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Weakly nonlinear drop shape oscillations

Case study - nonlinear drop shape oscillations

Upon formation and after collisions, drops are not spherical;
elastic systems = shape oscillations

Ty,

1. Spreading upon drop impact 2. Drop evaporation influenced
depends on drop shape by shape oscillations
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Applications Applications

Ink-jet printing, Spray drying, fuel injection,

spray coating, container-less materials processing
in-air microfluidics based on individual drops
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Weakly nonlinear drop shape oscillations ﬂ'!;k!.
Problem statement

Flow due to shape oscillations in a Newtonian, incompressible droplet
In @ vacuum

- equations of motion

Mass balance - (also called the continuity equation)
for incompressible fluid requires solenoidal velocity field
divu=0

Balance of linear momentum

where d/dt is the material derivative, and the Cauchy stress tensor
M=—-pl+r7

(pressure p, unit tensor | and extra-stress tensor 1)
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Weakly nonlinear drop shape oscillations

Problem statement - equations of motion

Flow in @ Newtonian, incompressible droplet in a vacuum,
equations of motion in spherical coordinates, axisymmetric,
non-dimensionalised with a, (pa®/0)'?, (¢/pa)/? and ¢/a

L9 ! r(0,6) =1+n(8,t) X——7
~ 92 . (6, , s
r2 or (r*uy) + rsin 8 90 (ugsinf) =0 h
Ouy  Jur updur uz_ _0p 192 1 9 [ou,

ac " ar T a0 ro 6r+0h r2 or2 r ur)+rzsin969 26 Sin

dug _I_ur drug Ug dug 10dp

dat r or r 00 =—;%+0

h1a 20u9+10 10( _0)+26ur
r2or r or r2 060\ sin O 060 U SiH rZ2 06

with the Ohnesorge number Oh = pu/(cap)*/? Oh - 0 inviscid case

Tsamopoulos & Brown (1983)
Zrni¢ & Brenn (2021)
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Weakly nonlinear drop shape oscillations ﬁ";k.!.

Problem statement - boundary and initial conditions

Boundary conditions to be satisfied at the
deformed surface r =r,(6,t) =1+ 1n(0,t)

by _ 9n , ug0n

Kinematic — rate of radial displacement u, =— =
Dt Jat r 00

Dynamic - zero shear stress  (ii-7) xi =0
Dynamic - zero normal stress —p+Oh(R-7) -7+ (V 1) =0

Initial conditions
Deformed shape 1,(6,0) =1+ 1n(6,0)

Zero rate of deformation change  dn/at(6,0) =0
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Weakly nonlinear drop shape oscillations

Ty,

H Approach for solving the nonlinear problem
Solution by Weakly Nonlinear Analysis
Approach: expansion of the unknowns for a small parameter n,

Example: the radial velocity component

u(r,6,t) = u1(r,0,t) Ny + U (1,0, t) & + ups(r,6,) n3 + -

— ]

Functions u,(r,0,t), u,(r,0,t), and u,.;(r,6,t)
become the new unknowns

To be applied to all field variables, including the drop surface shape
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Weakly nonlinear drop shape oscillations ﬁ";k.!.

Approach for solving the nonlinear problem

Substituting the series expansions up to 3" order,
e.g. the radial momentum equation

ou, ou, Ugou, ug _0p 1 0% 1 0 (ou,
_ 0 + Oh | == (r? i
ot U or T r 06 r 67" r2 or 7 (7 ur)+rzsin969 a0 >
becomes
d 2 3
3% (Upr Mo + Upa MG + Uz M5) + (Upy Mo + Uy NG + Ups 770) (url No + Urz MG + Urz 15)

10 1
+(ugy Mo + ugz NG + Ugz M) — 30 — (Upy Mo + U MG + Uz M3) — (u91 Mo + Ugz NG + Ugs 15)*

0 1 92
=—_(P1770+P2770 +P3’Io)+0h{ 257 — [r2(uyy Mo + Upp MG + Urz 15)]

1 d | o , .
+ r2sin 0 96 196 (Ur1 Mo + Upz No + Upr3 770) sin 6
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Weakly nonlinear drop shape oscillations ﬂ'!;k!.

Radial momentum equations up to 3™ order

Collecting the terms with equal powers of the expansion parameter n, yields
1st order

aurl _ apl 2 1 0 aurl ]
oc 0= 5, Mo+ Oh Za Z(T W)+ rsne s\ ag S0 )| Mo
2nd order
0Uyp n? + ouyy o 10u; UG, n?
a 0 7"1 a 91r 09 r 0
_ apz 2 1 (32 2 1 6 0ur2 ] 2
——7n0+0h r_zﬁ(r uT2)+r2 sin@ 06 \ 06 Sing J11mo
3rd order
0U,3 0U,y 0uU,q 10u,, 10u,y Z2ugiug;
ar ng <u7"16_r+u’7"2 ar +u’61r a; +U,92; a; — r T](s))
ops 1 0% 1 0 (Ju,5 ;
——Wn0+0h r_zﬁ(r uT3)+r2 sin@ d6 \ 00 sing f17o

i
Institute of Fluid Mechanics and Heat Transfer h‘g
\



Weakly nonlinear drop shape oscillations ﬂ'!;k!.

Boundary conditions — two steps needed

First step — substitute series expansions into the boundary conditions,
e.g. kinematic

Dn _dn ugdn
Dt at " rae

U, = at r=r(0,0) =1+n(,t) , where n(6,t) = nyno + 1203 + 303 +

becomes (expansions up to 3 order)
0 10
Upq Mo + Upp NG + Uz Mg = a(’h Mo + 121§ + N3 ng) + (ug1 Mo + ugz NG + Ugs 7]8);%(771 Mo + N2 1§ + 13 13)
at r=1+n(0,t)

Second step - represent functions at the deformed surface by their
values at the undeformed surface - Taylor expansion
- e.qg. for radial velocity component

1 0u, 1 0%u,
Urlr=14n = Urlr= (TP lr=11 + 192 =1 2+
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Boundary conditions — second step

Introducing these expansions into, e.g., the kinematic boundary condition

d 10
Urg Mo + Upz NG + Uz Mg = (771 Mo + M2 M5 + N3 n3) + (Ugy Mo + Uz NG + Ugz N3) =30 (M1 M0 + 12 mé +n3103)

at r=1+n7n(6,t) yields

6 16211, Ju 2 6u 3
Upg + (nmo +1218) + 5 ——= (M70) ]770 [urz —— (mno + nzné)] ng + [urs +——= (o +n2nd) | ng =

6771 6772 2 6773 3

FrCREr Tl (e vl r

Ug 0 Ug Ug ad Ug2

(—1 + g( 1) (M11m0 + 772"0)) Mo + <_2 T or ( ) (1m0 + 772770)> o+

Ug 6 Ug 677 an an =
(—3+—( 3) (1170 +772770))770] <091 Mo + 692 ng + 693 UK at r=1
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Weakly nonlinear drop shape oscillations ﬁ'!k.!.

Kinematic boundary conditions up to 3™ order

Collecting the terms with equal powers of n, yields (e.g. kinematic)

0
1st order  wu,.qn, = %Uo at r=1

ou an 10n

U, U,y 10%u,4
3rd Order (urg +W772 +W771 -I-EWn% 778 =
ans 10n, 10n, 0 (ugr an4 3
<0t tun g UG T (5 mgg ) at r=1
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Initial conditions

First initial condition is derived from the requirement that the drop volume
must be conserved despite the deformation. For this purpose, we write

1.(8,0) = R + nyPy,(cos 0)

Formulating the non-dimensional drop volume as
-1
41 21
T =" j r3(cos8,0)d cos b

cos 6=1

Reveals the form of the initial surface shape as
1

3
Mo 3 —
> 176 m(cos8)°d cos 6 +

1.(68,0) = 1 + nyPy,(cos §) — na

-1

from where we read the surface shape contributions keeping the drop volume
] 0 0 ]
Further condition: 5—2(9» 0=0 = %(9; 0) 19 +%(9» 0) 15 +%(9; 0) 75 =0
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Weakly nonlinear drop shape oscillations ﬂ'!;k{.

Equations of motion — first order

Continuity equation ——(r%u,) + (ugy sinf) =0

rsin @ 06

Momentum equation — radial

( )+ 1 d [Ou,, "y 4_6p1__0
r2 arz T Ur) "25in0d0 \ 98 o or

Momentum equation — polar

dugq 1 0 ( ,0ug 10 1 0 _ 2 0up| 10p;
ot Oh r26r<r or 4_r200 sh1966(u91$nfn +rz 00 +1‘69 =0

w
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Weakly nonlinear drop shape oscillations ﬂ-!};!.

Boundary and initial conditions - first order

i,
Kinematic boundary condition Uy = h atr=1

Dynamic boundary condition — zero shear stress

d (ugq 10u,
—(=2) 4 = = atr=1
r ar( r ) * r 060 0
Dynamic boundary condition — zero normal stress
0urq an4 0°n4
— — — = =
p1 + 20h 3 (2771+ EY: cotf + 302 atr

Initial conditions

n.(0,0) = P, (cos@)  Shape according to
Legendre polynomial

Zero rate of shape change

an,
Fn (6,0) =0
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Weakly nonlinear drop shape oscillations ﬂ'!;k!.

First-order solutions — by Stokes stream function

The two-dimensional velocity field represented by Stokes stream function
We define the first-order velocity components as the derivatives

1 Y 1 oy

Ug1 =

1= T l25ing 90

rsin @ or

This velocity field is solenoidal, i.e., it satisfies the continuity equation
for the incompressible fluid.
Substitute this into the 1st-order vectorial momentum equation and take its curl

1 0 22) (B2 — 0 where E2_62+sin96 1 0
Ohot (E%) = ~ Or? r2 00 \sin0 900

- Solution ¢ =y, + P, = Ci,, v 1sin?0P',,(cos ) exp(—a,,t)
+Comqr jm (qr)sin?8P’,, (cos 8) exp(—a,,t) q= %
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Weakly nonlinear drop shape oscillations

Ty,

First-order solutions - velocity and pressure fields

We seek first-order surface deformation in the form n,(8,t) = #j; P,,(cos 8)e~%mt
Velocity and pressure are found as

i r _ |%m
Upp = — [C1m1”m‘1 + szqzjm;z )] m(m + 1)B,(cos 0) e~ m! , Wwhere g = oh

m(qr
Ugy = [Clm(m + Dr™ 7t + Comq? ((m +1) ]m;z ) _jm+1(q7”)> ] sin By, (cos 8) e~ %m*

p; = —Ciy(m + Da,,r™P, e %mt
: : o 2(m? -1
C;m and C,,, determined by first-order ¢, = (7’1 J’:‘l) — E 7 ) —
kinematic and zero shear stress BCs mim Um+1(q)/Jm(q) — q
_ 2(m — D ap,
CZm -

mq[2qjm+1(q) — ¢%jm(q)]
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Weakly nonlinear drop shape oscillations

Ty,

First-order solutions - characteristic equation

Zero normal stress BC yields characteristic equation of the drop <q =

Ao 2(m*—1)

arzn B q2 - 2qjm+1/jm -

2m(m — 1)

qZ

2(m + )jms1/im

0.8
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- Complex conjugate solutions, therefore two different time behaviours

2jm+1/jm —q
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Weakly nonlinear drop shape oscillations ﬁ";k.!.

First-order solutions — damped drop-shape oscillation

Drop surface shape

55(6,6) = 1+ 1 (6, 1) /,\

as a function of time for / | 1
, = 0.1, m =2, Oh = 0.02 / \
where / | | | | |
-1.0 -0.5 , 0.5 1.0/
dPr o Am) g™y i
11(6,t) = (nip)e “mt 4 ;P e~m )Pm(cos 6) | /
-0.5+
and \V
1o
) = a A ry |
SN ORI S ORI

Zrnic, Berglez
& Brenn, 2022
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Weakly nonlinear drop shape oscillations ﬁ'!k.!.

Equations of motion — second order

o _ 10
Continuity equation — — (r°u,,) +

(ug, sinf) =0

. ap;
Sin 3)] + W —

rsin 6 06

+5—=|+=55 =

2 du,,| 10p,
rZ2 00 r 00

e
ns
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Boundary and initial conditions — second order

01 10n1 Oupy

Uy =3 =Uer1 50~ 5 Th atr=1

Kinematic boundary condition

Dynamic boundary condition — zero shear stress
d (ugy 10u,, 9, Jd (ugq 10u, 0 (U 10ug;\10n4
() 115 = o (i () 435 -2 (e () -1 52T s
Dynamic boundary condition — zero normal stress

d 0 02 d 02 10 d (u 10u
b+ 200757 = (an + Gt coro + S02) =0 Tt 20m oy T - LT (0 (1) + 1200

_771 ar

or 00 902 Vorz  roo \ or\ r r 00
on, 62771 —
—<277%+2771%C0t9+2771m atr=1
Initial conditions 1,(6,0) = — %(9 0) =0
’ 2m + 1 at =’
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Weakly nonlinear drop shape oscillations ﬂ'!;k!.

Approach to a second-order solution

Start from the pressure p,. The solution is composed as p, = P,y + Py
solving the inhomogeneous and the homogeneous equations, respectively

Start from the second-order momentum equation

, U,y 1 0% 1 90 (ou, 0Py, U, 10u,; uj,
Radial ot Oh [ﬁﬁ (rurz) + r2sin6a0 \ 90 )t ar  MTar 1749 r
ou 10 ou 10 1 0 2 du 10p dugq 10ug; UqquUgq
Polar 02 =Y [.2 62 s 0 e Y2 —ZP21 . - _vr
Jt Oh r2 dr (r or * r206 \ sin 0 d6 (ugy sin0) | + r2 00 * r 00 U1 g, T 11 5 r

Vectorial second-order momentum equation, in symbolic formulation
a_tz - OhAﬁz + Vle = _(ﬁl . V)ﬁl = —771 + ﬁl X (V X ﬁl)

i Oh A%, + 7 +ﬁ% =i x (Vx1d,) = L1 sy
> ot he P21 2 —th th "~ Ohr2sin20 ot Y
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Weakly nonlinear drop shape oscillations ﬂ'!;k!.

Approach to a second-order solution

The divergence of this equation generates an equation determining pressure p,

This would be particularly elegant if the Helmholtz decomposition of the right-

hand vector was known
1, u?

_ L1 Mg G ixE
"~ Ohr2sin20 ot Y= ¢

Taking the divergence of this equation would then yield the Laplace equation

=2
uq

for another modified second-order pressure. But we do not have the Helmholtz
decomposition. Therefore we apply brute force — series expansions of the rhs.

m
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Weakly nonlinear drop shape oscillations ﬂ'!;k!.

Approach to a second-order solution

Naming #.: = p.1 +ui/2, we write the Poisson equation for ., as

N
Cimm+1
(Z Ciom ()2 +2m 2 z bion(qr)? 2 4 Z(zzc 411+ g (qr)22m- ) x
m

k=0

r2A g1 = —q°Cy

2m

N Zm
C 1
Z CaP() + (Z bion(gr) 2 4 by (qr ) X m?(m+ 1% )’ CMPl(x)\ —2ant
2m

k=0 [=0

: . : : (x == cos0)
where the various series expansions represent the spherical Bessel and

Legendre functions involved in the right-hand side. This kind of Poisson equation
can be solved analytically, satisfying boundary conditions.

With the pressure known, the radial and polar velocity components are found.

. . . Zrnic¢, Berglez
Finally, the drop shape is determined. & Brenn, 2022
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Weakly nonlinear drop shape oscillations

Ty,

Second-order solutions “22"” and third-order solutions

Solutions “22" satisfy the homogeneous equations of motion and exhibit time
behaviour different from the solutions “217;
- represents quasi-periodic motion

Third-order solutions are obtained using the same methods

Zrnic, Berglez
& Brenn, 2022

Truncated series expansions - check drop volume conservation: R=[V(t)-V.]/V.
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Relative
volume
deviation

R = f(ng,t) for
different m
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Verification - oscillations

Oh =0.1
1.8 ' | - | | |

form = 2 : — WNLT - n, = 0.4
Radial position of points on the 1.6 | | | | Basaran (1992) |
surface of the axisymmetric drop - -~ Meradji et al. (2001)| |
' - - - Beckeret al. (1994)
1.4 F i . i "
15(0,t) = 1+ non1(6,t) +ngn2(6,t) +ngns(6,t)
Z 5L
The aspect ratio of the drop in time 3 ki
calculated as
1.0 |
L 1-(0,t
w0 = # 0.8 |
n(7.) |
06 L 1 1 | L 1 1 1 L | L 1
0 1 2 3 4 5 6 7
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Period length and damping factor for m=2

Complex angular frequency is o, =i 2n/t,+ o,

2.44 | % Oh=0.1-1,=02 |-
* -1,=0.35
240 % o Oh=0.05-1,=0.2 |
,
& . -1=0.35| |
2.36 | | | I
232 F ]
*tp.3 * ]
228 E —;t&-#—t— —‘a%'« s~ e e e Tk e ke Ao
. A
L (‘ @ &
2.24 '_'"(? """ c.)""'"@'C')"cr'g"trQ."O-Q-ﬁr"-ﬂ-@ﬂ-@’-ﬂ-@ﬁ
0 2 - 6 8 10

t (b)
Oscillation period t, = f(t)
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Oscillations with supercritical Oh = 0.56 at m=4

Oh = 0.56

3.0 - T : T

25F

20F

1.5+

Re(€2,)

1.0 -

B G U S S A S R

T
\

0.5

0.0 " i | s 1 n CO | L 1

0.8 1,0 0.0 0.2 0.4 0.6 0.8
(a)

Oh Oh

(a)- oscillation frequency and (b) — damping factor of a drop, which is linearly
supercritical at m=4

- Linear analysis predicts aperiodic behaviour

m
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Oscillations with supercritical Oh = 0.56 at m=4

120 T T ' T ’ T ' T ! T Y T T T —nO — 006
115 / \
05| ki
1.10 \
;‘:’3 1.05 10  -05 [ 0.5 1.
1.00 - - - - - B
0.95 | | | | | | | N \m/
090 " 1 1 1 L 1 L | ! 1 L 1 M 1 L o ] ) .
00 05 10 15 20 25 30 3.5 4.0 The droplet meridional section on the video is

; rotated by 90° and shown for0 <t <3

~\
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Summary

Weakly nonlinear analysis is a method of successive approximation to a
problem solution

The analysis builds on series expansions of the unknowns of a physical problem
- here of the flow field variables

At each approximation order > 2, the unknowns are governed by linear
differential equations for the respective order, with nonlinear terms in the
solutions of the lower orders

The solutions may represent nonlinear system behaviour, but with the limitation
to moderate deformations, since

« volume is not conserved inherently and

« boundary conditions satisfied on the deformed system boundaries are
represented as Taylor series

In the present case studied, nonlinear system behaviour such as mode coupling
and quasi-periodicity of the oscillatory motion is captured by the analysis

m
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