also due to the no-slip condition at the wall).

Quasi-one-dimensional flow analysis

Duct flow – quasi-one-dimensional z momentum balance

We develop this equation further into

$$\frac{\partial \rho \bar{u}_z A}{\partial t} + \frac{\partial \rho \bar{u}_z^2 A}{\partial z} = -\frac{\partial \bar{p} A}{\partial z} + \frac{\partial \bar{\tau}_{zz} A}{\partial z} - 2\pi r_s \left[\left(-p \Big|_{r=r_s} + \tau_{zz} \Big|_{r=r_s} \right) \frac{\partial r_s}{\partial z} - \tau_{rz} \Big|_{r=r_s} \right]$$

Since $\tau_{zz} = 0$ at the wall, the right-hand side simplifies to the form

$$\frac{\partial \rho \bar{u}_z A}{\partial t} + \frac{\partial \rho \bar{u}_z^2 A}{\partial z} = -\frac{\partial \bar{p} A}{\partial z} + \frac{\partial \bar{\tau}_{zz} A}{\partial z} + 2\pi r_s p \Big|_{r=r_s} \frac{\partial r_s}{\partial z} + 2\pi r_s \tau_{rz} \Big|_{r=r_s}$$

Model for viscous stresses: Newtonian

 \rightarrow Relationship between stress and rate of deformation

$$\bar{\tau}_{zz} = 2\mu \frac{\partial \bar{u}_z}{\partial z}$$
 $\tau_{rz}\Big|_{r=r_s} \equiv \tau_w = \frac{\lambda(Re, k_s/r_s)}{8}\rho \bar{u}_z^2$

Assuming the cross section $\pi r_s^2(z)$ to be known, a system of two quasi-onedimensional equations for the unknowns $\bar{u}_z(z,t)$ and $\bar{p}(z,t)$ results

 $2r_s(t,z)$

7

Special case of quasi-one-dimensional duct flow

The quasi-one-dimensional equations Continuity equation

 $\frac{\partial \rho A}{\partial t} + \frac{\partial \rho \bar{u}_z A}{\partial z} = 0 \qquad \text{and} \qquad$

Balance of the z momentum

$$\frac{\partial \rho \bar{u}_z A}{\partial t} + \frac{\partial \rho \bar{u}_z^2 A}{\partial z} = -\frac{\partial \bar{p} A}{\partial z} + \frac{\partial \bar{\tau}_{zz} A}{\partial z} + 2\pi r_s p \Big|_{r=r_s} \frac{\partial r_s}{\partial z} + 2\pi r_s \tau_{rz} \Big|_{r=r_s}$$

Two equations in the two unknowns $\bar{p}(z,t)$ and $\bar{u}_z(z,t)$, i.e. pressure and cross-sectional mean of the z velocity.

For variable r_s due to wall elasticity, additional material law needed

For steady, incompressible flow through a cylindrical duct (pipe), eqs. reduce to

$$\frac{\partial \bar{u}_z}{\partial z} = 0 \text{ and } \left[0 = -\frac{\partial \bar{p}}{\partial z} + \frac{2}{r_s} \tau_{rz} \right|_{r=r_s} \text{, the latter better known as } \left[\tau_{rz} \right|_{r=r_s} \equiv \tau_w = \frac{\partial \bar{p} r_s}{\partial z 2}$$

Liquid jet in vacuum – problem statement in 3D

Flow is governed by the equations of motion We assume axissymmetry, no swirl, large Froude number Formulation in cylindrical coordinates (r, ϕ, z) , surface shape $r_s(t, z)$

Mass balance

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r u_r) + \frac{\partial}{\partial z} (\rho u_z) = 0$$

Balance of linear r momentum

$$\rho\left(\frac{\partial u_r}{\partial t} + u_r\frac{\partial u_r}{\partial r} + u_z\frac{\partial u_r}{\partial z}\right) = -\frac{\partial p}{\partial r} + \frac{1}{r}\frac{\partial}{\partial r}(r\tau_{rr}) - \frac{\tau_{\phi\phi}}{r} + \frac{\partial\tau_{rz}}{\partial z}$$

Balance of linear z momentum

$$\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + u_z \frac{\partial u_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} (r \tau_{rz}) + \frac{\partial \tau_{zz}}{\partial z}$$

Rutland & Jameson JFM 1971

IISW Boundary conditions for the jet – kinematic

Kinematic boundary condition emerges from material jet surface

$$F(t,r,z) = r - r_s(t,z)$$

23

The material surface implies that

$$\frac{\partial F}{\partial t} + \left(\vec{v} \cdot \vec{\nabla} F \right) = 0$$

so that at the surface we have

$$-\frac{\partial r_s}{\partial t} + \left[u_r \frac{\partial F}{\partial r} + u_z \frac{\partial F}{\partial z} \right] \Big|_{r=r_s} = -\frac{\partial r_s}{\partial t} + \left[u_r - u_z \frac{\partial r_s}{\partial z} \right] \Big|_{r=r_s} = 0$$

Boundary conditions for the jet – dynamic

Dynamic boundary conditions for the jet surface

- No shear stress on the jet surface, since the jet moves in a vacuum $(\tau \cdot \vec{n}) \times \vec{n} = \vec{0}$ This reduces to $\tau_{rz} \left[1 \left(\frac{\partial r_s}{\partial z}\right)^2 \right] = (\tau_{zz} \tau_{rr}) \frac{\partial r_s}{\partial z}$ at $r = r_s$
- Normal stress on the jet surface "inside" differs from "outside" by capillary stress; stress outside neglected (vacuum)

$$-p + (\tau \cdot \vec{n}) \cdot \vec{n} + \sigma \left(\vec{\nabla} \cdot \vec{n} \right) = 0 \text{ This becomes } -p + \frac{\tau_{rr} - 2\tau_{rz} \partial r_s / \partial z + \tau_{zz} (\partial r_s / \partial z)^2}{1 + (\partial r_s / \partial z)^2} + \sigma \left(\vec{\nabla} \cdot \vec{n} \right) = 0$$

(viscous stress tensor τ , outward pointing normal-unit vector \vec{n} , at $r = r_s$ pressure p, surface tension σ , surface curvature $(\vec{\nabla} \cdot \vec{n})$)

where
$$(\vec{\nabla} \cdot \vec{n}) = \frac{1}{r_s} \frac{1}{\sqrt{1 + (\partial r_s / \partial z)^2}} - \frac{\partial^2 r_s / \partial z^2}{\sqrt{1 + (\partial r_s / \partial z)^2}}$$
, since $\vec{n} = \frac{1}{|\vec{\nabla}F|} \vec{\nabla}F$ with F from slide 23

24

25

Expansion in power series for radial coordinate

<u>Idea</u>: Jet is slender, dimensions in radial direction much smaller than in axial direction. Therefore expand velocities and pressure in a power series with respect to the radial coordinate.

For symmetry reasons we set

Quasi-one-dimensional flow analysis

$$u_z(t,r,z) = u_0(t,z) + u_2(t,z) r^2 + \cdots$$

From continuity equation it follows that

$$u_r(t,r,z) = -\frac{1}{2} \frac{\partial u_0(t,z)}{\partial z} r - \frac{1}{4} \frac{\partial u_2(t,z)}{\partial z} r^3 - \cdots$$

Furthermore

$$p(t,r,z) = p_0(t,z) + p_2(t,z) r^2 + \cdots$$

Eggers & Dupont, 1994

Graz

Quasi-one-dimensional equations

Introducing expansions into r momentum equation, the equation is identically satisfied at lowest order in r.

Introduce expansions into z momentum equation and boundary conditions, z momentum balance becomes at lowest order in r

$$\rho \left(\frac{\partial u_0}{\partial t} + u_0 \frac{\partial u_0}{\partial z} \right) = -\frac{\partial p_0}{\partial z} + \mu \left(4u_2 + \frac{\partial^2 u_0}{\partial z^2} \right) \quad (*)$$

Boundary condition for normal stress becomes at lowest order in r (since $\partial r_s / \partial z$ is O(r))

$$-p_0 - \mu \frac{\partial u_0}{\partial z} + \sigma \left(\vec{\nabla} \cdot \vec{n} \right) = 0$$

and boundary condition for shear stress becomes at lowest order in r

$$-\frac{\partial u_0}{\partial z}\frac{\partial r_s}{\partial z} + 2u_2r_s - \frac{1}{2}\frac{\partial^2 u_0}{\partial z^2}r_s - 2\frac{\partial u_0}{\partial z}\frac{\partial r_s}{\partial z} = 0$$

Eggers & Dupont, 1994

IISW

27

Quasi-one-dimensional equation

Eliminate p_0 and u_2 from z momentum balance (*) by boundary conditions to obtain

$$\rho r_s^2 \left(\frac{\partial u_0}{\partial t} + u_0 \frac{\partial u_0}{\partial z} \right) = 3\mu \frac{\partial}{\partial z} \left(\frac{\partial u_0}{\partial z} r_s^2 \right) - \sigma r_s^2 \frac{\partial}{\partial z} \left(\vec{\nabla} \cdot \vec{n} \right)$$

The jet surface curvature was given on slide 24 as

$$\left(\vec{\nabla}\cdot\vec{n}\right) = \frac{1}{r_s} \frac{1}{\sqrt{1 + (\partial r_s/\partial z)^2}} - \frac{\partial^2 r_s/\partial z^2}{\sqrt{1 + (\partial r_s/\partial z)^2}}$$

Furthermore, the kinematic boundary condition reads to lowest order in \boldsymbol{r}

$$\frac{\partial r_s}{\partial t} + u_0 \frac{\partial r_s}{\partial z} + \frac{1}{2} \frac{\partial u_0}{\partial z} r_s = 0$$

These are two equations in the two unknowns $u_0(z,t)$ and $r_s(z,t)$

ISW

28

Perturbation approach for stability analysis

Quasi-one-dimensional equations re-written using a perturbation formulation of r_s and u_0 , assuming temporal instability as per, e.g.,

 $r_s(z,t) = r_{s0}(1 + \epsilon A_0 e^{-\alpha t + i\tilde{k}z})$ (real wave number $\tilde{k} = 2\pi/\lambda$, complex rate factor α) yield the dispersion relation

$$\alpha^2 - \frac{3\mu}{\rho r_{s0}^2} k^2 \alpha - \frac{\sigma}{2\rho r_{s0}^3} k^2 (1 - k^2) = 0$$
 Yarin 1993

for the jet, representing a relationship $\alpha = f(k)$ between growth rate and wave number $k = 2\pi r_{s0}/\lambda$ of the disturbance (wavelength λ).

Wavenumber at maximum disturbance growth rate inviscid

- from exact analysis (Rayleigh 1878): at $k_{opt} = 0.691$
- from quasi-one-dimensional analysis: at $k_{opt} = 0.707 (\Delta = 2.3\%)$

Predicted real parts of the rate factor α for $Oh \equiv \mu/(\sigma r_{s0}\rho)^{1/2} = 0.03$

Goedde &

Yuen, 1970

González &

García, 2009

Summary

ISW

29

- Slender flow fields (in boundary layers, slender ducts, thin films, free jets) may be analysed solving quasi-one-dimensional equations of motion
- Quasi-one-dimensional equations may be derived by
 - integration over flow cross section, or by
 - series expansion w.r.t. coordinate transverse to the flow direction
- In boundary-layer flow, boundary layer thickness may be well represented by the quasi-one-dimensional approach
- In duct flow, the quasi-one-dimensional equations represent balances of crosssectional mean variables and rates of throughput through the cross-sections
- In free-surface flow (free jets and films on substrates), the equations represent remarkably well the transport processes (not discussed here) and flow stability properties
- The concept of quasi-one-dimensional analysis can be applied to the energy equation also which was not presented here for time constraints

References

IISW

30

- 1. J. Eggers, T.F. Dupont: Drop formation on a one-dimensional approximation of the Navier-Stokes equation. J. Fluid Mech. **262**, 205-221 (1994)
- D.F. Rutland, G.J. Jameson: A non-linear effect in the capillary instability of liquid jets. J. Fluid Mech. 46, 267-271 (1971)
- 3. H. Zhao, R. Wang, D. Lam, C.-C. Hou, R. Zhang: Behaviours of circular CFDST with stainless steel external tube: Slender columns and beams. Thin-Walled Structures **158**, 107172 (2021)
- 4. E.F. Goedde, M.-C. Yuen: Experiments on liquid jet instability. J. Fluid Mech. 40, 495-511 (1970)
- 5. H. González, F.J. García: The measurement of growth rates in capillary jets. J. Fluid Mech. **619**, 179-212 (2009)
- 6. A.L. Yarin: Free liquid jets and films: hydrodynamics and rheology. Longman Scientific and Technical 1993
- 7. J.W.S. Lord Rayleigh: On the instability of jets. Proc. London Math. Soc. 10, 4-13 (1878)

