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Abstract—Accurate simulations of Vehicle-to-Any communi-
cation networks at urban intersections need to be based on
precise models. We approach this by analyzing the distribution of
neighboring vehicles a communication node sees as a function of
the distance to the closest intersection. Our analysis is based on
real world map data from the city of Linz in Austria, and used
both static random placement of vehicles, as well as the output
of a vehicular traffic simulator (SUMO). Using the Information
Bottleneck method, we discretize the road into a set amount of
intervals, and provide cumulative distribution functions for these
intervals. Through evaluating the resulting data for different
vehicle densities, we show that a low-complexity discretization
for the model of neighboring vehicles performs well. As a second
result, we demonstrate strongly diverging behavior between static
placement and SUMO simulations, proving the necessity for
accurate model assumptions. In this work, we provide the optimal
values of the interval boundaries, as well as the cumulative
distribution functions of the neighbors for all intervals.

I. INTRODUCTION

Good stochastic models are essential to ensure depend-
ability of communication systems. Considering Cooperative
Intelligent Transport Systems (C-ITS), a key parameter is
the distribution of neighboring nodes, which is required to
estimate the probability of channel overloading, as well as the
probability of a node being isolated. Typically, this information
is generated in simulations as in [1], but seldom evaluated in a
stochastic fashion. Our goal is to model this distribution, using
a real world urban street layout and modeling communication
pathloss. We employ the Information Bottleneck [2] method to
demonstrate that the street can be quantized in a low number
of intervals by their distance to the closest crossing.

II. SYSTEM MODEL

A. Simulations

We simulate the urban scenario using city maps obtained
from OpenStreetMap [3], which provides us with both the
street network and a map of buildings. We use the street graphs
to place communication nodes randomly, either statically or
through a traffic simulator [4], and calculate Line-of-Sight
(LOS) conditions based on the building maps. Here, we
assume a link to be LOS if no building is obstructing the
linear connection between two nodes.

Considering vehicle placement we investigate two different
approaches. Using the first method the vehicles are placed
statically on the roads, according to a Poisson point process,

Fig. 1. Snapshot of the simulation. Inner city of Linz with β = 10 veh/km.

which is given by the probability of finding k nodes within l
meters as [5]

P(k, l) =
(βl)ke−βl

k!
. (1)

This point process is applied to all lanes individually. The
traffic density parameter β may range from light (10 veh/km)
to dense traffic (50 veh/km) [6]–[8].

As a second approach we use SUMO (Simulation of Urban
MObility) [4] to place and move the vehicles in the street
network. We set the parameters in such a way that the
total number of vehicles in the network is equal for both
simulations.

B. Pathloss Modeling

For the purpose of this paper, we distinguish two pathloss
situations: LOS and Non Line-of-Sight (NLOS) caused by
shadowing. We investigate the sensing range, that is the
range at which communication can still be detected, without
considering if it is still able to decode. Therefore, we can use
pathloss models to find reasonable maximum sensing ranges
for the LOS and NLOS distinctions. To this effect, we utilize
the results from [9], [10], which provide measurements for
typical vehicular ad-hoc network standards.

C. Simulation Parameters

The simulation parameters we use can be found in Table I.
We use the city of Linz as basis for our simulation, and
densities of 10, 20 and 50 veh/km. The resulting total number
of placed vehicles is also listed. Our sensing ranges are set to



TABLE I
SIMULATION PARAMETERS.

City Linz, Austria
Vehicular density (β) 10, 20 and 50 veh/km

Number of Vehicles 11762, 23524, 58811
LOS range 350 m

NLOS range 100 m

350 , for LOS and 100 m for NLOS. Figure 1 shows a snapshot
of the simulation with vehicle placement and buildings for
β = 10 veh/km.

The SUMO simulation uses a warmup time of 1000 seconds
and a maximum vehicle speed of 10 m/s. The traffic light
systems are uncoordinated and employ a cycle time of 45
seconds (21.5 seconds of green and red light phase each and 2
seconds of yellow light phase). The subsequent analysis uses
snapshots of the vehicles positions after the warmup time. We
conducted the SUMO simulations with the same total number
of vehicles as the static simulations, and for easier comparison,
we will therefore label them by the density values from the
static scenario (β ∈ {10, 20, 50} veh/km).

III. INFORMATION BOTTLENECK

Our aim is to split the distance of a node to the closest
crossing into a small number of intervals, while retaining the
maximum information about the neighbor distribution. To this
end, we apply the information bottleneck method.

The simulations provide us with 6 sets of data, S(s)β for
all 3 choices of β, and scenarios s for static and dynamic
simulations. Each set is composed of tuples ti = (di, ni) for
every node in the simulation that hold the distance di to
the closest intersection, as well as the number of vehicles in
sensing range ni . We first perform a fine-grained quantization
on the distances by binning them into 5 m-intervals, producing
the discrete parameter d ′i . We now calculate the estimated joint
Probability Mass Function (pmf)

p(s)β (d
′, n) =

1���S(s)β

��� ∑
ti ∈S

(s)
β

δ (ti, (d ′, n)) (2)

where β denotes the vehicular density of the simulation, |Sβ |
is the order of the set Sβ , and δ(x, y) the Kronecker delta
function that equals 1 if y = x and 0 otherwise. From this
we get the conditional pmf pβ(n|d ′). Our goal is to find a
quantization d̃ ′, that has exactly L steps and minimizes the
expected Kullback-Leibler Divergence [11]
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(3)
between p(s)β (n|d

′) and p(s)β (n|d̃
′), thus minimizing the infor-

mation loss introduced by the coarse quantization. This goal
is achieved using the information bottleneck algorithm which
takes the number of quantization steps L as argument.

TABLE II
INTERVAL BOUNDARIES FOR STATIC AND DYNAMIC SIMULATIONS.

Placement β [veh/km] Boundary 1-2 Boundary 2-3 Boundary 3-4

Static
10 14 m 57 m 143 m
20 39 m 97 m 251 m
50 31 m 107 m 177 m

SUMO
10 29 m 62 m 106 m
20 16 m 56 m 77 m
50 37 m 69 m 123 m

IV. RESULTS

Figure 2 shows the Empirical Cumulative Distribution Func-
tions (ECDFs) of the number of neighbors a node sees.
The exemplary results shown here are calculated for L = 4
quantization. The optimal quantization boundaries are shown
in Table II. For all simulations, the first interval is very
small, with the largest one being 39 m. This indicates that
modeling the distribution very close to a intersection is always
of interest. For the further boundaries, the static simulation
chooses larger interval sizes than the SUMO simulation. This
can be explained by the fact that using SUMO, vehicles tend
to use the main streets and produce traffic jams. Therefore, a
larger amount of vehicles is encountered at smaller distances.
While the final interval for the static simulation lies well
outside of the NLOS sensing range, the SUMO simulation
picks the final interval border very close to the NLOS range.

The ECDF plots in Figure 2 show that few intervals are
needed to capture the statistics in dependence of the distance
to the next crossing. We first investigate the scenario in which
vehicles are placed statically on the street network (Figures 2a,
2c and 2e). For low and medium traffic densities, the ECDFs
for intervals 1 to 3 are almost perfectly overlapping. However,
the plots show that it is important to capture the far-off region,
that does show a shifted distribution. For high densities (50
veh/km), the effect is similar. Intervals 1 to 3 differ by at
most 15 cars for any given probability, while interval 4 shows
a strong offset.

A similar effect, albeit with contrary trends can be seen
when looking at the SUMO simulations (Figures 2b, 2d
and 2f). In this case the intervals 1 to 3 overlap almost
perfectly for medium and high densities and vary only slightly
in the case of low density. Again, the fourth interval shows
strongly diverging behavior. However in the SUMO snapshot
case the exact opposite behavior to the static simulations can
be observed. The final interval actually sees a strongly in-
creased number of neighbors for low to medium densities. This
connection can be explained by congestions at intersections.
While it is likely that a vehicle at or near an intersection
has only neighbors within this hotspot, a vehicle currently
traveling between two intersections has neighbors in hotspots
at two intersections. This demonstrates how critical it is to
consider the distance-dependent behavior when modeling road
crossings.



0 50 100 150 200 250 300

0.0

0.5

1.0

E
C

D
F(

N
)

Interval 1
Interval 2
Interval 3
Interval 4

(a) 10 veh/km, static distribution.
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(b) 10 veh/km, SUMO snapshot.
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(c) 20 veh/km, static distribution.
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(d) 20 veh/km, SUMO snapshot.
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(e) 50 veh/km, static distribution.
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(f) 50 veh/km, SUMO snapshot.

Fig. 2. ECDFs of the number of neighboring vehicles.

V. CONCLUSIONS

Frequently, simple assumptions about vehicular distributions
are made for simulations. In this paper, we are able to
demonstrate the large impact of the inherent choices, and the
necessity for accurate models. We show that the distribution
of communicating neighbors is dependent on the distance to
the next intersection. However, we also show that using a
low-level quantization, this effect can already be captured
accurately. Furthermore, we present the distinction between
static, uniformly random placement, and the output of a
vehicular simulator such as SUMO. The results demonstrate
that these two approaches lead to drastically different resulting
distributions, and even contradictory trends, even if the same
amount of vehicles is placed on the same map. While the
static approach leads to distributions that depend directly on
the chosen β parameter, the SUMO simulations results in
traffic jams and the resulting distributions are similar for all
numbers of vehicles placed. Furthermore, using SUMO, the
vehicles that were in-between intersections actually see the
largest amount of neighbors.
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