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Abstract—A massive number of connected devices each ex-
changing a small amount of data is an important characteristic
of the Internet of Things. In order to support such a large
number of devices, non-orthogonal multiple access strategies such
as sparse code multiple access have been proposed. A key question
is therefore how to characterize the interference statistics of
this network. In this paper, we show that the interference for
single user detection with devices governed by a Poisson point
process is non-Gaussian, and in particular α-stable with non-
trivial dependence structure between the interference on each
frequency band. This raises a number of new questions for system
design. For example, how should each user’s signal be decoded,
and what are the fundamental information theoretic limits? These
questions are discussed and tractable interference models for the
design of detection schemes are proposed.

I. INTRODUCTION

A key feature of the Internet of Things (IoT) is the presence
of a massive number of devices [1]. These devices are typically
simple, which prevents coordination and therefore advanced
interference mitigation strategies. Nevertheless, it is important
to ensure that each device is able to eventually transmit small
amounts of data to a base station for the purpose of, for
example, data collection.

One approach to reduce interference on the uplink is to
ensure that device transmissions are nearly orthogonal [2].
That is, transmissions are on different frequencies, at different
times, in different spatial dimensions, or at different power
levels. This approach falls under the class of nearly orthogonal
multiple access (NOMA) transmission strategies.

A recently proposed NOMA strategy is sparse code multiple
access (SCMA) [3] for OFDM systems, where users transmit
on a sparse subset of all frequency bands. SCMA can be
viewed as performing coding over frequency bands, analogous
to CDMA where the coding is performed over time slots.

A key question is the impact on system performance of
having a very large network of uncoordinated devices that
transmit small amounts of data via SCMA codebooks. Unlike
the scenario where there is a small number of users, it is not
clear that the interference statistics are Gaussian.

In this paper, we study the interference statistics for devices
in a large scale network of devices exploiting SCMA with
locations forming a homogeneous Poisson point process. We
show that the interference on each frequency band is in fact
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non-Gaussian, following an α-stable distribution. Moreover,
the interference on each band is non-linearly dependent,
with the dependence structure arising from the design of the
SCMA codebook. This is due to the fact that α-stable random
variables have infinite variance and as such the correlation is
also infinite.

The presence of dependent α-stable interference on each
band raises a number of new challenges. These include how
to tractably model the dependence structure for the purpose
of designing detection schemes, and the achievable rate limits
in the presence of small amounts of data transmitted by each
device. To this end, we introduce a copula-based framework
to tractably model the statistics of the interference.

In Section II, we detail our model of a large scale IoT sys-
tem exploiting SCMA. In Section III, we derive the statistics
of the non-Gaussian interference for each user’s transmission.
In Section IV, we discuss the implications of the non-Gaussian
interference on detection and fundamental limits of the system
when users only transmit a small amount of data. In Section V,
we conclude.

II. SYSTEM MODEL

Consider an uplink single-cell network in which a massive
number of devices transmit to a single base station. The device
locations form a homogeneous Poisson point process (PPP) Φ
with intensity λ. Without loss of generality, the base station
is assumed to lie on the origin.

The users can transmit over a set of orthogonal frequency
bands B = {1, 2, . . . ,K}. In particular, each user transmits
a sparse code multiple access (SCMA) codeword, which is a
K-dimensional codeword in the set Ck = {xk,1, . . . ,xk,M} ⊂
RK . Each codeword in Ck is m-sparse, which means there are
m non-zero elements in each xk,n, n = 1, 2, . . . ,M . Each
element of xk,n is the symbol transmitted by user k on band
n, where band n is used only if the n-th element of xk,n is
non-zero.

As the devices are very simple and are capable of limited
coordination, we assume that each device selects a random
SCMA codebook. The random SCMA codebook of each
device is constructed as follows. Let S be the set of all subsets
of {1, 2, . . . ,K} of size m, and define the random variable S
as being any element in S with probability 1/

(
K
m

)
. Further let

uk,l, k = 1, 2, . . . , N, l = 1, 2, . . . ,M be random vectors
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on Rm with law PU , independent and identically distributed.
Codebook Ck then consists of codewords xk,l, l = 1, 2, . . . ,M
with each codeword containing the same non-zero elements,
determined by the random variable S on S, and values uk,l.
That is, the i-th element of codeword xk,l is given by

xk,l = uk,l ◦ s, (1)

where s ∈ {0, 1}K with si = 1 if i ∈ S and si = 0 if i 6∈ S
and ◦ is the Hadamard product.

Let the transmitted codeword of user k be Xk, with the
signal on band n denoted by Xk,n. The received signal from
device k on band n is then given by

yk,n = hk,nr
−η
k Xk,n +

∑
l∈Φ\{k}

hl,nr
−η
l Xl,n, (2)

where hk,n is the fading coefficient of device k on band n, rk
is the distance from device k to the base station, and η is the
path-loss exponent.

III. INTERFERENCE CHARACTERIZATION FOR SINGLE
USER DETECTION

In this section, we study the interference statistics for each
user in the IoT system in Section II, where the interference
of the other users is treated as noise. In particular, we show
that the interference is isotropic α-stable with non-trivial
dependence between the interference on each band arising
from the design of the SCMA codebook.

A. Preliminaries
The α-stable random variables are an important class of ran-

dom variables with heavy-tailed probability density functions,
which have been widely used to model impulsive signals. The
probability density function of an α-stable random variable is
parameterized by four parameters: the exponent 0 < α ≤ 2;
the scale parameter γ ∈ R+; the skew parameter β ∈ [−1, 1];
and the shift parameter δ ∈ R. As such, a common notation for
an α-stable distributed random variable is X ∼ Sα(γ, β, δ).
In the case, β = δ = 0, the random variable X is said to be
symmetric α-stable.

In general, α-stable random variables do not have closed-
form probability density functions. Instead, they are usually
represented by their characteristic function, given by

E[eiθX ]

=

{
exp

{
−γα|θ|α(1− iβ(signθ) tan πα

2 ) + iδθ
}
, α 6= 1

exp
{
−γ|θ|(1 + iβ 2

π (signθ) log |θ|) + iδθ
}
, α = 1

(3)

As baseband signals are typically complex, we require an
extension of α-stable random variables to the complex case.
An important class of complex random variables follow the
isotropic α-stable distribution, which generalizes the symmet-
ric α-stable distribution. Let N1, N2 be two symmetric α-
stable random variables. An isotropic α-stable random variable
N = N1 + iN2 then satisfies the following two conditions:

C1: The random vector N = (N1, N2)T is symmetric
in R2; i.e., Pr(−N ∈ A) = Pr(N ∈ A) for all Borel
set A ∈ R2.
C2: eiφN

(d)
= N for any φ ∈ [0, 2π).

B. Interference Statistics

We now characterize the statistics of the interference arising
from all other user transmissions for user k on band n in the
IoT model in Section II.

Theorem 1. Suppose for each l, n, the complex random
variable hl,nXl,n is isotropic and E[(Re(hl,nXl,n))

η
4 ] < ∞.

Then, the interference random variable

Ik,n =
∑

l∈Φ\{k}

hl,nr
−η
l Xl,n (4)

converges almost surely to an isotropic 4
η -stable random

variable.

Proof. (Sketch) Using the mapping theorem for PPPs, it fol-
lows that {rl}l is a one-dimensional Poisson point process
with intensity λπ [4, Theorem 1]. By the LePage series
representation of symmetric α-stable random variables [5,
Theorem 1.4.2], it then follows that the interference has real
and imaginary parts that are almost surely symmetric 4

η -
stable random variables. By the isotropy condition on hl,nxl,n,
condition C2 for isotropic α-stable random variables is also
satisfied, as required.

A consequence of Theorem 1 is that each Ik,n is isotropic
α-stable and hence the interference random vector for user
k, Ik = [Re(Ik,1), Im(Ik,1), . . . ,Re(Ik,n), Im(Ik,n)]T has α-
stable marginal distributions. If all linear combinations of
elements of Ik form α-stable random variables, Ik will be
jointly α-stable. Moreover, the elements of Ik will not in
general be independent due to the fact that the same users can
be interferers on multiple bands utilized by user k. In fact,
this dependence is non-linear since the correlation between
two α-stable random variables (α < 2) is infinite. As such,
the dependence structure is more commonly studied in the
form of the covariation [5].

Remark 1. Note that the PPP assumption on device locations
is crucial for the application of the LePage series representa-
tion of α-stable random variables. As such, when guard zones
or a finite network area are required, the interference will
have different statistics [6]. Despite this, α-stable interference
provides a tractable model that is accurate for sufficiently
large networks.

IV. DISCUSSION

In the IoT system in Section II, the signal y ∈ CK at the
receiver is given by

y =
∑
k∈Φ

diag(hk)Xk + n, (5)

where hl ∈ CK is the vector of fading coefficients for
user k, xl is the SCMA codeword of user k and n ∼
CN (0K×1, σ

2IK×K) is additive white Gaussian noise. We
have shown that for a given user k, the interference

Ik =
∑

l∈Φ\{k}

diag(hl)r
−η
l Xl (6)



3

is a random vector with α-stable marginal distributions and
non-trivial dependence structure.

The presence of non-Gaussian interference raises a num-
ber of important questions, which we pose in the following
sections.

A. Detection

In the presence of non-Gaussian interference, how should
detection be performed, where only one user’s signal must be
detected? One approach to resolving this problem is to exploit
a copula representation of the dependence structure, which was
considered in [7].

In particular, let FIk be the joint distribution of the random
vector Ik. We seek a simple and general characterization of the
joint distribution. To this end, let Ck be a copula, which is a
function [0, 1]K → [0, 1]. Since the elements of Ik are α-stable
random variables, it follows that the cumulative distribution
function of each element is continuous. As a consequence,
there exists a unique copula Ck such that the joint distribution
of Ik can be written as

FIk(z1, . . . , z2K) = Ck(FRe(Ik,1)(z1), . . . , FIm(Ik,K)(z2K))
(7)

by Sklar’s theorem [8].
As such, the joint distribution of Ik can characterized by the

isotropic α-stable distributions of each Ik,n and the copula Ck.
This provides a simple means of optimizing receiver structures
and other system components by selecting copulas Ck with
a small number of parameters. For example, let φ : [0, 1] →
[0, 1] be a convex and continuous function such that φ(1) = 0.
Then, Ck is called an Archimedean copula if

Ck(u1, . . . , u2K) = φ−1

(
2N∑
i=1

φ(ui)

)
. (8)

Such a simple representation of the dependence structure for
the interference forms a basis for maximum likelihood decod-
ing schemes at the receiver, which are otherwise intractable.

A similar approach also is applicable for multi-user detec-
tion in non-Gaussian noise. The most general approach is to
jointly perform detection for each user’s data [9]; however,
due to the large number of users this is an extremely high-
dimensional problem. A suboptimal approach is therefore to
only perform detection for D users and treat the remaining
users’ signals as interference. If D = 1, then we have shown
that the interference is α-stable.

In the case D > 1, then the interference will only be
approximately α-stable. In particular, suppose that a sequential
detection approach is adopted where user signals are decoded
one at a time. In the case that the signals of users k1, . . . , kL
have been decoded, it then follows that the interference for
the L+ 1-th user on band n is given by

IkL+1,n,L =
∑

l∈Φ\{k1,...,kL}

hl,nr
−η
l Xl,n. (9)

It remains an open question how to tractably characterize the
distribution of IkL+1,n,L due to the fact that the LePage series
representation does not hold.

B. Achievable Rate Limits

Another key question is what are the fundamental limits
of the IoT system? In IoT systems, devices often transmit a
very small number of symbols. As such, consider the case
that each user k sends a very short packet, Xk consisting of
only K symbols, corresponding to a codeword in the SCMA
codebook. That is, each user only transmits in a single time
slot, but over multiple bands simultaneously.

Formally, the system is a multiple access channel in the
finite blocklength regime [10]. The challenge is therefore to
establish the maximum achievable rates subject to an average
error probability. If all users are decoded, then the system is a
Gaussian multiple access channel. However as in the detection
problem, due to the massive number of users it will be typical
to only decode D users and treat the contributions of the other
users as noise, which will be non-Gaussian.

In particular, for the case D = 1 the channel reduces to
a finite blocklength point-to-point channel with additive non-
Gaussian noise, where each band corresponds to a channel use.
However, the interference Ik,n for each band is dependent and
the noise on the n-th band corresponds to the sum of Ik,n and
Gaussian noise wn, which is non-Gaussian. As such, standard
results for the Gaussian point-to-point channel in the finite
blocklength regime [11] and additive α-stable noise channels
in the infinite blocklength regime [12–14] are not applicable.
As a further consequence, maximum achievable rates for
the multiple access channel subject to an error probability
constraint in the case D > 1 is also an open problem.

V. CONCLUSION

We have considered a large-scale Internet of Things network
where each user transmits a small amount of data and exploits
SCMA. We have shown that the interference statistics for
each user are non-Gaussian. In fact, for single user detection
schemes the interference is isotropic α-stable, with a non-
trivial dependence structure between the interference on each
band. This raises new questions for detection and characteri-
zation of the fundamental limits of the system.

To this end, we have proposed a simple and general
representation of the dependence structure via the copula
framework. We have also discussed the impact of multiuser
detection, and the impact of transmissions of only a small
amount of data. In particular, we have shown that the problem
of characterizing maximum achievable rates lies in the finite
blocklength regime with additive non-Gaussian noise and non-
trivial dependence structure.

The presence of non-Gaussian interference with non-trivial
dependence raises a number of new challenges both for the
design of receiver structures and establishing fundamental in-
formation theoretic limits. Future work is therefore to develop
receivers for noise with copula dependence structure and to
establish achievable rates in the finite blocklength regime.
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