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Case study – nonlinear drop shape oscillations
Weakly nonlinear drop shape oscillations
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Applications
Ink-jet printing, 
spray coating,
in-air microfluidics

2. Drop evaporation influenced 
by shape oscillations

𝜌𝑐௩
𝜕𝑇
𝜕𝑡 ൅ 𝑢௥

𝜕𝑇
𝜕𝑟 ൅

𝑢ఏ
𝑟

𝜕𝑇
𝜕𝜃

ൌ 𝛻 · 𝑘𝛻𝑇 ൅ Φ ൅ 𝑞ொሶProlateOblate

1. Spreading upon drop impact 
depends on drop shape

Applications
Spray drying, fuel injection, 
container-less materials processing 
based on individual drops

Upon formation and after collisions, drops are not spherical; 
elastic systems  shape oscillations
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Weakly nonlinear drop shape oscillations

Problem statement
Flow due to shape oscillations in a Newtonian, incompressible droplet 
in a vacuum
 equations of motion

div 𝑢 ൌ 0

Mass balance – (also called the continuity equation) 
for incompressible fluid requires solenoidal velocity field

Balance of linear momentum

𝜌
𝑑𝑢
𝑑𝑡 ൌ 𝛻 · Π

where d/dt is the material derivative, and the Cauchy stress tensor

Π ൌ െ𝑝 𝐼 ൅ 𝜏

(pressure p, unit tensor I and extra-stress tensor )



Problem statement – equations of motion
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Flow in a Newtonian, incompressible droplet in a vacuum, 
equations of motion in spherical coordinates, axisymmetric, 
non-dimensionalised with 𝑎,  ሺ𝜌𝑎ଷ/𝜎ሻଵ/ଶ, ሺ𝜎/𝜌𝑎ሻଵ/ଶ and 𝜎/𝑎

1
𝑟ଶ

𝜕
𝜕𝑟 𝑟ଶ𝑢௥ ൅

1
𝑟 sin 𝜃

𝜕
𝜕𝜃 𝑢ఏ sin 𝜃 ൌ 0

𝜕𝑢௥
𝜕𝑡 ൅ 𝑢௥

𝜕𝑢௥
𝜕𝑟 ൅

𝑢ఏ
𝑟

𝜕𝑢௥
𝜕𝜃  െ 

𝑢ఏ
ଶ

𝑟 ൌ െ
𝜕𝑝
𝜕𝑟 ൅ 𝑂ℎ ቈ

1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ ൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃
𝜕𝑢௥
𝜕𝜃 sin 𝜃 ቉

𝜕𝑢ఏ
𝜕𝑡 ൅

𝑢௥
𝑟

𝜕𝑟𝑢ఏ
𝜕𝑟 ൅

𝑢ఏ
𝑟

𝜕𝑢ఏ
𝜕𝜃 ൌ െ

1
𝑟

𝜕𝑝
𝜕𝜃 ൅ 𝑂ℎ ൥

1
𝑟ଶ

𝜕
𝜕𝑟 𝑟ଶ 𝜕𝑢ఏ

𝜕𝑟 ൅
1
𝑟ଶ

𝜕
𝜕𝜃

1
sin 𝜃

𝜕
𝜕𝜃 𝑢ఏ sin 𝜃 ൅

2
𝑟ଶ

𝜕𝑢௥
𝜕𝜃 ቉

𝑟௦ 𝜃, 𝑡 ൌ 1 ൅ 𝜂ሺ𝜃, 𝑡ሻ

with the Ohnesorge number 𝑂ℎ ൌ 𝜇/ሺ𝜎𝑎𝜌ሻଵ/ଶ 𝑂ℎ → 0 inviscid case
Tsamopoulos & Brown (1983) 
Zrnić & Brenn (2021)

Weakly nonlinear drop shape oscillations

rs



Problem statement – boundary and initial conditions
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Boundary conditions to be satisfied at the 
deformed surface 𝑟 ൌ 𝑟௦ 𝜃, 𝑡 ൌ 1 ൅ 𝜂 𝜃, 𝑡

Kinematic – rate of radial displacement   𝑢௥ ൌ ஽ఎ
஽௧

ൌ  డఎ
డ௧

൅ ௨ഇ
௥

డఎ
డఏ

Dynamic – zero shear stress      𝑛 ⋅ 𝜏 ൈ 𝑛 ൌ 0

Dynamic – zero normal stress     െ𝑝 ൅ 𝑂ℎ 𝑛 ⋅ 𝜏 ⋅ 𝑛 ൅ 𝛻 ⋅ 𝑛 ൌ 0

Initial conditions

Weakly nonlinear drop shape oscillations

Deformed shape                            𝑟௦ 𝜃, 0 ൌ 1 ൅ 𝜂ሺ𝜃, 0ሻ

Zero rate of deformation change     𝜕𝜂 𝜕𝑡⁄ 𝜃, 0 ൌ 0



Approach for solving the nonlinear problem
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Approach: expansion of the unknowns for a small parameter 𝜂଴

Example: the radial velocity component

𝑢௥ 𝑟, 𝜃, 𝑡 ൌ 𝑢௥ଵ 𝑟, 𝜃, 𝑡  𝜂଴ ൅ 𝑢௥ଶ 𝑟, 𝜃, 𝑡  𝜂଴
ଶ ൅ 𝑢௥ଷ 𝑟, 𝜃, 𝑡  𝜂଴

ଷ ൅ ⋯

Weakly nonlinear drop shape oscillations

Solution by Weakly Nonlinear Analysis

Functions 𝑢௥ଵ 𝑟, 𝜃, 𝑡 , 𝑢௥ଶ 𝑟, 𝜃, 𝑡 , and 𝑢௥ଷ 𝑟, 𝜃, 𝑡
become the new unknowns

To be applied to all field variables, including the drop surface shape
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Weakly nonlinear drop shape oscillations

Approach for solving the nonlinear problem
Substituting the series expansions up to 3rd order, 
e.g. the radial momentum equation

𝜕𝑢௥
𝜕𝑡 ൅ 𝑢௥

𝜕𝑢௥
𝜕𝑟 ൅

𝑢ఏ
𝑟

𝜕𝑢௥
𝜕𝜃  െ  

𝑢ఏ
ଶ

𝑟 ൌ െ
𝜕𝑝
𝜕𝑟 ൅ 𝑂ℎ ቈ

1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ ൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃
𝜕𝑢௥
𝜕𝜃 sin 𝜃 ቉

becomes
𝜕
𝜕𝑡 𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴

ଶ ൅ 𝑢௥ଷ 𝜂଴
ଷ ൅ 𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴

ଶ ൅ 𝑢௥ଷ 𝜂଴
ଷ 𝜕

𝜕𝑟 𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴
ଶ ൅ 𝑢௥ଷ 𝜂଴

ଷ

൅ 𝑢ఏଵ 𝜂଴ ൅ 𝑢ఏଶ 𝜂଴
ଶ ൅ 𝑢ఏଷ 𝜂଴

ଷ 1
𝑟

𝜕
𝜕𝜃 𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴

ଶ ൅ 𝑢௥ଷ 𝜂଴
ଷ െ  

1
𝑟 𝑢ఏଵ 𝜂଴ ൅ 𝑢ఏଶ 𝜂଴

ଶ ൅ 𝑢ఏଷ 𝜂଴
ଷ ଶ

ൌ െ
𝜕

𝜕𝑟 𝑝ଵ 𝜂଴ ൅ 𝑝ଶ 𝜂଴
ଶ ൅ 𝑝ଷ 𝜂଴

ଷ ൅ 𝑂ℎ ቊ
1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ 𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴
ଶ ൅ 𝑢௥ଷ 𝜂଴

ଷ

൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃
𝜕

𝜕𝜃 𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴
ଶ ൅ 𝑢௥ଷ 𝜂଴

ଷ sin 𝜃 ቋ



Radial momentum equations up to 3rd order
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Weakly nonlinear drop shape oscillations

Collecting the terms with equal powers of the expansion parameter 𝜂଴ yields 

𝜕𝑢௥ଵ
𝜕𝑡 𝜂଴ ൌ െ

𝜕𝑝ଵ
𝜕𝑟 𝜂଴ ൅ 𝑂ℎ

1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ଵ ൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃
𝜕𝑢௥ଵ
𝜕𝜃  sin 𝜃 𝜂଴

𝜕𝑢௥ଶ
𝜕𝑡 𝜂଴

ଶ ൅ 𝑢௥ଵ
𝜕𝑢௥ଵ

𝜕𝑟 ൅ 𝑢ఏଵ
1
𝑟

𝜕𝑢௥ଵ
𝜕𝜃 െ

𝑢ఏଵ
ଶ

𝑟 𝜂଴
ଶ

ൌ െ
𝜕𝑝ଶ
𝜕𝑟 𝜂଴

ଶ ൅ 𝑂ℎ
1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ଶ ൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃
𝜕𝑢௥ଶ
𝜕𝜃  sin 𝜃 𝜂଴

ଶ

𝜕𝑢௥ଷ
𝜕𝑡 𝜂଴

ଷ ൅ 𝑢௥ଵ
𝜕𝑢௥ଶ

𝜕𝑟 ൅ 𝑢௥ଶ
𝜕𝑢௥ଵ

𝜕𝑟 ൅ 𝑢ఏଵ
1
𝑟

𝜕𝑢௥ଶ
𝜕𝜃 ൅ 𝑢ఏଶ

1
𝑟

𝜕𝑢௥ଵ
𝜕𝜃 െ

2𝑢ఏଵ𝑢ఏଶ
𝑟 𝜂଴

ଷ

ൌ െ
𝜕𝑝ଷ
𝜕𝑟 𝜂଴

ଷ ൅ 𝑂ℎ
1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ଷ ൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃
𝜕𝑢௥ଷ
𝜕𝜃  sin 𝜃 𝜂଴

ଷ

1st order

2nd order

3rd order



Boundary conditions – two steps needed
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Weakly nonlinear drop shape oscillations

First step – substitute series expansions into the boundary conditions, 
e.g. kinematic

𝑢௥ ൌ
𝐷𝜂
𝐷𝑡 ൌ  

𝜕𝜂
𝜕𝑡 ൅

𝑢ఏ
𝑟

𝜕𝜂
𝜕𝜃

becomes (expansions up to 3rd order)

𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴
ଶ ൅ 𝑢௥ଷ 𝜂଴

ଷ ൌ  
𝜕
𝜕𝑡 𝜂ଵ 𝜂଴ ൅ 𝜂ଶ 𝜂଴

ଶ ൅ 𝜂ଷ 𝜂଴
ଷ ൅ 𝑢ఏଵ 𝜂଴ ൅ 𝑢ఏଶ 𝜂଴

ଶ ൅ 𝑢ఏଷ 𝜂଴
ଷ 1

𝑟
𝜕

𝜕𝜃 𝜂ଵ 𝜂଴ ൅ 𝜂ଶ 𝜂଴
ଶ ൅ 𝜂ଷ 𝜂଴

ଷ

at  𝑟 ൌ 𝑟௦ 𝜃, 𝑡 ൌ 1 ൅ 𝜂 𝜃, 𝑡

Second step – represent functions at the deformed surface by their 
values at the undeformed surface  Taylor expansion
– e.g. for radial velocity component

𝑢௥|௥ୀଵାఎ ൌ 𝑢௥|௥ୀଵ ൅
1
1!

𝜕𝑢௥
𝜕𝑟 |௥ୀଵ 𝜂 ൅

1
2!

𝜕ଶ𝑢௥
𝜕𝑟ଶ |௥ୀଵ 𝜂ଶ ൅ ⋯

at  𝑟 ൌ 1 ൅ 𝜂 𝜃, 𝑡

, where  𝜂 𝜃, 𝑡 ൌ 𝜂ଵ𝜂଴ ൅ 𝜂ଶ𝜂଴
ଶ ൅ 𝜂ଷ𝜂଴

ଷ ൅ ⋯



Boundary conditions – second step
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Weakly nonlinear drop shape oscillations

Introducing these expansions into, e.g., the kinematic boundary condition

𝑢௥ଵ ൅
𝜕𝑢௥ଵ

𝜕𝑟 𝜂ଵ𝜂଴ ൅ 𝜂ଶ𝜂଴
ଶ ൅

1
2

𝜕ଶ𝑢௥ଵ
𝜕𝑟ଶ 𝜂ଵ𝜂଴

ଶ 𝜂଴ ൅ 𝑢௥ଶ ൅
𝜕𝑢௥ଶ

𝜕𝑟 𝜂ଵ𝜂଴ ൅ 𝜂ଶ𝜂଴
ଶ 𝜂଴

ଶ ൅ 𝑢௥ଷ ൅
𝜕𝑢௥ଷ

𝜕𝑟 𝜂ଵ𝜂଴ ൅ 𝜂ଶ𝜂଴
ଶ 𝜂଴

ଷ ൌ

𝜕𝜂ଵ
𝜕𝑡 𝜂଴ ൅

𝜕𝜂ଶ
𝜕𝑡 𝜂଴

ଶ ൅
𝜕𝜂ଷ
𝜕𝑡 𝜂଴

ଷ ൅ ൥
𝑢ఏଵ

𝑟 ൅
𝜕

𝜕𝑟
𝑢ఏଵ

𝑟 𝜂ଵ𝜂଴ ൅ 𝜂ଶ𝜂଴
ଶ 𝜂଴ ൅

𝑢ఏଶ
𝑟 ൅

𝜕
𝜕𝑟

𝑢ఏଶ
𝑟 𝜂ଵ𝜂଴ ൅ 𝜂ଶ𝜂଴

ଶ 𝜂଴
ଶ ൅

𝑢ఏଷ
𝑟 ൅

𝜕
𝜕𝑟

𝑢ఏଷ
𝑟 𝜂ଵ𝜂଴ ൅ 𝜂ଶ𝜂଴

ଶ 𝜂଴
ଷ൩

𝜕𝜂ଵ
𝜕𝜃 𝜂଴ ൅

𝜕𝜂ଶ
𝜕𝜃 𝜂଴

ଶ ൅
𝜕𝜂ଷ
𝜕𝜃 𝜂଴

ଷ

𝑢௥ଵ 𝜂଴ ൅ 𝑢௥ଶ 𝜂଴
ଶ ൅ 𝑢௥ଷ 𝜂଴

ଷ ൌ  
𝜕
𝜕𝑡 𝜂ଵ 𝜂଴ ൅ 𝜂ଶ 𝜂଴

ଶ ൅ 𝜂ଷ 𝜂଴
ଷ ൅ 𝑢ఏଵ 𝜂଴ ൅ 𝑢ఏଶ 𝜂଴

ଶ ൅ 𝑢ఏଷ 𝜂଴
ଷ 1

𝑟
𝜕

𝜕𝜃 𝜂ଵ 𝜂଴ ൅ 𝜂ଶ 𝜂଴
ଶ ൅ 𝜂ଷ 𝜂଴

ଷ

at  𝑟 ൌ 1 ൅ 𝜂 𝜃, 𝑡 yields

at  𝑟 ൌ 1
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Weakly nonlinear drop shape oscillations

Kinematic boundary conditions up to 3rd order
Collecting the terms with equal powers of 𝜂଴ yields (e.g. kinematic) 

𝑢௥ଵ𝜂଴ ൌ  
𝜕𝜂ଵ
𝜕𝑡 𝜂଴1st order

𝑢௥ଶ ൅
𝜕𝑢௥ଵ

𝜕𝑟 𝜂ଵ 𝜂଴
ଶ ൌ

𝜕𝜂ଶ
𝜕𝑡 ൅ 𝑢ఏଵ

1
𝑟

𝜕𝜂ଵ
𝜕𝜃 𝜂଴

ଶ2nd order

𝑢௥ଷ ൅
𝜕𝑢௥ଵ

𝜕𝑟 𝜂ଶ ൅
𝜕𝑢௥ଶ

𝜕𝑟 𝜂ଵ ൅
1
2

𝜕ଶ𝑢௥ଵ
𝜕𝑟ଶ 𝜂ଵ

ଶ 𝜂଴
ଷ ൌ3rd order

at  𝑟 ൌ 1

at  𝑟 ൌ 1

at  𝑟 ൌ 1
𝜕𝜂ଷ
𝜕𝑡 ൅ 𝑢ఏଵ

1
𝑟

𝜕𝜂ଶ
𝜕𝜃 ൅ 𝑢ఏଶ

1
𝑟

𝜕𝜂ଵ
𝜕𝜃 ൅

𝜕
𝜕𝑟

𝑢ఏଵ
𝑟 𝜂ଵ

𝜕𝜂ଵ
𝜕𝜃 𝜂଴

ଷ
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Weakly nonlinear drop shape oscillations

Initial conditions
First initial condition is derived from the requirement that the drop volume 
must be conserved despite the deformation. For this purpose, we write

𝑟௦ 𝜃, 0 ൌ 𝑅෨ ൅ 𝜂଴𝑃௠ cos 𝜃

Formulating the non-dimensional drop volume as
4𝜋
3 ൌ െ

2𝜋
3 න 𝑟௦

ଷ cos 𝜃 , 0 𝑑 cos 𝜃
ିଵ

ୡ୭ୱ ఏୀଵ

Reveals the form of the initial surface shape as

𝑟௦ 𝜃, 0 ൌ 1 ൅ 𝜂଴𝑃௠ cos 𝜃 െ 𝜂଴
ଶ 1

2𝑚 ൅ 1 െ
𝜂଴

ଷ

6 න 𝑃௠ሺcos 𝜃ሻଷ𝑑 cos 𝜃 ∓ ⋯
ଵ

ିଵ

from where we read the surface shape contributions keeping the drop volume

Further condition:
𝜕𝜂
𝜕𝑡 𝜃, 0 ൌ 0

𝜕𝜂ଵ
𝜕𝑡 𝜃, 0  𝜂଴ ൅

𝜕𝜂ଶ
𝜕𝑡 𝜃, 0  𝜂଴

ଶ ൅
𝜕𝜂ଷ
𝜕𝑡 𝜃, 0  𝜂଴

ଷ ൌ 0



13 Equations of motion – first order

Continuity equation

𝜕𝑢௥ଵ
𝜕𝑡 െ 𝑂ℎ ቈ

1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ଵ ൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃  
𝜕𝑢௥ଵ
𝜕𝜃 sin 𝜃 ቉ ൅

𝜕𝑝ଵ
𝜕𝑟 ൌ 0

𝜕𝑢ఏଵ
𝜕𝑡 െ 𝑂ℎ ൥

1
𝑟ଶ

𝜕
𝜕𝑟 𝑟ଶ 𝜕𝑢ఏଵ

𝜕𝑟 ൅
1
𝑟ଶ

𝜕
𝜕𝜃

1
sin 𝜃

𝜕
𝜕𝜃 𝑢ఏଵ sin 𝜃 ൅

2
𝑟ଶ

𝜕𝑢௥ଵ
𝜕𝜃 ቉ ൅

1
𝑟

𝜕𝑝ଵ
𝜕𝜃 ൌ 0

1
𝑟ଶ

𝜕
𝜕𝑟 𝑟ଶ𝑢௥ଵ ൅

1
𝑟 sin 𝜃

𝜕
𝜕𝜃 𝑢ఏଵ sin 𝜃 ൌ 0

Momentum equation – radial

Momentum equation – polar

Weakly nonlinear drop shape oscillations

Institut für Strömungslehre und Wärmeübertragung
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Weakly nonlinear drop shape oscillations

Boundary and initial conditions – first order
Kinematic boundary condition 𝑢௥ଵ ൌ  

𝜕𝜂ଵ
𝜕𝑡

Dynamic boundary condition – zero shear stress

𝑟
𝜕

𝜕𝑟
𝑢ఏଵ

𝑟 ൅
1
𝑟

𝜕𝑢௥ଵ
𝜕𝜃 ൌ 0

at r = 1

at r = 1

Dynamic boundary condition – zero normal stress

െ𝑝ଵ ൅ 2𝑂ℎ
𝜕𝑢௥ଵ

𝜕𝑟 െ 2𝜂ଵ ൅
𝜕𝜂ଵ
𝜕𝜃 cot 𝜃 ൅

𝜕ଶ𝜂ଵ
𝜕𝜃ଶ ൌ 0 at r = 1

Initial conditions
𝜂ଵ 𝜃, 0 ൌ 𝑃௠ cos 𝜃
𝜕𝜂ଵ
𝜕𝑡 𝜃, 0 ൌ 0 Zero rate of shape change

Shape according to 
Legendre polynomial
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Weakly nonlinear drop shape oscillations

First-order solutions – by Stokes stream function
The two-dimensional velocity field represented by Stokes stream function 
We define the first-order velocity components as the derivatives

𝑢௥ଵ ൌ െ
1

𝑟ଶ sin 𝜃
𝜕𝜓
𝜕𝜃

𝑢ఏଵ ൌ
1

𝑟 sin 𝜃
𝜕𝜓
𝜕𝑟

This velocity field is solenoidal, i.e., it satisfies the continuity equation 
for the incompressible fluid.
Substitute this into the 1st-order vectorial momentum equation and take its curl

1
𝑂ℎ

𝜕
𝜕𝑡 െ 𝐸ଶ 𝐸ଶ𝜓 ൌ 0 where 𝐸ଶ ൌ

𝜕ଶ

𝜕𝑟ଶ ൅
sin 𝜃

𝑟ଶ
𝜕

𝜕𝜃
1

sin 𝜃
𝜕

𝜕𝜃

 Solution 𝜓 ൌ 𝜓ଵ ൅ 𝜓ଶ ൌ 𝐶ଵ௠𝑟௠ାଵsinଶ𝜃𝑃′௠ cos 𝜃 exp െ𝛼௠𝑡
൅𝐶ଶ௠𝑞𝑟 𝑗௠ 𝑞𝑟 sinଶ𝜃𝑃′௠ cos 𝜃 exp െ𝛼௠𝑡 𝑞 ൌ

𝛼௠
𝑂ℎ





First-order solutions – velocity and pressure fields 

Institute of Fluid Mechanics and Heat Transfer

16

𝑢௥ଵ ൌ െ 𝐶ଵ௠𝑟௠ିଵ ൅ 𝐶ଶ௠𝑞ଶ 𝑗௠ 𝑞𝑟
𝑞𝑟 𝑚 𝑚 ൅ 1 𝑃௠ሺcos 𝜃ሻ 𝑒ିఈ೘௧

𝑢ఏଵ ൌ  𝐶ଵ௠ሺ𝑚 ൅ 1ሻ𝑟௠ିଵ ൅ 𝐶ଶ௠𝑞ଶ 𝑚 ൅ 1
𝑗௠ 𝑞𝑟

𝑞𝑟 െ 𝑗௠ାଵሺ𝑞𝑟ሻ  sin 𝜃 𝑃௠
ᇱ ሺcos 𝜃ሻ 𝑒ିఈ೘௧

𝐶ଵ௠ ൌ
𝜂ଵ𝛼௠

𝑚 𝑚 ൅ 1  1 ൅
2 𝑚ଶ െ 1

2𝑞𝑗௠ାଵ 𝑞 /𝑗௠ሺ𝑞ሻ െ 𝑞ଶ

𝐶ଶ௠ ൌ െ
2 𝑚 െ 1 𝜂ଵ𝛼௠

𝑚𝑞 2𝑞𝑗௠ାଵ 𝑞 െ 𝑞ଶ𝑗௠ 𝑞

𝑝ଵ ൌ െ𝐶ଵ௠ 𝑚 ൅ 1 𝛼௠𝑟௠𝑃௠𝑒ିఈ೘௧

, where 𝑞 ൌ ఈ೘
ை௛

𝐶ଵ௠ and 𝐶ଶ௠ determined by first-order 
kinematic and zero shear stress BCs

Weakly nonlinear drop shape oscillations

We seek first-order surface deformation in the form 𝜂ଵ 𝜃, 𝑡 ൌ 𝜂ଵ𝑃௠ cos 𝜃 𝑒ିఈ೘௧

Velocity and pressure are found as



First-order solutions – characteristic equation
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Zero normal stress BC yields characteristic equation of the drop
𝛼௠,଴

ଶ

𝛼௠
ଶ ൌ

2ሺ𝑚ଶ െ 1ሻ
𝑞ଶ െ 2𝑞 𝑗௠ାଵ/𝑗௠

െ 1 ൅
2𝑚 𝑚 െ 1

𝑞ଶ 1 ൅
2ሺ𝑚 ൅ 1ሻ𝑗௠ାଵ/𝑗௠

2𝑗௠ାଵ/𝑗௠ െ 𝑞
𝛼௠,଴ ൌ 𝑚 𝑚 െ 1 𝑚 ൅ 2

𝜎
𝜌𝑎ଷ

ଵ/ଶ

Ω௠ ൌ
𝛼௠

𝛼௠,଴

Weakly nonlinear drop shape oscillations

, where

 Complex conjugate solutions, therefore two different time behaviours

𝑞 ൌ
𝛼௠
𝑂ℎ 𝑂ℎ ൌ

𝜇
𝜎𝑎𝜌



Institute of Fluid Mechanics and Heat Transfer

18

Weakly nonlinear drop shape oscillations

First-order solutions – damped drop-shape oscillation
Drop surface shape 

as a function of time for
0 = 0.1, m = 2, Oh = 0.02

where

and

𝑟௦ 𝜃, 𝑡 ൌ 1 ൅ 𝜂଴𝜂ଵ 𝜃, 𝑡

𝜂ଵ 𝜃, 𝑡 ൌ 𝜂ଵ
ሺ௣ሻ𝑒ିఈ೘

ሺ೛ሻ௧ ൅ 𝜂ଵ
ሺ௡ሻ𝑒ିఈ೘

ሺ೙ሻ௧ 𝑃௠ cos 𝜃

𝜂ଵ
ሺ௣ሻ ൌ െ

𝛼௠
௡

𝛼௠
௣ െ 𝛼௠

௡ ,  𝜂ଵ
ሺ௡ሻ ൌ

𝛼௠
௣

𝛼௠
௣ െ 𝛼௠

௡

Zrnić, Berglez
& Brenn, 2022
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Weakly nonlinear drop shape oscillations

Equations of motion – second order
Continuity equation

𝜕𝑢௥ଶ
𝜕𝑡 െ 𝑂ℎ ቈ

1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ଶ ൅
1

𝑟ଶ sin 𝜃
𝜕

𝜕𝜃  
𝜕𝑢௥ଶ
𝜕𝜃 sin 𝜃 ቉ ൅

𝜕𝑝ଶ
𝜕𝑟 ൌ

𝜕𝑢ఏଶ
𝜕𝑡 െ 𝑂ℎ ൥

1
𝑟ଶ

𝜕
𝜕𝑟 𝑟ଶ 𝜕𝑢ఏଶ

𝜕𝑟 ൅
1
𝑟ଶ

𝜕
𝜕𝜃

1
sin 𝜃

𝜕
𝜕𝜃 𝑢ఏଶ sin 𝜃 ൅

2
𝑟ଶ

𝜕𝑢௥ଶ
𝜕𝜃 ቉ ൅

1
𝑟

𝜕𝑝ଶ
𝜕𝜃 ൌ

1
𝑟ଶ

𝜕
𝜕𝑟 𝑟ଶ𝑢௥ଶ ൅

1
𝑟 sin 𝜃

𝜕
𝜕𝜃 𝑢ఏଶ sin 𝜃 ൌ 0

Momentum equation – radial

Momentum equation – polar
െ𝑢௥ଵ

𝜕𝑢௥ଵ
𝜕𝑟 െ 𝑢ఏଵ

1
𝑟

𝜕𝑢௥ଵ
𝜕𝜃 ൅

𝑢ఏଵ
ଶ

𝑟

െ𝑢௥ଵ
𝜕𝑢ఏଵ

𝜕𝑟 െ 𝑢ఏଵ
1
𝑟

𝜕𝑢ఏଵ
𝜕𝜃 െ

𝑢௥ଵ𝑢ఏଵ
𝑟
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Weakly nonlinear drop shape oscillations

Boundary and initial conditions – second order
Kinematic boundary condition

Dynamic boundary condition – zero shear stress

𝑟
𝜕

𝜕𝑟
𝑢ఏଶ

𝑟 ൅
1
𝑟

𝜕𝑢௥ଶ
𝜕𝜃 ൌ െ𝜂ଵ

𝜕
𝜕𝑟 𝑟

𝜕
𝜕𝑟

𝑢ఏଵ
𝑟 ൅

1
𝑟

𝜕𝑢௥ଵ
𝜕𝜃 െ 2 𝑟

𝜕
𝜕𝑟

𝑢௥ଵ
𝑟 െ

1
𝑟

𝜕𝑢ఏଵ
𝜕𝜃

1
𝑟

𝜕𝜂ଵ
𝜕𝜃

at r = 1

at r = 1

Dynamic boundary condition – zero normal stress

െ𝑝ଶ ൅ 2𝑂ℎ
𝜕𝑢௥ଶ

𝜕𝑟 െ 2𝜂ଶ ൅
𝜕𝜂ଶ
𝜕𝜃 cot 𝜃 ൅

𝜕ଶ𝜂ଶ
𝜕𝜃ଶ ൌ 𝜂ଵ

𝜕𝑝ଵ
𝜕𝑟 െ 2𝑂ℎ 𝜂ଵ

𝜕ଶ𝑢௥ଵ
𝜕𝑟ଶ െ

1
𝑟

𝜕𝜂ଵ
𝜕𝜃 𝑟

𝜕
𝜕𝑟

𝑢ఏଵ
𝑟 ൅

1
𝑟

𝜕𝑢௥ଵ
𝜕𝜃

at r = 1

𝑢௥ଶ െ
𝜕𝜂ଶ
𝜕𝑡 ൌ 𝑢ఏଵ

1
𝑟

𝜕𝜂ଵ
𝜕𝜃 െ

𝜕𝑢௥ଵ
𝜕𝑟 𝜂ଵ

െ 2𝜂ଵ
ଶ ൅ 2𝜂ଵ

𝜕𝜂ଵ
𝜕𝜃 cot 𝜃 ൅ 2𝜂ଵ

𝜕ଶ𝜂ଵ
𝜕𝜃ଶ

Initial conditions 𝜂ଶ 𝜃, 0 ൌ െ
1

2𝑚 ൅ 1
𝜕𝜂ଶ
𝜕𝑡 𝜃, 0 ൌ 0
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Weakly nonlinear drop shape oscillations

Approach to a second-order solution

Start from the second-order momentum equation

𝜕𝑢௥ଶ
𝜕𝑡 െ 𝑂ℎ ቈ

1
𝑟ଶ

𝜕ଶ

𝜕𝑟ଶ 𝑟ଶ𝑢௥ଶ ൅
1

𝑟ଶ 𝑠𝑖𝑛 𝜃
𝜕

𝜕𝜃  
𝜕𝑢௥ଶ
𝜕𝜃  𝑠𝑖𝑛 𝜃 ቉ ൅

𝜕𝑝ଶଵ
𝜕𝑟 ൌ െ𝑢௥ଵ

𝜕𝑢௥ଵ
𝜕𝑟 െ 𝑢ఏଵ

1
𝑟

𝜕𝑢௥ଵ
𝜕𝜃 ൅

𝑢ఏଵ
ଶ

𝑟Radial

𝜕𝑢ఏଶ
𝜕𝑡 െ 𝑂ℎ ൥

1
𝑟ଶ

𝜕
𝜕𝑟 𝑟ଶ 𝜕𝑢ఏଶ

𝜕𝑟 ൅
1
𝑟ଶ

𝜕
𝜕𝜃

1
𝑠𝑖𝑛 𝜃

𝜕
𝜕𝜃 𝑢ఏଶ 𝑠𝑖𝑛 𝜃 ൅

2
𝑟ଶ

𝜕𝑢௥ଶ
𝜕𝜃 ቉ ൅

1
𝑟

𝜕𝑝ଶଵ
𝜕𝜃 ൌ െ𝑢௥ଵ

𝜕𝑢ఏଵ
𝜕𝑟 െ 𝑢ఏଵ

1
𝑟

𝜕𝑢ఏଵ
𝜕𝜃 െ

𝑢௥ଵ𝑢ఏଵ
𝑟

Polar

Vectorial second-order momentum equation, in symbolic formulation
𝜕𝑢ଶ
𝜕𝑡 െ 𝑂ℎ∆𝑢ଶ ൅ 𝛻𝑝ଶଵ ൌ െ 𝑢ଵ · 𝛻 𝑢ଵ ൌ െ𝛻

𝑢ଵ
ଶ

2 ൅ 𝑢ଵ ൈ 𝛻 ൈ 𝑢ଵ


𝜕𝑢ଶ
𝜕𝑡 െ 𝑂ℎ ∆𝑢ଶ ൅ 𝛻 𝑝ଶଵ ൅

𝑢ଵ
ଶ

2 ൌ 𝑢ଵ ൈ 𝛻 ൈ 𝑢ଵ ൌ
1

𝑂ℎ
1

𝑟ଶsinଶ𝜃
𝜕𝜓ଶ
𝜕𝑡 𝛻𝜓

Start from the pressure p2. The solution is composed as p2 = p21 + p22 ,
solving the inhomogeneous and the homogeneous equations, respectively
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Weakly nonlinear drop shape oscillations

Approach to a second-order solution
The divergence of this equation generates an equation determining pressure p2
This would be particularly elegant if the Helmholtz decomposition of the right-
hand vector was known 

𝜕𝑢ଶ
𝜕𝑡 െ 𝑂ℎ ∆𝑢ଶ ൅ 𝛻 𝑝ଶଵ ൅

𝑢ଵ
ଶ

2 ൌ
1

𝑂ℎ
1

𝑟ଶsinଶ𝜃
𝜕𝜓ଶ
𝜕𝑡 𝛻𝜓 ൌ െ𝛻𝜙 ൅ 𝛻 ൈ 𝐹

Taking the divergence of this equation would then yield the Laplace equation

∆ 𝑝ଶଵ ൅
𝑢ଵ

ଶ

2 ൅ 𝜙 ൌ 0

for another modified second-order pressure. But we do not have the Helmholtz 
decomposition. Therefore we apply brute force – series expansions of the rhs.
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Weakly nonlinear drop shape oscillations

Approach to a second-order solution
Naming                       , we write the Poisson equation for      as℘ଶଵ ≔ 𝑝ଶଵ ൅ 𝑢ଵ

ଶ 2⁄ ℘ଶଵ

𝑟ଶ∆ ℘ଶଵ ൌ െ𝑞଺𝐶ଶ௠
ଶ ቎ ෍ 𝑐௞௠ 𝑞𝑟 ଶ௞ାଶ௠ିଶ

ே

௞ୀ଴

െ ෍ 𝑏௞௠ 𝑞𝑟 ଶ௞ାଶ௠
ே

௞ୀ଴

൅
𝐶ଵ௠
𝐶ଶ௠

𝑚 ൅ 1
𝑞௠ାଵ ෍ 2𝑘 ൅ 𝑚 ൅ 1 𝑎௞௠ 𝑞𝑟 ଶ௞ାଶ௠ିଶ

ே

௞ୀ଴

ൈ

෍ 𝐶ଷ௟𝑃௟ 𝑥
ଶ௠

௟ୀ଴

൅ ෍ 𝑏௞௠ 𝑞𝑟 ଶ௞ାଶ௠ିଶ
ே

௞ୀ଴

൅
𝐶ଵ௠
𝐶ଶ௠

1
𝑞௠ାଵ ෍ 𝑎௞௠ 𝑞𝑟 ଶ௞ାଶ௠ିଶ

ே

௞ୀ଴

ൈ 𝑚ଶ 𝑚 ൅ 1 ଶ ෍ 𝐶ସ௟𝑃௟ 𝑥
ଶ௠

௟ୀ଴

቏ 𝑒ିଶఈ೘௧

where the various series expansions represent the spherical Bessel and 
Legendre functions involved in the right-hand side. This kind of Poisson equation 
can be solved analytically, satisfying boundary conditions.

With the pressure known, the radial and polar velocity components are found. 
Finally, the drop shape is determined. Zrnić, Berglez

& Brenn, 2022

𝑥 ≔ cos 𝜃



Solutions “22” satisfy the homogeneous equations of motion and exhibit time 
behaviour different from the solutions “21”;
 represents quasi-periodic motion

Third-order solutions are obtained using the same methods

Truncated series expansions  check drop volume conservation: R=[V(t)-Vs]/Vs
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Weakly nonlinear drop shape oscillations

Second-order solutions “22” and third-order solutions

Relative 
volume 
deviation 
R = f(0,t) for 
different m

Maximum 
allowable 0
for R=2 % at 
m=2 for 
different Oh

Zrnić, Berglez
& Brenn, 2022
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𝐿
𝑊 𝑡 ൌ

𝑟௦ሺ0, 𝑡ሻ

𝑟௦
𝜋
2 , 𝑡

The aspect ratio of the drop in time 
calculated as

Radial position of points on the 
surface of the axisymmetric drop 

𝑟௦ 𝜃, 𝑡 ൌ 1 ൅ 𝜂଴𝜂ଵ 𝜃, 𝑡 ൅ 𝜂଴
ଶ𝜂ଶሺ𝜃, 𝑡ሻ ൅ 𝜂଴

ଷ𝜂ଷ 𝜃, 𝑡

Verification – oscillations 
for 

𝑂ℎ ൌ 0.1

Weakly nonlinear drop shape oscillations



Institute of Fluid Mechanics and Heat Transfer

26

Weakly nonlinear drop shape oscillations

Period length and damping factor for m=2
Complex angular frequency is m = i 2/tp+ r

Oscillation period tp = f(t) Damping factor r = f(t)
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27 Oscillations with supercritical = 0.56 at m=4

(a)– oscillation frequency and (b) – damping factor of a drop, which is linearly 
supercritical at m=4

 Linear analysis predicts aperiodic behaviour

Ω୫ ൌ
𝛼௠

𝛼௠,଴

Weakly nonlinear drop shape oscillations

(a) (b)
(b)(a)

Oh = 0.56 Oh = 0.56



Institute of Fluid Mechanics and Heat Transfer

28 Oscillations with supercritical at m=4

The droplet meridional section on the video is 
rotated by 90° and shown for 0 ൏ 𝑡 ൏ 3

𝜂଴ ൌ 0.06

Weakly nonlinear drop shape oscillations



Summary
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• Weakly nonlinear analysis is a method of successive approximation to a 
problem solution

• The analysis builds on series expansions of the unknowns of a physical problem 
– here of the flow field variables

• At each approximation order  2, the unknowns are governed by linear 
differential equations for the respective order, with nonlinear terms in the 
solutions of the lower orders

• The solutions may represent nonlinear system behaviour, but with the limitation 
to moderate deformations, since

• volume is not conserved inherently and
• boundary conditions satisfied on the deformed system boundaries are 

represented as Taylor series
• In the present case studied, nonlinear system behaviour such as mode coupling 

and quasi-periodicity of the oscillatory motion is captured by the analysis

Weakly nonlinear drop shape oscillations
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