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Quasi-one-dimensional flow analysis

TU

Cases of application - flow in slender geometries
Flow in slender geometries (boundary layers, pipe flows, liquid jets in a gas,
thin films) may be conveniently analysed as quasi-one-dimensional
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Quasi-one-dimensional flow analysis L

Three case studies

We look at three cases, using two different methods

1. Boundary-layer flow
(near-wall external flow)

2. Flow through slender ducts

Figure: Zhao et al.
Thin-walled structures
(2021)

(blood vessels, pipes, tunnels)

Rutland &
Jameson

3. Free |IC|U|C| jets JFM 1971
(drop and spray formation, .
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Quasi-one-dimensional flow analysis
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Ty,
Plane boundary layer — problem statement in 2D
Flow is governed by the 2D equations of motion in boundary-layer form
We assume steady state, large Froude number,
incompressible Newtonian fluid U(x)
Formulation in Cartesian coordinates T u(x,y)
Mass balance y E 5
du Jv \ ’ \\\\\\\\/
5% oy = \\\\\\\\\\\\\\\\\\\
Balance of linear momentum in boundary-layer form
0 0 0 d d 0° it
’ u—u+v—u =) ﬂ_l_ﬂ _ __P_I_H_u Boundary conditions
ox dy ox  dy dx dy? y=0 u=v=0 2
_ pU~(x)
op y > oo:u=U(x),p+ >
0~ _@ = constant



Quasi-one-dimensional flow analysis ﬂ'g,l;{_
Boundary layer — quasi-one-dimensional mass balance

Quasi-one-dimensional form of mass balance is obtained by
integration over the boundary-layer thickness.

For thin films this is called “depth averaging”.

Mass balance

6(x)
ou N v 0 J P
dx 0dy Y
y=0
6 (x) 6(x)
May+ [ Lay=o
dx Y dy Y=
y=0 y=0
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Quasi-one-dimensional flow analysis ﬂ'g,l;{_
Boundary layer — quasi-one-dimensional mass balance

For further developing the quasi-one-dimensional form of the mass balance
U(x)

o(x) 6 (x)
May+ [ Zay=o
ax y y_

0
y=0 y=0 Y Y\

it is the intention to exchange integration and differentiation 0/0x to achieve
a statement about spatial change of a volume flux in the flow direction.
For this we apply the Leibniz rule for derivatives of definite integrals:

0 o) o) 0F (x,y) dd(x) d0
X,y X
I F(x,y)dy f F dy + T (x, ) (x)) o (x,0)

y=0 y=0
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Quasi-one-dimensional flow analysis ﬂﬂ-ﬂ.

Boundary layer — quasi-one-dimensional mass balance

Applying the Leibniz rule turns the quasi-one-dimensional
mass balance into

6(x)

0 J d u| do(x) + ‘ =0
0x way y=6(x) dx v y=6(x) B
y=0
This means that
6(x)
‘ dd(x) N ‘ 0 f q
—Uu % = —— u
y=8(x) dx y=8(x) 0x Y
y=0
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Quasi-one-dimensional flow analysis ﬂ'g,l;{_
E Bound lay - quasi-one-dimensional x momentum balance

Quasi-one-dimensional form of Xx momentum balance is obtained by
integration over the boundary-layer thickness

Balance of linear x momentum
in boundary-layer form

( ou 6u> (E)uu 6uv> dp  0%u
plu——+v—|=p + =———tT U

0x dy dx  dy dx dy?
6(x) 6(x) 6(x) 6(x)
auud N auvd B J dp . 62ud
y=0 y=0 y=0 y=0

. . | _al
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Quasi-one-dimensional flow analysis
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Bound lay — quasi-one-dimensional x momentum balance

Since the flow outside the boundary layer is potential, i.e.

irrotational, i.e. inviscid, Bernoulli’'s equation states that UGx)

— u(x,y)
U?(x) dp du
= : th f —— = —
p+p constant; therefore I pU T y\ X
Again with the Leibniz rule we obtain N
9 (x) ) \\\\\\\\\\\\\\\\\\\\\\\\\
5(x 5(x -
0 j p ‘ dé(x) N uv| B J U dU P ou
pax way = pu y=6(x) dx P y=8(x) —F dx Y “ay y=0
y=0 y=0 —_——
Using the mass balance, we obtain furthermore =tw
6 (x) 6 (x) 6 (x)
0 j q ‘ 0 J‘ Jv — j UdUd
pax way —pt y=8(x) 0x uay=p dx Y~ tw
y=0 ~ v - y=0 y=0
=U(x)
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Quasi-one-dimensional flow analysis ﬂﬂ-ﬂ.

Bound lay — quasi-one-dimensional Xx momentum balance

This equation ...

5(x) 5(x) 5(x)
d j P ‘ d J Jy — f UdUd
Pox | W&y —rH y=6(x) 0X uay =p dx T tw
y=0 ~ v ~ y=0 y=0
=U(x)

... we further develop into

6(x) 6(x) 6(x) 6(x)
’ j d 9 J Udy + av J dy = J UdUd

’Oax uuay Pax uvay de uay = p dxy Tw

y=0 y=0 y=0 y=0
3 6(x) T JU 6(x)

u u u T

—|v? | =(1-=)dy|+U— 1——=)dy=—
0x f U( U) Y|+ dx j ( U) Y p

y=0 _ y=0 _

=5, =8,
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Quasi-one-dimensional flow analysis ﬂ Graz

Bound lay — quasi-one-dimensional Xx momentum balance

In the formulation

0 dU T
— (]2 il _w
(U 52)+de61 p
.. this is called the integral momentum balance
of the boundary layer. Displacement and momentum loss
thicknesses, §; and 6,, usually defined with integration to .

Frequently used for flow analysis with the Pohlhausen method:
Represent the velocity profile u/U(x) by a polynomial, defining 7 = y/6(x)
Polynomial must satisfy boundary conditions.

Example: boundary-layer flow along a flat plate, 2> U(x) = U,, = constant

u

Y7y = 27 — 72 _ 2 w_ Ve 0 vUs
() =2 — 1] 02(x) = 750(x) p—ZS(x) E— 0x<U25(x)_>:26(x)

. . | _al
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Quasi-one-dimensional flow analysis ﬂﬂ;&.
Bound lay — quasi-one-dimensional Xx momentum balance

This yields the boundary-layer thickness

§(x) = V30yvx/Uy =~ 5.477Jvx/Uq,

... which compares favorably to the exact Blasius
solution based on self-similarity of the flow, which reads

6(x) =5vx/Ug

..., but with the agreement that y = §(x) where u/U, = 0.99.

Taking u/U, closer to unity (u/U, = 0.996) yields from the
Blasius solution

5(x) = 5.4/vx/U,  ®m=) little deviation, good agreement
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Quasi-one-dimensional flow analysis
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Flow through a slender duct - problem statement in 3D

We assume axissymmetry, no swirl, large Froude number
Pipe wall may be flexible

Formulation in cylindrical coordinates (r, ¢, z) "z

Mass balance

dp 10

d
T + e (pru,) + 3 (pu,) =0

Balance of linear z momentum
0 10

d dp 10 07T,
& (puz) + ;E (pruruz) + E (puzuz) - = E + ;E (rTrz) + 57
(balances of r and ¢ momentum become trivial) Figure: Zhao et .

Thin-walled structures
(2021)
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Quasi-one-dimensional flow analysis

Kinematic boundary condition

This problem is solved subject to boundary conditions.

TU

Grazm

Kinematic boundary condition emerges from material duct surface
F(t,r,z) =r —1,(t, 2)

The material surface implies that

OF
a—+(v VF) =0

so that at the surface we have

0T N aF N oF 01 N 0T — 0
ac |"“rar "Mzl T "o “Y2 ol T
T=7g r=rTs
Figure: Zhao et al.
For rigid pipe walls, this is replaced by the no-slip condition (Tzrig-lv)va"edstructures

Institute of Fluid Mechanics and Heat Transfer
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Quasi-one-dimensional flow analysis TU

Duct flow — quasi-one-dimensional mass balance

Quasi-one-dimensional form of mass balance is obtained by
integration over the duct cross section

/Z

dp 10 0
TR (pru,) + Ep (puz) =0 f dA
21,(t,2)
rs(t, z) r5(t,z) 1 rs(t, z)
2T f —rdr + 21 f e — (pru,)rdr + 2n J (puz)rdr =0
r=0 =0

where we intentionally leave the factors 2= and the density p for the

moment, although they are constants that may drop out Figure: Zhao et al.

Thin-walled structures
(2021)
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Quasi-one-dimensional flow analysis TU

Duct flow — quasi-one-dimensional mass balance

It is the intention to exchange integration and differentiation, where
appropriate. For this apply the Leibniz rule for deriving definite integrals.

3 1s(t,z) rs(t,2) OF (2,7) 3 ( )
zZ,T rS t,z
3, F(z,r)dr = j e dr + (Z rs(z)) — —F(Z 0)
r=0 =0

Applying this rule, we obtain the following form of the mass balance

rs(t,z) r(t,z)
5 0 j q " or(t,z) e e 0 J p N or,(t,z) _ o
T[at prar PTs ot PTs Ur r=rg(t,z) 7TaZ puzrar P 0z Yz r=rq(t,z) B
=0 =0

III

The three terms without “integral” are the left-hand side of the kinematic
boundary condition, times 2npr,, so that they cancel from the equation.

Institute of Fluid Mechanics and Heat Transfer hiz‘



Quasi-one-dimensional flow analysis TU

Duct flow — quasi-one-dimensional mass balance

Applying this boundary condition, the following terms are left
from the integrated mass balance.

Grazm

a TS(tJZ) a Ts(t,Z)
Zﬂa j prdr + ZNE pu,rdr =0
r=0 =0

They may be further developed into

dpA + dpu,A —0 Quasi-one-dimensional mass balance for the flow of a

dt 0z compressible fluid through a flexible duct, mass flux pu,

The equation states that a change of liquid mass flow rate pu,A with the z
coordinate along the duct, in case of an incompressible fluid, is possible
only if the duct cross section can vary in time (e.qg., elastic walls)

w
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Quasi-one-dimensional flow analysis
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Duct flow — quasi-one-dimensional z momentum balance

Quasi-one-dimensional form of z momentum balance is obtained by
integration over the jet cross section

0 10 0 dp 10 0T
e (puz) + A (pruruz) + a9, (puzuz) - = a_ + - r or (TTrz) + a;z J dA

r5(t,2) r(t,z) 15(t,z)

0 1 9] 0
2T f — (puz)rdr + 21 f e — (pru,u,)rdr + 21 f Ep (pu,u,)rdr =
= r=0 r=0
rs(t z) r5(t,z) r(t,z)
= 2 f dr + 2 fla( yrdr + 2 faTZZ
= —2m rdr + 2w 5, rtp)rdr + 2m 3
r=0 r=0

We keep the factor 2x, although it is a constant that eventually drops out
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Quasi-one-dimensional flow analysis
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Duct flow — quasi-one-dimensional z momentum balance

Again, applying the Leibniz rule, we exchange differentiation and
integration to obtain

Ts(t Z) a rs(t z) 0
.
27'[— j pu,rdr — 2mp u, rs — 4+ 2mprs (U, u,) -0+ 27‘[— J (pu,u,)rdr — 2mpr, (u,u,) — =
=T, dt =Ty T=Tg 0z
r 0 r 0
a Ts(t,Z) a Ts(t,Z) a
T T
= _ZHE j prdr + 2nrg p _— 3, + 211 T,y _— + 2”& j T,,Tdr — 2m1s T,, e G_ZS
1r=0 r=0

The three terms on the left-hand side without “integral” cancel because of the
kinematic boundary condition (but also due to the no-slip condition at the wall).
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Quasi-one-dimensional flow analysis TU
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Duct flow — quasi-one-dimensional z momentum balance

We develop this equation further into
)%_
T=Tg 0z trz T=Tg

Since 7,, = 0 at the wall, the right-hand side simplifies to the form

+71,,
r=rg

apuZA+apa§A_ aﬁA_I_E)T"ZZA (
ot oz oz « az Ts|I\U7P

dpii, A N dpti;A  0pA N 0T,,A
ot dz 0z 0z

oy
=Ty dz

+ 211 p + 211 T,y

r=Tg

Model for viscous stresses: Newtonian
- Relationship between stress and rate of deformation

_ ou, _ A(Re kg /1)
Tzz = Zﬂg Trz ey Tw = 3

U

Assuming the cross section nr?(z) to be known, a system of two quasi-one-
dimensional equations for the unknowns #u,(z,t) and p(z,t) results

w
Institute of Fluid Mechanics and Heat Transfer ‘



Quasi-one-dimensional flow analysis
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Special case of quasi-one-dimensional duct flow
The quasi-one-dimensional equations "z
Continuity equation \
dpA  dpu,A
7 + 3, =0 and

Balance of the z momentum

dpii,A 0pluzA 0pA 0T,,A
= — 2
ot T oz 9z 9z TP

S
— + 27115 T,y
=Ty dz

r=ry

Two equations in the two unknowns p(z,t) and i,(zt), i.e. pressure and
cross-sectional mean of the z velocity.

For variable 7, due to wall elasticity, additional material law needed
For steady, incompressible flow through a cylindrical duct (pipe), egs. reduce to
01, op 2

=0|and |[0=—-——+—1, , the latter better known as
07 0z 15 =Ty

___0pr
r=re tw = dz 2

TT‘Z
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Quasi-one-dimensional flow analysis TU

Liquid jet in vacuum - problem statement in 3D

Flow is governed by the equations of motion
We assume axissymmetry, no swirl, large Froude number
Formulation in cylindrical coordinates (r, ¢, z), surface shape r.(t, z)

Mass balance

|
?
dop 10 d
— —_—— — — o
5 T 73, (orur) + - (puz) = 0 :
Balance of linear r momentum ‘Z
ou, ou, du,\ dp 10 Tpp = O0Tyy o
p(@t Tl gy Tz az>__§+?§(””‘)_ "oz 0
Balance of linear z momentum ?
ou ou ou dp 190 0t Rutland &
P (a_tz + Uy aT‘Z + Uy a;) — _E + ;a (rTrz) + aZZ % jlirhr/]lelsg?nl
Z

| | | ne
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Quasi-one-dimensional flow analysis
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Boundary conditions for the jet — kinematic

Grazm

Kinematic boundary condition emerges from material jet surface

F(t,r,z) =r —1,(t, z)

W z
The material surface implies that

TS(t) Z)
oF

E+(U-VF)=O

so that at the surface we have

07‘5_'_ 6F+ 0F B ars+ o7y
ot " Yz ~ T | Y2y,

ar 0z =0

r=ryg r=ryg
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Quasi-one-dimensional flow analysis TU

Boundary conditions for the jet — dynamic

Dynamic boundary conditions for the jet surface

 No shear stress on the jet surface, since the jet moves in a vacuum

5 _ 07 ? 07y
(r-@)xi=0 Thisreduces to o |1-(—7||= @zt atr =1,

« Normal stress on the jet surface “inside” differs from “outside”
by capillary stress; stress outside neglected (vacuum)

—p+ (r-) -7 + (7 -7i) = 0 This becomes —p +—— Z”fofgfs ;azzzz(arS/aZ)z +o(7-7) =0
(viscous stress tensor ¢, outward pointing normal-unit vector n, atr =r,
pressure p, surface tension o, surface curvature (7 - 1))
where (V-7) 2 - ___07n/0z” since 7i=——7F with F from slide 23

51+ (0r5/02)2 1+ (015/02)2 ' IVF|
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Quasi-one-dimensional flow analysis
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Expansion in power series for radial coordinate

Idea: Jet is slender, dimensions in radial direction much smaller

than in axial direction. Therefore expand velocities and pressure in a
power series with respect to the radial coordinate.

For symmetry reasons we set

uz(t,r,z) — uo(t,Z) + uz(t,Z) 7"2 + ...

From continuity equation it follows that

10uy(t, z 10u,(t, z
ur(t,T,Z) = ——= O( ) — — 2( )r3 —_ e

2 0z 7‘4 0z

Furthermore

p(t,r,z) =po(t,z) +p,(t,2) r2 4 ...

Eggers &
Dupont, 1994

Institute of Fluid Mechanics and Heat Transfer
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Quasi-one-dimensional flow analysis L

Quasi-one-dimensional equations

Introducing expansions into r momentum equation, the equation is identically
satisfied at lowest order in r.

Introduce expansions into z momentum equation and boundary conditions,

z momentum balance becomes at lowest order in r

auO auo apo azuO
p(at+”° az>_ oz Tl Mtz @
Boundary condition for normal stress becomes at lowest order in r

(since dr,/0z is O(r))

du
—Po ,uaZ+a(l7 n)—O

and boundary condition for shear stress becomes at lowest order in r

2
—%%+2u2r _la uOT Zauo ory —0 Eggers &
0z 0z 5 2 0z2 0z 0z Dupont, 1994

Institute of Fluid Mechanics and Heat Transfer hi‘[‘



Quasi-one-dimensional flow analysis TU

& Quasi-one-dimensional equation

Eliminate p, and u, from z momentum balance (x)
by boundary conditions to obtain

du du d (duy
2 0 0 — .
pTs (at i az> 3“az<az ) e az(V )

The jet surface curvature was given on slide 24 as
1 1 d%r,/0z%

77)=

s J1+ 01/02)2 1+ (91,/02)2

Furthermore, the kinematic boundary condition reads to lowest order in r

a1y dr, 10uy
T YW i

Eggers &
Dupont, 1994

These are two equations in the two unknowns u,(z,t) and r.(z,t)
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Quasi-one-dimensional flow analysis
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Perturbation approach for stability analysis

Quasi-one-dimensional equations re-written using a perturbation formulation

of r, and u,, assuming temporal instability as per, e.qg.,

1,(z,t) = 150 (1 + €Age~+%%) (real wave number k = 21/,

0.4

Oh =0.03

complex rate factor «)
yield the dispersion relation

3 o =S
a2 — /“; k2q — = k’(1—-k*) =0 Yarin 1993 S w
PTso 2prsO &

for the jet, representing a relationship a = f(k)
between growth rate and wave number k = 2nry, /4

1
]
M3

of the disturbance (wavelength 1).

Wavenumber at maximum disturbance
growth rate inviscid

— from exact analysis (Rayleigh 1878): at k,,; = 0.691
- from quasi-one-dimensional analysis: at k,,, = 0.707 (A= 2.3%)

Institute of Fluid Mechanics and Heat Transfer
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Predicted real parts of the rate factor o
for Oh = p/(or50p)Y/? = 0.03

Goedde &
Yuen, 1970

Gonzélez &
Garcia, 2009
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Weakly nonlinear drop shape oscillations TU

Summary

Slender flow fields (in boundary layers, slender ducts, thin films, free jets) may
be analysed solving quasi-one-dimensional equations of motion

Quasi-one-dimensional equations may be derived by
« integration over flow cross section, or by
« series expansion w.r.t. coordinate transverse to the flow direction

In boundary-layer flow, boundary layer thickness may be well represented by
the quasi-one-dimensional approach

In duct flow, the quasi-one-dimensional equations represent balances of cross-
sectional mean variables and rates of throughput through the cross-sections

In free-surface flow (free jets and films on substrates), the equations represent
remarkably well the transport processes (not discussed here) and flow stability
properties

The concept of quasi-one-dimensional analysis can be applied to the energy
equation also — which was not presented here for time constraints

Institute of Fluid Mechanics and Heat Transfer h\\:‘
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