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Introduction

In continuum mechanics (especially in non-linear solid 
mechanics) it is well-known that vectors and also (pseudo-) 
scalars obey

• different transformation laws when changing the
coordinate system

and different rules

• upon pushing them forward or pulling them back between
configurations.

The vectorial objects are basically classified as covariant or
contravariant, though there frequently occur objects which
deviate from either transformation behavior.
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Introduction (contd.)

For some objects these transformations are commonly

derived from geometrical considerations, e.g. from

deforming line-, area- or volume-elements.

For other objects, the transformation behavior seems to

be more arbitrary and one sometimes considers

differently transforming versions of „the same object“.
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Questions to be addressed

Today we address the following questions:

• Do physical fields possess a natural type of

variance?

• What does it mean to change the variance?

• How does the variance matter for formulating

constitutive laws?
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Tranformations in 3D

In three-dimensional space there occur

• four different transformation types for „vector fields“ 

(and tensor indices)

• three different transformation types for „scalar fields“.

Note: objects with different transformation behavior

represent different geometrical entities.
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The four different „vector fields“ in 3D

In 3D there are four different field objects which are

characterized by three coefficients at each point:

1. (tangent) vector fields (infinitesimal line-elements)

2. differential one-forms or co-vector fields (densities of

surfaces)

3. bi-vector fields (infinitesimal surface elements)

4. differential two-form (densities of curves)
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Tangent vector fields

Vector fields can be thought of as

indicating infinitesimal line

elements (as if connecting

neighboring points) attached to

each point.
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Differential one-form

(co-vector, surface density)

Basic differential one-forms arise as

differentials of functions.

They represent the density of

isosurfaces.

In general, a one-form need not be

the differential of a function.
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Bi-vector fields

Bi-vector fields represent

infinitesimal oriented surface

elements.

The surface elements have no

shape but only orientation and

„surface content“.

Elementary bi-vectors are

surfaces spanned by two line

segments (vector-fields).
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Two-forms

(line densities)

Two-forms may be thought of as

density of curves or curve-

segments.

Elementary line-densities arise as

density of intersection lines from

two surface densities (differential 

one-forms).
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Example

• vector fields

• displacement fields

• velocity fields

• differential one-forms

• (total) differentials of functions

• forces

• electrical field

• bi-vector fields

• surface elements

• normal vectors to surfaces

• two-forms

• currents (mass, charge, etc.)

• magnetic field
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Transformation of vector fields

Line elements deform with

space.

In the example, horizontal 

vectors get stretched while

vertical ones remain unchanged.
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Transformation of differential one-forms
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Differential one-forms deform

invers to tangential vectors.

If isosurfaces are pulled

apart, the differential 

(gradient) decreases.



Transformation of bi-vector fields

Bi-vectors reflect only

deformations within their local

plane.
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Transformation of two-forms (line-densities)

Line densities reflect the (inverse 

of) the deformation in a plane 

perpendicular to the local line-

direction.
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Different „scalars“

Besides the different types of vector quantities there are

three different quantities locally characterized by a 

number:

1. (true) scalars

2. tri-vector fields or pseudo-scalars

3. three-forms
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Examples

• scalars

• temperature

• potential (potential energy, electric potentials)

• tri-vectors

• volume-elements

• three-forms

• mass density

• charge density

• energy density

• …
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Charts and coordinates

Let 𝐵 be the domain of interest. Local

coordinates are obtained from a so-called

chart map 𝜑:𝐵 → ℝ3 which assigns to

each point 𝒑 ∈ 𝐵 bijectively three

numbers,

The inverse chart map 𝜑−1: ℝ3 → 𝐵
assigns to points 𝒙 ∈ ℝ3 its preimage in 𝐵,

Remark: 

• Upper indices are no exponents!
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𝜑 𝒑 = 𝑥1 𝒑 , 𝑥2 𝒑 , 𝑥3 𝒑 = 𝒙(𝒑).

𝜑−1 𝑥1, 𝑥2, 𝑥3 = 𝒑 𝒙 .

𝒑

𝑥1

𝑥2

𝒙 𝒑

𝜑−1
𝜑



Canonical tangent vector basis
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𝑥1

𝑥2

𝒙

𝑥1

𝑥2

𝑥3

𝑥3

The local basis vectors derive as tangents

to curves through a point 𝑝.

𝒑 = 𝜑−𝟏(𝒙)

𝑥 𝑦

𝑧

𝜕

𝜕𝑥1
𝒑

𝜕

𝜕𝑥2
(𝒑)

𝜕

𝜕𝑥3
𝒑

𝜑

𝜑−1



Canonical basis of differential one-forms

The coordinate functions 𝑥1(𝒑), 𝑥2(𝒑) and 𝑥3(𝒑) are

scalar functions of space. Their differentials d𝑥𝑖 , 𝑖 =
1,2,3 represent densities of isosurfaces.
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𝜑

𝜑−1

d𝑥1

d𝑥2

d𝑥3



Canonical bi-vector basis
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𝑥1

𝑥2

𝒙

𝑥1

𝑥2

𝑥3

𝑥3

The local basis bi-vectors represent

signed surfaces spanned by the

tangent basis vectors 𝑝.

𝒑 = 𝜑−𝟏(𝒙)

𝑥 𝑦

𝑧

𝒃3 𝒑

𝒃1 𝒑 =
𝜕

𝜕𝑥2
∧

𝜕

𝜕𝑥3

𝒃2 𝒑

𝜑

𝜑−1



Canonical basis of differential two-forms

The basis of line densities d𝑎𝑖 , 𝑖 = 1,2,3 arise from

signed intersections of the isosourfaces.
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d𝑥1

d𝑥2

d𝑥3

𝑑𝑎1 = d𝑥2 ∧ d𝑥3

𝑑𝑎2

𝑑𝑎3



The basic three-form 

arises from the signed

intersection of the

isosurfaces.

Basis of tri-vectors and three-forms

The basic tri-vector is

the signed volume

spanned by the base

vectors.
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𝑑𝑣𝜑 𝜽𝜑



Mathematical basis definition

The „higher“ order basis elements derive from the

elementary bases
𝜕

𝜕𝑥𝑖
, d𝑥𝑖 as follows:
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𝜽𝜑 = 𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑖
⊗

𝜕

𝜕𝑥𝑗
⊗

𝜕

𝜕𝑥𝑘
. 𝑑𝑣𝜑 = 𝜀𝑖𝑗𝑘d𝑥

𝑖 ⊗d𝑥𝑗 ⊗d𝑥𝑘 .

𝒃𝑖 = 𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
⊗

𝜕

𝜕𝑥𝑘
, 𝑖 = 1,2,3 𝑑𝑎𝑖 = 𝜀𝑖𝑗𝑘d𝑥

𝑗 ⊗d𝑥𝑘, 𝑖 = 1,2,3

Bi-vector basis Two-form basis

Basic tri-vector Basic three-form

Original Einstein summation convention applies!



General fields
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𝑿 = 𝑋𝑖 𝒙 𝒑
𝜕

𝜕𝑥𝑖
𝒑 = 𝑋𝑖

𝜕

𝜕𝑥𝑖
𝜶 = 𝛼𝑖d𝑥

𝑖

Bi-vector field Two-form field

Tri-vector field Three-form field

Vector field One-form field

𝑫 = 𝐷𝑖𝒃
𝑖 𝜻 = 𝜁𝑖𝑑𝑎𝑖

𝑻 = 𝑇𝜽𝜑 𝝑 = 𝜗𝑑𝑣𝜑



Change of coordinate systems (i.e. of the

chart map)

Let 𝜑:𝐵 → ℝ3 be a chart map with coordinates 𝒙 =
𝑥1, 𝑥2, 𝑥3 and ෤𝜑: 𝐵 → ℝ3 an alternative chart map with

coordinates ෥𝒙 = ෤𝑥1, ෤𝑥2, ෤𝑥3 .

Functions 𝑓 on 𝐵 may then be expressed in 

dependence of either coordinates,

This likewise applies to the coordinate function

themselves,
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𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑓 𝜑−1 𝒙 = 𝑓 𝒑 𝒙 = 𝑓 ෤𝜑−1 ෥𝒙 = 𝑓 ෤𝑥1, ෤𝑥2, ෤𝑥3 .

𝑥𝑖 ෤𝑥1, ෤𝑥2, ෤𝑥3 ,

෤𝑥𝑖 𝑥1, 𝑥2, 𝑥3 .



Transformation behavior

The bases
𝜕

𝜕𝑥𝑖
, d𝑥𝑖 are obtained from derivatives. The 

local matrix for the change of bases may be obtained

from chain rule and the total differential 

Analogously in inverse direction,
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𝜕

𝜕𝑥𝑖
=
𝜕 ෤𝑥𝑗

𝜕𝑥𝑖
𝜕

𝜕 ෤𝑥𝑗
,

d𝑥𝑖 = d𝑥𝑖 ෤𝑥1, ෤𝑥2, ෤𝑥3 =
𝜕𝑥𝑖

𝜕 ෤𝑥𝑗
d෤𝑥𝑗 .

d ෤𝑥𝑖 = d෤𝑥𝑖 𝑥1, 𝑥2, 𝑥3 =
𝜕 ෤𝑥𝑖

𝜕𝑥𝑗
d𝑥𝑗 .

𝜕

𝜕 ෤𝑥𝑖
=

𝜕

𝜕 ෤𝑥𝑖
𝒑 =

𝜕

𝜕 ෤𝑥𝑖
𝒑 𝑥1, 𝑥2, 𝑥3 =෍

𝑖=1

3
𝜕

𝜕𝑥𝑗
𝒑

𝜕𝑥𝑗

𝜕 ෤𝑥𝑖
=
𝜕𝑥𝑗

𝜕 ෤𝑥𝑖
𝜕

𝜕𝑥𝑗
,



Transformation of the coefficient functions

Objectivity requires, that vector fields and one-forms, 

represent objects which are independent of the

coordinate system, i.e.

The coefficient functions thus need to transform

inversely to their basis fields,
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𝑿 = 𝑋𝑖
𝜕

𝜕𝑥𝑖
= ෨𝑋𝑖

𝜕

𝜕 ෤𝑥𝑖
𝜶 = 𝛼𝑖d𝑥

𝑖 = ෤𝛼𝑖d෤𝑥
𝑖 .and

෨𝑋𝑖 =
𝜕 ෤𝑥𝑖

𝜕𝑥𝑗
𝑋𝑗 ⇔ 𝑋𝑖 =

𝜕𝑥𝑖

𝜕 ෤𝑥𝑗
෨𝑋𝑗

෤𝛼𝑖 =
𝜕𝑥𝑗

𝜕 ෤𝑥𝑖
𝛼𝑗 ⇔ 𝛼𝑖 =

𝜕 ෤𝑥𝑗

𝜕𝑥𝑖
෤𝛼𝑗 .



Transformation of bi-vector basis

The basis bi-vectors are defined as

For a different coordinate system we have
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𝒃𝑖 = 𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
⊗

𝜕

𝜕𝑥𝑘
.

෩𝒃𝑖 = 𝜀𝑖𝑗𝑘
𝜕

𝜕 ෤𝑥𝑗
⊗

𝜕

𝜕 ෤𝑥𝑘

ෙA𝑝
𝑖 det 𝑨 𝜀𝑝𝑚𝑛 = 𝜀𝑖𝑗𝑘𝐴𝑗

𝑚𝐴𝑘
𝑛= 𝜀𝑖𝑗𝑘

𝜕𝑥𝑚

𝜕 ෤𝑥𝑗
𝜕𝑥𝑛

𝜕 ෤𝑥𝑘
𝜕

𝜕𝑥𝑚
⊗

𝜕

𝜕𝑥𝑛

= det
D𝒙

D෥𝒙

𝜕 ෤𝑥𝑖

𝜕𝑥𝑙
𝒃𝑙.

=
𝜕 ෤𝑥𝑖

𝜕𝑥𝑙
det

D𝒙

D෥𝒙
𝜀𝑙𝑚𝑛 𝜕

𝜕𝑥𝑚
⊗

𝜕

𝜕𝑥𝑛



Summary of transformation behaviors

Object 𝒙 ෥𝒙

scalar 𝑓 𝑓

vector field
𝑿 = 𝑋𝑖

𝜕

𝜕𝑥𝑖
෨𝑋𝑖 =

𝜕 ෤𝑥𝑖

𝜕𝑥𝑗
𝑋𝑖

one-form 𝜶 = 𝛼𝑖d𝑥
𝑖

෤𝛼𝑖 =
𝜕𝑥𝑗

𝜕 ෤𝑥𝑖
𝛼𝑗

bi-vector 𝑫 = 𝐷𝑖𝒃
𝑖

෩𝐷𝑖 = det
D෥𝒙

D𝒙

𝜕𝑥𝑗

𝜕 ෤𝑥𝑖
𝐷𝑗

two-form 𝜻 = 𝜁𝑖𝑑𝑎𝑖 ሚ𝜁𝑖 = det
D𝒙

D෥𝒙

𝜕 ෤𝑥𝑖

𝜕𝑥𝑗
𝜁𝑗

tri-vector 𝑻 = 𝑇𝜽𝜑 ෨𝑇 = det
D෥𝒙

D𝒙
𝑇

three-form 𝝑 = 𝜗𝑑𝑣𝜑 ሚ𝜗 = det
D𝒙

D෥𝒙
𝜗
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Remark

The different objects are principally different and without
an additional structure attached to the space (or the
material) they cannot be mapped into one-another. 

The most commonly used structure for such mappings
is a (Riemannian) metric tensor, which determines
lengths of and angles between vectors.

The metric tensor canonically determines measures for
areas and volumes as well as distances between
objects. 
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The metric tensor

The metric tensor is a purely covariant symmetric and positive definite 

tensor (bilinear form), i.e.,

𝒈 𝒗,𝒘 = 𝒈 𝒘,𝒗 and 𝒈 𝒗, 𝒗 > 0 for 𝒗 ≠ 𝟎.

The metric is 𝒈 = 𝑔𝑖𝑗d𝑥
𝑖 ⊗d𝑥𝑗 with the coefficients 𝒈

𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗
= 𝑔𝑖𝑗.

The scalar product between two vectors is calculated as

The according norm of a vector is

and the angle between two vectors is defined from
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𝒗 = 𝒈 𝒗, 𝒗 ,

cos ∠(𝒗,𝒘) =
𝒈 𝒗,𝒘

𝒗 𝒘
.

𝒈 𝒗,𝒘 = 𝑔𝑖𝑗𝑣
𝑖𝑤𝑗 .



Induced scalar products for other objects

With 𝑔𝑖𝑗 denoting the coefficients of the invers matrix of 𝑔𝑖𝑗, i.e. 𝑔𝑖𝑘𝑔𝑘𝑗 = δ𝑗
𝑖 the

canonical metrics on the different objects are
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Object 𝒈

scalar 1

vector field 𝒈 = 𝑔𝑖𝑗d𝑥
𝑖 ⊗d𝑥𝑗

one-form
෕𝒈 = 𝑔𝑖𝑗

𝜕

𝜕𝑥𝑖
⊗

𝜕

𝜕𝑥𝑗

bi-vector ෙഥ𝒈 = det𝒈𝑔𝑖𝑗𝑑𝑎𝑖 ⊗𝑑𝑎𝑗

two-form ഥ𝒈 = det ෕𝒈𝑔𝑖𝑗𝒃
𝑖 ⊗𝒃𝑗

tri-vector ෙന𝒈 = det𝒈𝑑𝑣𝜑 ⊗𝑑𝑣𝜑

three-form ന𝒈 = det ෕𝒈𝜽𝜑 ⊗𝜽𝜑



Switching between types

The metrics define canonical mappings between dual objects, e.g. 

mapping vectors to one-forms,

𝒗♭ = 𝑔𝑖𝑗𝑣
𝑗d𝑥𝑖, or vice versa 𝜶# = 𝑔𝑖𝑗𝛼𝑗

𝜕

𝜕𝑥𝑖
.

Or mapping bi-vectors to two-forms,

𝑫# = det 𝒈𝑔𝑖𝑗𝐷𝑗 𝑑𝑎𝑖, or vice versa 𝜻♭ = det ෕𝒈𝑔𝑖𝑗𝜁
𝑗𝒃𝑖.

A further canonical mapping (Hodge-star operator) maps between

one- and two-forms,

∗ 𝜶 = det 𝒈𝑔𝑖𝑗𝛼𝑗 𝑑𝑎𝑖, or vice versa ∗ 𝜻 = det ෕𝒈𝑔𝑖𝑗𝜁
𝑗 d𝑥𝑖

Therefore, there are canonical mappings between all four types of

vectorial objects.
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Cartesian coordinates

In Cartesian coordinates, the basis vectors are
orthonormal and thus the metric coefficients are

𝑔𝑖𝑗 = δ𝑖𝑗.

Therefore

• all the above metrics are Kronecker symbols

• and all transformations leave the coefficients
unchanged.

It therefore may seem futile to distinguish between
these vectorial objects.

However, upon deformation (even in rate form) these
different characteristics actually matter. 
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Deformation map and local coordinates
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Reference configuration 𝐵0 Current configuration 𝐵𝑡

𝑷 𝒑 = 𝜒 𝑷
𝜒

𝜒−1

𝑿 𝑷

𝑋1

𝑋2

𝑥1

𝑥2

𝒙 𝒑

𝛷

𝛷−1

𝜑−1
𝜑

𝜑 ∘ 𝜒 ∘ 𝛷 −1

𝒙 𝑿 = 𝜑 𝜒 𝛷 −1(𝑿)

𝛷 ∘ 𝜒−1 ∘ 𝜑−1



Deformation gradient
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Reference configuration 𝐵0 Current configuration 𝐵𝑡

𝜒 𝑷 + 𝜟𝑷 ≈ 𝜒 𝑷 + 𝑭(𝜟𝑷)

ෙ𝑭 = 𝑭−𝟏 = 𝐷𝜒−1

𝑷

The deformation gradient 𝑭 = 𝐷𝜒 is the derivative of the

deformation map. As a local linearization of 𝜒 the

deformation gradient maps tangent vectors 𝜟𝑷 at 𝑷 to

tangent vectors at 𝒑

𝑭 = 𝐷𝜒

𝜟𝑷
𝑭 𝜟𝑷

𝜒 𝑷

‟push forward“



Push-forward of base vectors

For the local base vectors we have

where 𝑭 is expressed in local coordinates by the coefficients
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𝜕

𝜕𝑋𝐼
∗

=
𝜕𝑷

𝜕𝑋𝐼
∗

≔
𝜕𝜒 𝑷

𝜕𝑋𝐼
=
𝜕𝒑

𝜕𝑥𝑖
𝜕𝑥𝑖

𝜕𝑋𝐼
=
𝜕𝑥𝑖

𝜕𝑋𝐼
𝜕

𝜕𝑥𝑖
= 𝐹𝐼

𝑖
𝜕

𝜕𝑥𝑖
,

𝐹𝐼
𝑖 =

𝜕𝑥𝑖

𝜕𝑋𝐼
.



Push-forward of tangent vectors

For a vector 𝑽 = 𝑉𝐼
𝜕

𝜕𝑋𝐼
we have

With respect to the basis
𝜕

𝜕𝑥𝑖
on the current configuration, 𝑽∗

has the coefficient functions 𝑽∗
𝑖 = 𝐹𝐼

𝑖𝑉𝐼 .

Remark: This is an actual transformation, mapping one

object into another and not just a change of basis as

regarded before. 
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𝑽∗ = 𝑉𝐼
𝜕

𝜕𝑋𝐼
∗

= 𝑉𝐼
𝜕

𝜕𝑋𝐼
∗

= 𝑉𝐼𝐹𝐼
𝑖
𝜕

𝜕𝑥𝑖
.



Push-forward of basis differentials

The push-forward is obtained by a total differential

For the coefficients of one-forms 𝜶 = 𝛼𝐼𝑑𝑋
𝐼 holds

𝛼∗ 𝑖 = ෘ𝐹𝑖
𝐼𝛼𝐼 .

We see that also upon deformation, one-form-

coefficients transform inversely to those of vector

fields.
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d𝑋𝐼 ∗ = d𝑋𝐼 𝒑 =
𝜕𝑋𝐼

𝜕𝑥𝑖
d𝑥𝑖 𝒑 = ෘ𝐹𝑖

𝐼d𝑥𝑖



Summary push-forward

Object 𝑿 𝒙

scalar 𝑓 𝑓∗ = 𝑓

vector field
𝑽 = 𝑉𝐼

𝜕

𝜕𝑋𝐼
𝑽∗

𝑖 = 𝐹𝐼
𝑖𝑉𝐼

one-form 𝜶 = 𝛼𝐼d𝑋
𝐼 𝜶∗ 𝑖 = ෘ𝐹𝑖

𝐼𝛼𝐼

bi-vector 𝑫 = 𝐷𝐼𝑩
𝐼 𝑫∗ 𝑖 = 𝐽 ෘ𝐹𝑖

𝐼𝐷𝐼

two-form 𝜡 = 𝑍𝐼𝑑𝐴𝐼 𝜡∗
𝑖 = 𝐽−1𝐹𝐼

𝑖𝑍𝐼

tri-vector 𝑻 = 𝑇0𝚯
𝛷 𝑇 = 𝐽𝑇0

three-form 𝝆 = 𝜌0𝑑𝑉𝛷 𝜌 = 𝐽−1𝜌0
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Where 𝐽 = det 𝑭



Summary pull-back

Object 𝑿 𝒙

scalar 𝑓∗ = 𝑓 𝑓

vector field (𝒗∗)𝐼= ෘ𝐹𝑖
𝐼𝑣𝑖

𝒗 = 𝑣𝑖
𝜕

𝜕𝑥𝑖

one-form (𝜶∗)𝐼 = 𝐹𝐼
𝑖𝛼𝑖 𝜶 = 𝛼𝑖d𝑥

𝑖

bi-vector (𝒅∗)𝐼 = 𝐽−1𝐹𝐼
𝑖𝑑𝑖 𝒅 = 𝑑𝑖𝒃

𝑖

two-form (𝜻∗)𝐼= 𝐽 ෘ𝐹𝑖
𝐼𝜁𝑖 𝜻 = 𝜁𝑖𝑑𝑎𝑖

tri-vector 𝑇0 = 𝐽−1𝑇 𝑻 = 𝑇𝚯𝜑

three-form 𝜌0 = 𝐽𝜌 𝝆 = 𝜌𝑑𝑣𝜑
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Where 𝐽 = det 𝑭



Transformation between objects does not 

commute with deformation
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𝜶 = d𝑓

𝑿 = 𝜶# = d𝑓 #

𝜶∗ = d𝑓 ∗ = d𝑓∗

𝑿∗ = d𝑓 #

∗

≠ d𝑓∗
#

≠ 𝜶∗
#



Cauchy stress tensors

Arguably, the nature of the (Cauchy) 

stress tensor, assigning a force

(one-form) to surface-elements, 

is a one-form-valued two-form,

ഥ𝝈 = 𝜎𝑖
𝑗
d𝑥𝑖 ⊗𝑑𝑎𝑗.

However, commonly we work with

contravariant stress tensors

𝝈 = 𝜎𝑖𝑗
𝜕

𝜕𝑥𝑖
⊗𝑑𝑎𝑗.

The coefficients are related by 𝜎𝑖𝑗 = 𝑔ු𝑖𝑘𝜎𝑘
𝑗

and 𝜎𝑖
𝑗
= 𝑔𝑖𝑘𝜎

𝑘𝑗.

In Cartesian coordinates the coefficients remain unchanged!
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https://baustatik-wiki.fiw.hs-wismar.de/



Pull-back to reference configurations

These seemingly „equal“ objects on the current configurations map to

different stress tensors on the reference configuration:

The contravariant tensor maps to the 2nd Piola-Kirchhoff-Tensor

𝑺 = 𝐽 ෘ𝐹𝑖
𝐼 ෘ𝐹𝑗

𝐽
𝜎𝑖𝑗

𝜕

𝜕𝑋𝐼
⊗𝑑𝐴𝐽,

while the mixed-variant tensor maps to the Mandel stress tensor

𝑴 = 𝐽𝐹𝐼
𝑖 ෘ𝐹𝑗

𝐽
𝜎𝑖
𝑗
d𝑋𝐼 ⊗𝑑𝐴𝐽.

Note that

𝑀𝐼
𝐽
= 𝐽𝐹𝐼

𝑖 ෘ𝐹𝑗
𝐽
𝑔𝑖𝑘𝜎

𝑘𝑗 = 𝐽𝐹𝐼
𝑖 ෘ𝐹𝑗

𝐽
𝑔𝑖𝑙𝐹𝐾

𝑙 ෘ𝐹𝑘
𝐾𝜎𝑘𝑗 = 𝑔𝑖𝑙𝐹𝐼

𝑖𝐹𝐾
𝑙 𝐽 ෘ𝐹𝑘

𝐾 ෘ𝐹𝑗
𝐽
𝜎𝑘𝑗 = 𝐶𝐼𝐾𝑆

𝐾𝐽,

with the right Cauchy-Green-Tensor 𝐶𝐼𝐽 = 𝑔𝑖𝑗𝐹𝐼
𝑖𝐹𝐽

𝑗
.
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Conjugate variance in Hyperelasticity

In Hyperelasticity we postulate the existence of an 
energy density 𝝍 = 𝜓 𝝐 𝑑𝑉Φ solely depending on a 
strain or deformation tensor 𝝐. 

The conjugate stress 𝜮 tensor to 𝝐 is obtained as

𝜮 =
d𝜓 𝝐

d𝝐
.

The stress tensor is a globally dual object to 𝝐 – i.e. it
has opposite index positions and upon contracting all 
indices it must result a three-form coefficient.

Therefore, the conjugate stress to 𝐶𝐼𝐽 is contravariant

with one upper index being a two-form index.
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Hyperelasticity and Hypoelasticity

Hyperelasticity may be equivalenty formulated based on 

different strain or deformation measures, usually in 

conjunction with the conjugate stress measure.

While the variance-types matter for the resulting

equations, the physics remains the same.

This is different in hypoelasticity, where the constitutive

laws connect rates of strains with stresses or rates of

stresses, e.g.

ሶ𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑑𝑘𝑙, where 𝒅 is the rate of deformation tensor.
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?



Objective rates

When connecting rates of changes of quantities on the

current configuration, there arises a difficulty in that the

total rate of change of a tensor fails to be a tensor in 

that it shows the wrong transformation behavior upon 

changing the coordinate system.

One therefore introduced so-called objective rates, 

which transform like tensors,

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑑𝑘𝑙
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°

some objective rate



When variance changes physics

However, even hypoelastic laws based on objective

rates suffer from history dependence of the results and

are no longer used much in solid mechanics.

This is different in fluid mechanics, where a Lagrangian

description is not an option.

However, in descriptions based on objective rates, the

„choice“ of variance of stress and strain actually yields

different constitutive equations.
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Objective rates in fluid mechanics

Maybe the most famous occurrence of objective rates in 

fluid dynamics are the models A and B devised by

Oldroyd for describing visco-elastic fluids,

Oldroyd A: 𝝈 + 𝜏1𝝈 = 2𝜇∗ 𝒅 + 𝜏2𝒅

Oldroyd B: 𝝈 + 𝜏1𝝈 = 2𝜇∗ 𝒅 + 𝜏2𝒅
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∆ ∆

𝛻 𝛻

„lower convected rate“

„upper convected rate“



Lie-derivative

Many objective rates are so-called Lie-derivatives. 

In non-linear solid mechanics the Lie-derivative of

tensorial objects 𝑻 when the body moves with velocity 𝒗
may be defined via pull-back 𝜒∗ and push-forward 𝜒∗ as

𝐿𝒗𝑻 = 𝜒∗
ሶ𝜒∗ 𝑻 .

For instance, the rate of deformation tensor 𝒅 =
1

2
𝜒∗ ሶ𝑪

is up to the factor ½ the Lie-derivative of the metric

𝒅 =
1

2
𝜒∗ ሶ𝑪 =

1

2
𝜒∗

ሶ𝜒∗ 𝒈 =
1

2
𝐿𝒗𝒈, since 𝑪 = 𝜒∗ 𝒈 .

13.01.2023

Univ.-Prof. Dr.-Ing. Thomas Hochrainer, Institut für Festigkeitslehre

52



The difference btw. upper and lower

convected rates

„Extra“ terms occuring in Lie-derivatives of objects with

upper indices follow from

𝐿𝒗
𝜕

𝜕𝑥𝑖
= −

𝜕𝑣𝑗

𝜕𝑥𝑖
𝜕

𝜕𝑥𝑗
,

while in the case of lower indices we have

ℒ𝒗d𝑥
𝑖 =

𝜕𝑣𝑖

𝜕𝑥𝑗
d𝑥𝑗.

For example, the coefficients of the rate-of-

deformation tensor are in standard coordinates

𝒅𝑖𝑗 =
1

2

𝜕𝑣𝑘

𝜕𝑥𝑖
𝑔𝑘𝑗 +

𝜕𝑣𝑘

𝜕𝑥𝑗
𝑔𝑘𝑖 .
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The Truesdell rate

The Lie-derivative of the contravariant stress tensor,

ℒ𝒗𝝈 𝒙
𝑖𝑗
= ሶ𝜎𝑖𝑗 −

𝜕𝑣𝑖

𝜕𝑥𝑘
𝜎𝑘𝑗 −

𝜕𝑣𝑖

𝜕𝑥𝑘
𝜎𝑖𝑙 +

𝜕𝑣𝑘

𝜕𝑥𝑘
𝜎𝑖𝑗,

is known as the Truesdell rate.
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Why the variance matters in rate form

The variance matters, when the change of type is done by raising
or lowering indices with the standard metric.

If for simplicity the rates of two vectors are connected through

𝐿𝒗𝑿 − 𝜇𝐿𝒗𝒀 = 𝟎 (1), i.e. with „upper convected rates“,

how does this relation differ from

𝐿𝒗𝑿
♭ − 𝜇𝐿𝒗𝒀

♭ = 𝟎 (2), i.e., with „lower convected rates“?

We have

𝐿𝒗𝒀
♭ = 𝐿𝒗 𝒈𝒀 = 𝐿𝒗𝒈𝒀 + 𝒈𝐿𝒗𝒀 = 2𝒅𝒀 + 𝒈𝐿𝒗𝒀,

𝐿𝒗𝑿
♭ = 𝐿𝒗 𝒈𝑿 = 𝐿𝒗𝒈𝑿 + 𝒈𝐿𝒗𝑿 = 2𝒅𝑿 + 𝒈𝐿𝒗𝑿.

Accordingly, we obtain from (1)

𝐿𝒗𝑿
♭ − 𝜇𝐿𝒗𝒀

♭ = 2𝒅 𝑿 − 𝜇𝒀 .
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Summary

The variance of physical fields is inherent to the fields‘ 
physical/geometrical identity.

Changing the variance

• changes the physical identity of a field,

• does not commute with push-forwards and pull-
backs,

• does not commute with Lie-derivatives.

Hyperelasticity may be formulated equivalently based
on different variances.

In elastic fluids, the right variance may depend on 
shape and characterisitc of elastic particles.
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