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Abstract—This paper provides an initial investigation on
the application of convolutional neural networks (CNNs) for
fingerprint-based positioning using measured massive MIMO
channels. When represented in appropriate domains, measured
massive MIMO channels have a sparse structure which can
be efficiently learned by CNNs for positioning purposes. We
evaluate the positioning accuracy of state-of-the-art CNNs with
channel fingerprints generated from a channel model with a rich
clustered structure: the COST 2100 channel model. We find
that moderately deep CNNs can achieve fractional-wavelength
positioning accuracies, provided that an enough representative
data set is available for training.

I. INTRODUCTION

In its originally conceived form, massive MIMO uses a large
number of base station (BS) antennas together with measured
channel state information (CSI) to multiplex users terminals
spatially [1]. Measured CSI is essential to yield spectrally
efficient communications, but it can also be a key enabler
to achieve highly-accurate terminal positioning, where down
to centimeter order accuracy may be required in some 5G
applications, e.g., autonomous driving [2]. Explained briefly,
since positioning is a spatial inference problem, it makes
sense to use large antenna arrays that oversample the spatial
dimension of a wireless channel - thus benefiting from, e.g.,
increased angular resolution, resilience to small-scale fading,
and array gain effects - to aid the positioning task.

Our aim in this work is to perform fingerprint-based po-
sitioning based on measured massive MIMO channels. More
especifically, we are interested to learn

f−1 : {s (Yi)} → {xi}, (1)

that is, the inverse of the underlying function f(·) that maps
each label xi to its respective observation s (Yi), from a
training set {s (Yi) ,xi}NTrain

i=1 . Here the label xi ∈ R2x1 is
the 2-dimensional terminal coordinate of training observation
i, and s (Yi) ∈ CD1x...xDD is its associated measured, but
transformed, channel fingerprint. We note that the main point
of the transformation s(·) is to obtain a sparse representation
for s (Yi). This is motivated in detail in Sec. II-B. For now,
we remark that the sparse transformations considered in this
work are bijective, and thus yield no information loss.

Our proposal to approximate (1) is by means of deep CNNs.
Deep neural networks provide state-of-the-art learning ma-
chines that yield the most learning capacity from all machine
learning approaches [3], and lately have been very successful
in image classification tasks. Just like most relevant informa-
tion for an image classification task is sparsely distributed at
some locations of the image [3], measured channel snapshots

Yi have, when represented in appropriate domains, a sparse
structure which - from a learning perspective - resemble that of
images. This sparse channel structure can be learned by CNNs
and therefore used for positioning purposes. To the best of the
authors’ knowledge there is no prior work on this matter.

II. CHANNEL FINGERPRINTING AND PRE-PROCESSING

A. Channel Fingerprinting
In this work, we assume a BS equipped with a linear M -

antenna array made of omnidirectional λ/2-spaced elements,
and that narrowband channels sampled at NF equidistant
frequency points are used for positioning. With that, the
dimensions of each channel fingerprint Yi (which, as it will
be seen later, are equal to those of the transformed fingerprint
s(Yi) ∈ CD1x...xDD ) are

D1 =M, D2 = NF , and Dd = 1 with 3 ≤ d ≤ D.

Given a terminal position, its associated fingerprint is gen-
erated through f(·), i.e. the inverse of the function we wish
to learn. We implement f(·) using the COST 2100 channel
model - the structure of which is illustrated by Fig. 1 - under
the parametrization proposed in [4]. This parametrization is
further detailed in Sec. IV. It is important to note that, in this
work, f(·) is implemented as a bijective deterministic map,
i.e., there is only one unique fingerprint per position.

B. Motivation for CNNs and Sparse Input Structures
CNNs are efficient learning machines given that their inputs

meet the following two structural assumptions:
1) most relevant information features are sparsely distributed

in the input space;
2) the shape of most relevant information features is in-

variant to their location in the input space, and are well
captured by a finite number of kernels.

From a wireless channel point-of-view, these assumptions
apply well when channels snapshots (i.e., the CNN inputs)
are represented in domains that yield a sparse structure [5].
For example, in the current case study, sparsity is achieved by
representing Yi in its, so-called, angular-delay domains, see
Fig. 1. Trivially, s(·) can take the form of a two-dimensional
discrete Fourier transform, i.e.,

s(Yi) = FYi F
H . (2)

If specular components of the channel, which are typically
modeled by Dirac delta functions [5], are seen as the informa-
tion basis for positioning, then the two structural assumptions
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Fig. 1. Left - Link setup considered in this work: an M -linear BS array positioning one single-antenna terminal in a confined square area. Channel realizations
are generated through the COST 2100 MIMO channel model. This geometry-based stochastic channel model is composed by different types of clusters of
multipath components (MPCs) that illuminate certain visibility regions (VRs) of an area. Right - Example of the magnitude of a channel snapshot represented
in a sparse domain. Such channel channel has a rich structure that can be learned by a CNN for positioning purposes.

of the CNNs inputs listed above are met. The same applies,
if instead, clusters of multipath components are seen as the
information features for positioning.

To finalize, we remark that the current case study can be
extended to more generic/higher-dimensionality fingerprints,
e.g., when Dd > 1 ∀ d ≥ 3. In any case, the key is the ability
to obtain a sparse representation for s (Yi) ∈ CD1x...xDD .

III. DEEP CNN ARCHITECTURE

After the input layer, which takes the transformed snapshots
s(Yi), the structure of CNNs we use employs a cascade of
L convolutional-activation-pooling (CAP) layers. Each CAP
layer is composed by: i) a convolutional operation of its input
with K convolutional Kernels, ii) a (pre-defined) non-linear
transformation, i.e., activation function, and iii) a pooling
layer, respectively [3]. Then, a fully-connected layer, following
the L CAP layers, finalizes the CNN by producing the position
estimate of x, namely, t ∈ R2x1.

The CNN learns its parameters (i.e. weights and biases),
which we stack in θ for latter use, in order to make t the
best approximation of x. Since we address positioning as a
regression problem, we use the squared residuals averaged
over the training set as the optimizing metric. Hence, the
parameters estimates are given by

θ̂ = argmin
θ

β

2
θTθ +

1

Ntrain

Ntrain∑
i=1

(xi − ti(θ))
2. (3)

A Tikhonov penalty term is added to harvest the benefits of
regularization in CNNs - β is its associate hyper-parameter.

IV. NUMERICAL RESULTS

A. Simulation Setup

The spatial setup used in our experiments is illustrated
by Fig. 1: the terminal is constrained to be in a square
area A of 25 × 25 wavelengths. Channel fingerprints are
obtained in this area through the COST 2100 channel model
under the 300MHz parameterization (e.g., for path-loss and
cluster-based parameters) established in [4]. The remaining
parameters are shown in Table I, and the other CNNs hyper-
parameters, i.e. L and K, are varied during the simulations.

TABLE I
CHANNEL AND CNNS PARAMETERS

Parameter Variable Value

Carrier frequency fc 300 MHz
Bandwidth W 20 MHz
# Frequency points NF 128
# BS antennas M 128
First BS antenna coordinate B1 [−200λ − 200λ]T

Last BS antenna coordinate BM [−200λ − 200λ+
(M−1)λ

2
]T

Tikhonov hyper-parameter β 10−3

Kernel angular length [ ◦] S1 9.8
Kernel delay length [µs] S2 0.175
Pooling windows length N1 andN2 2 ”bins”

The closest and furthest coordinate points of A with respect
to the first BS antenna are:

uc = [−12.5λ − 12.5λ]T and uf = [12.5λ 12.5λ]T ,

respectively (i.e., the user is at least ||uc−B1||/λ wavelengths
away from the first BS antenna). The coordinates of these
two spatial points implicitly define the relative orientation of
the linear array with the area A. Similarly, the upcoming
performance analysis is done by means of the normalized root
mean-squared error (NRMSE), where the mean consists of the
average over the test sets samples, respectively. Thus, we have

NRMSE =
1

λ

√√√√ 1

Ntest

Ntest∑
i=1

(xi − ti(θ))2.

This error metric has an understandable physical intuition as
it shows how the error distance relates to the wavelength.

The CNN training and testing is described as follow:
1) First, the training set is obtained by fingerprinting a 2-

dimensional uniformly-spaced (thus, deterministic) grid
of positions spanning the totality of A. The impact of
the sampling density is discussed in Sec. IV-C.

2) For the test set, the position at which fingerprints are
obtained is modeled as a random variable drawn from a
uniform distribution with support A.

Note that, if the CNN cannot use the available fingerprints
for training, then the position estimator is E{x} = 0. Its
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Fig. 2. Left - NRMSE obtained by CNNs under different parameterizations. The upper horizontal line corresponds of the reference level (4). Here we only
report the test error, since a similar error value was obtained during training (i.e., no overfitting exists). Right - NRMSE obtained by different positioning
approaches for different spacings between samples of the uniform training grid.

NRMSE, for the current case study, is given by

NRMSEref(A) = 1

λ

√
1∫
A ∂d

∫
A
(d− E{x})2 ∂d ≈ 10.2,

(4)
which use as a reference level in the analysis.

To finalize, we also contrast our CNN results against
a standard non-parametric fingerprinting approach [6], for
benchmarking purposes. Seeing a training fingerprint as a
function of its position, i.e. Yi(xi), this approach computes
the position from a new fingerprint Ynew through a grid-search
over normalized correlations as

x̂i = argmax
xi∈{xi}

Ntrain
i=1

|Tr{Yi(xi)
HYnew}|√

|Tr{Yi(xi)HYi(xi)}Tr{YH
newYnew}|

.

(5)
Compared to the use of CNNs, a main drawback of this ap-
proach is its computational complexity order,O(MN2

FNtrain),
which depends on the size of the training set;

B. Proof-of-Concept and Accuracy for Different CNN
Parametrizations

Here, we report the positioning results when the spacing
between neighbor training fingerprints is λ/4. Fig. 2 (left)
illustrates the positioning accuracy for different cases of CNN
parameterizations. First, and as a sanity check, we see that for
the same parameterizations, a network fed with untransformed
inputs (i.e., s (Yi) = Yi) cannot effectively learn the channel
structure for positioning purposes - the order of magnitude
of the positioning error is similar to (4). However, with
transformed inputs, fractional-wavelength positioning can be
achieved in both network settings, with the lowest achieved
test NRMSE being of about −6dB ≈ 1/2 of a wavelength.
This showcases the capabilities of CNNs to learn the structure
of the channel for positioning purposes. We remind that such
positioning accuracies are attained with only 20 MHz of
signaling bandwidth, which suggests that CNNs can efficiently
trade-off signal bandwidth by BS antennas and still achieve
very good practical performance. Decreasing the error further
than fractional-wavelength ranges becomes increasingly harder
due to the increased similarities of nearby fingerprints - such
range approaches the coherence distance/bandwidth of the
channel.

C. Accuracy for Different Training Grids

To finalize, we analyze the impact of spatial sampling
during training. For benchmarking, we contrast the CNN
performance with the performance of the correlation-based
classifier (5). We use the CNN model that attained the lowest
MSE in Fig. 2 (left), namely, the model with L = 4 and
K = 20. Fig. 2 (right) contrasts the NRMSEs obtained from
a CNN and the correlation-based classifier (5), against spatial
sampling in the training set. Overall, both approaches are able
to attain fractional-wavelength accuracies at smaller training
densities. Noticeably, the CNN tend to behave better than (5)
for less dense training sampling. Given that (5) does not have
interpolation abilities, this result is closely connected with the
inherent interpolation abilities of the CNNs. The fact that the
CNNs achieve similar, or even superior performance compared
to standard non-parametric approaches while having attractive
implementation complexity further corroborates their use in
fingerprint-based localization systems.

V. TAKEAWAYS AND FURTHER WORK

We have investigated a novel approach for massive MIMO
fingerprint-based positioning by means of CNNs and measured
channel snapshots. CNNs have a feedforward structure that is
able to compactly summarize relevant positioning information
in large channel data sets. The positioning capabilities of
CNNs tend to generalize well, e.g. in highly-clustered propa-
gation scenarios with or without LOS, thanks to their inherent
feature learning abilities. Proper design allows fractional-
wavelength positioning to be obtained under real-time require-
ments, and with low signal bandwidths.

The current investigation showcased some of the potentials
of CNNs for positioning using channels with a complex
structure. However, the design of CNNs in this contexts should
be a matter of further investigation, in order to be able to deal
with real-world impairments during the fingerprinting process.
In this vein, some questions raised during this study are, for
example, i) how to achieve a robust CNN design that is able
to deal with impairments such as measurement and labeling
noise, or channel variations that are not represented in the
training set, or ii) how to design complex-valued CNNs that
perform well and are robust during optimization.
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