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Abstract—In this extended abstract we present a Bayesian
estimation method applicable on single-input multiple-output
radio channels. In addition to specular multipath components
(MPC) also the parameters of a stochastic process are estimated
that comprises non-resolvable dense multipath. Exploiting the
hierarchical tree structure of a Bayesian graphical model, the
parametric channel estimator is able to keep the number of
unwanted MPC artifacts to a minimum and is jointly determining
the model order. A delay-sum beamformer is used to consider
the delay differences of MPCs at the array antenna elements
which makes the estimator also applicable on wideband and
ultra-wideband channels. An in-depth analysis of the methods
is given on the basis of synthetically generated channel impulse
responses. Further, a first glimpse is presented on how well the
method performs on real data.

I. INTRODUCTION

Future 5G wireless communication technologies and the
Internet of Things (IoT) paradigm will be characterized by
supporting a variety of services with high quality requirements,
addressing performance metrics such as reliability, latency,
data throughput, and resource-efficient use of the infrastructure
[1]–[3]. Spatial location information is expected to become
an indispensable feature of these emerging wireless networks,
considering that the user devices will have the capability of
estimating accurately their locations and predicting relevant
radio channel quality measures [4]–[6] that are of great im-
portance, e.g. for spatial beamforming [7].

The robustness of location information strongly depends on
the surrounding environment and hence multipath propagation.
It has been shown that the actual use of multipath components
(MPCs)—which can be associated to geometric features—
has the potential to increase the robustness and accuracy
of positioning systems [8], [9]. To be able to exploit as
much position-related information from the acquired channel
impulse responses [10], [11] as possible, high performance
channel estimators are needed. Such channel estimators are a
well investigated subject with a long history of publications,
demonstrating the trend towards high accuracy. Expectation-
maximization (EM) methods [12] were suggested first to
estimate parameters of superimposed signals. Next, space-
alternating EM methods [13] evolved and were applied on
wideband radio channels. In recent years estimators that
are based on more elaborate channel models which include
dense/diffuse multipath (DM) (MPC components that can not
be resolved by the measurement aperture) [14] have been
applied. All these estimators do not include the model order in
the estimation problem. Hence, MPC-artifacts that are induced
by the estimators are a pitfall in the estimation procedure.

The next step in this evolution was to settle to sparse
Bayesian variational methods that inherently are able to es-
timate a relevance metric and therefore the model order of
MPCs by introducing a hierarchical graphical model structure
[15]–[17]. With these methods it is possible to keep the num-
ber of unwanted estimated MPC-artifacts to a minimum, since
they include the uncertainty of the parameters (gathered from
the measurements themselves) in the estimation procedure.

In this work we present an extension of the sparse Bayesian
variational methods of [18], [19] to a more general model,
considering dense multipath for SIMO channel models. In
addition the new method is using a delay beamformer [20]
to cope with the propagation delay differences of the MPCs
at the individual array elements making the approach suitable
for wideband and ultra-wideband (UWB) channels.

II. PROBLEM FORMULATION AND SOLUTION OUTLINE

We are interested in estimating dispersion and noise param-
eters of a multipath channel according to the following signal
model.

A. Signal Model

A baseband radio signal s(t) is transmitted from an anchor
to an agent equipped with an antenna array with J elements.
The received signal at antenna element j reads

r(j)(t) =

K∑
k=1

αks
(
t− f(τk, ϕk,p

(j))
)

+ s(t) ∗ ν(j)(t) + w(t).

(1)

The first term describes K specular multipath components
(MPC), each characterized by a complex amplitude αk and a
time delay f(τk, ϕk,p

(j)) where τk captures the delay to the
center of gravity of the array, ϕk models the angle of arrival
and p(j) are the individual positions of the array elements.
This first part includes the line-of-sight (LOS) and reflected
specular MPCs which all hold position related information
[10]. The second part in (1) denotes the convolution of s(t)
with the dense multipath (DM) ν(j)(t), which is modeled
as a non-stationary zero-mean Gaussian random process cap-
turing all non-resolvable multipath propagation [14], [21].
Considering uncorrelated scattering along the delay axis τ
the random process can be modeled by its auto-correlation
function as Eν

{
ν(j)(τ)ν(j)∗(u)

}
= Sν(τ)δ(τ − u) where

Sν(τ) represents the power delay profile of DM. The DM
is assumed to be quasi-stationary in the spatial domain, hence
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Sν(τ) does not change in a small vicinity around the receiver.
Note that the DM presents an interference to the specular
MPCs. The third term in (1) describes additive white Gaussian
noise with double sided power spectral density of N0/2.

By sampling the received signal r(j) ∈ CN×1 and stacking
the received signals for the J array elements in a vector, the
received signals read

r = S(Ψ)α+wc +w ∈ CNJ×1, (2)

where r = [(r(1))T , ..., (r(J))T ]T , α = [α1, ..., αK ]T , and
S(Ψ) = [sT (ψ1), ..., sT (ψK)]T with dispersion parameters
Ψ = [ψT1 , ...,ψ

T
K ]T and ψk = [τk, ϕk]T . wc + w are

sampled and stacked versions of the DM and AWGN real-
izations for the J array elements. According to the Gaussian
assumptions the covariance matrix of the stacked random
processes is C(η) = diag([C̃(η), C̃(η), ..., C̃(η)]) as the
realizations of the DM are assumed to be uncorrelated at the
array elements, C̃(η) = S̄diag(Sν(Γ, iTs)Ts)S̄ + N0/TsI ,
S̄ = [s(iTs), s(iTs − 1)..., s(iTs − N)]T and fs = 1/Ts as
the sampling frequency. The covariance matrix depends on
η = [N0,Γ]T , where Γ holds the parameters of the power
delay profile we want to estimate, e.g. an exponential or
double-exponential power delay profile [21].

B. Outline of the Estimation Solution

The likelihood function of the received signal model is a
complex Gaussian random process modeled as

f(r|Ψ,η,α) =
1

πNJ |C|
exp{−(r − Sα)HC−1(r − Sα)},

where we have dropped the explicit dependence of C(η) and
S(Ψ) on η and Ψ respectively for easier readability.

The aim is to infer the parameter posterior distribution of
f(Ψ,η,α|r) ∝ f(r|Ψ,η,α)f(Ψ)f(η)f(α). If the number
of multipath components K is known, a numerical maxi-
mization of the posterior distribution enables the estimation
of the dispersion and noise parameters. Unfortunately, the
number of MPCs is usually not known. Thus, to be able to
automatically determine the number of MPCs and introduce
sparsity, a set of hyperpriors κ is introduced for the com-
plex amplitudes α, used to prune the model [17]. Therefore
the parameter posterior distribution is f(Ψ,η,α,κ|r) ∝
f(r|Ψ,η,α)f(Ψ)f(η)f(α|κ)f(κ) [22].

We employ a uniform prior for the dispersion param-
eters Ψ and the noise parameters η as no prior knowl-
edge is available. A classical sparse Bayesian learning ap-
proach assumes a factorable hierarchical prior f(α|κ)f(κ) =∏
k f(αk|κk)f(κk) =

∏
k CN (αk|0, κ−1k )Ga(κk|ak, bk), with

CN (αk|0, κ−1k ) as zero-mean complex normal distribution
with variance κ−1k , and Ga(κk|ak, bk) as gamma distribution
with shape and rate parameter ak and bk respectively.

By employing a structured mean-field approximation [22]
the parameter posterior can be approximated by

f(Ψ,η,α,κ|r) ≈ q(Ψ,η,α) = q(η)q(α)

K∏
k=1

q(ψk)q(κk).

(3)
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Fig. 1. Floorplan of the evaluation scenario and specular MPCs between agent
and anchor located at p(j) and a are depicted. The line-of-sight (k = 1) and
MPCs reflected at plaster board east (k = 2) and west (4), and white board
(3) as well as their corresponding VA positions {ak}k∈K are shown.

Variational Bayes, an iterative method, is used to find the
approximations q(·) for the individual posteriors. By choosing
point estimates for the dispersion and noise parameters, hence
q(ψk) = δ(ψk− ψ̂k) and q(η) = δ(η− η̂), the unconstrained
factor updates for the noise parameters are given by

ln(q∗(η)) ∝ const− ln(|C(η)|) (4)

− (r − S(Ψ̂)µ̂α)HC(η)−1(r − S(Ψ̂)µ̂α)

− tr{S(Ψ̂)HC(η)−1S(Ψ̂)Ĉα},

where µ̂α and Ĉα are the estimated expected value and
covariance matrix of the MPC amplitudes α. The factor update
for the dispersion parameters looks comparable to (4), while
analytical results are available for the updates of q(α) and
q(κk) (see also [15]–[17]).

C. Model order selection

By computing κ̂k = Eq(κk) {κk} and using a Jeffreys prior
(ak = bk = 0) for the hyperparameter [17] the pruning
condition can be analyzed. It is found that the stationary point
for the hyperparameter is

κ̂
[∞]
k =

{
(|ρk|2 − ζk)−1 if |ρk|2 > ζk
∞ else , (5)

if the other parameters are kept constant. |ρk|2 and ζk are
estimated values of the expectation of the mean and variance
of the complex amplitudes. This means that a component is
kept if |ρk|2 > ζk. Otherwise the MPC is removed from the
model.
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TABLE I
SIMULATED AND ESTIMATED (SHOWN AS ·̂) PARAMETERS FOR THE SPECULAR MPCS. THE DISTANCE dk IS LINKED TO THE DELAY VIA THE SPEED OF

LIGHT c, THE EFFECTIVE S̃INR IS A RELIABILITY MEASURE REGARDING RANGING AND IS RELATED TO THE RANGING ERROR BOUND R(d) [23].

k dk mean
(
d̂k

)
ϕk mean (ϕ̂k) |αk|2 mean

(
|α̂k|2

)
S̃INR mean

(
ˆ̃

SINR

)
R(d) std

(
d̂
)

m m ◦ ◦ dB dB dB dB m m
1 2.883 2.883 45.06 45.04 -1.285 -1.279 21.16 21.33 0.0019 0.0020
2 4.141 4.141 29.52 29.38 -7.431 -7.465 10.28 10.25 0.0065 0.0068
3 8.900 8.901 273.61 273.79 -14.077 -14.052 7.82 7.87 0.0087 0.0089
4 9.225 9.225 167.22 167.17 -14.388 -14.376 7.82 7.88 0.0087 0.0081

TABLE II
PARAMETERS FOR THE GENERATION OF THE DM AND AWGN. Ω1 IS THE

TOTAL POWER OF THE DM, γ1 , γRISE , χ ARE SHAPE PARAMETERS, AND
τDM IS THE DELAY AT WHICH THE ROOM IS EXCITED FOR THE FIRST TIME.

N0 −30 dB mean
(
N̂0

)
−29.97 dB std

(
N̂0

)
−44.60 dB

Ω1 −1.23 dB mean
(

Ω̂1

)
−1.30 dB std

(
Ω̂1

)
−15.31 dB

γ1 11 ns mean (γ̂1) 10.62 ns std (γ̂1) 1.10 ns
γrise 5 ns mean (γ̂rise) 18.71 ns std (γ̂rise) 41.12 ns
τDM 9.617 ns mean (τ̂DM) 9.68 ns std (τ̂DM) 0.23 ns
χ 0.5 mean (χ̂) 0.61 std (χ̂) 0.16

III. RESULTS

A. Synthetic Data

To validate the algorithm, synthetic data is generated ac-
cording to the model in Section II-A. The floorplan, depicted
in Fig. 1, and a geometric ray tracer are used to generate the
dispersion parameters of the specular MPCs. For an initial
validation we restrict the set of specular components to 4
MPCs including the line-of-sight. The anchor is equipped with
a single antenna, while the receiver is simulated with a 5× 5
antenna array with a spacing of 1 cm. As baseband pulse s(t)
a root-raised-cosine pulse with a pulse duration of 1 ns and a
roll-off factor of 0.6 is used which is transmitted at a center
frequency of 7 GHz. The ray tracer considers only the room
geometry and assumes a 3 dB loss per reflection. The total
energy of the specular components Edet is normalized to 0 dB
and a signal to noise ratio of Edet/N0= 30 dB is used. The
parameters of the specular components are shown in Table I.
To model the DM a double exponential power delay profile
[21] is used with the parameters given in Table II. The Rician
K-factor for the LOS component is set to 0 dB which is a
representative value for the analyzed room [24].

To assess the performance of the estimator we compare
the results of 100 realizations of the ranging estimator to
the ranging error bound (REB, R(d)) which is the square
root of the Cramér Rao lower bound for the time-of-flight
estimator [23]. As can be seen in Table I the estimated values
for the distance dk = τkc, the angle-of-arrival ϕk, and the
amplitude αk are unbiased. The effective SINR which is a
measure for the reliability of the MPC with respect to its
ranging performance can also be estimated correctly by the
algorithm. Moreover, the standard deviation of the estimated
distance achieves the REB at this bandwidth.

In Table II the performance of the DM and AWGN param-
eter estimation can be seen. The AWGN-PSD N0, the power
of the DM Ω1, the start time τDM, the fall time γ1 and the

TABLE III
ESTIMATED PARAMETERS OF THE SPECULAR MPCS FOR REAL DATA.

k d̂k ϕ̂k S̃INR
m ◦ dB

1 2.888 44.957 25.68
2 3.135 45.241 9.87
3 4.173 31.573 18.48
4 4.696 161.821 4.44
5 5.991 160.390 4.08
6 6.064 66.147 7.65
7 6.270 63.980 8.85
8 7.184 67.161 3.31
9 8.855 271.622 8.39

10 9.588 166.848 4.71
11 9.639 282.370 9.50
12 11.566 147.004 3.78

shape parameter χ are estimated with a reasonable accuracy.
The rise time γrise on the other hand shows a large bias as
well as a high standard deviation due to some large outliers.

B. Experimental Data
To validate the algorithm with real data, we performed

measurements using an m-sequence channel sounder in the
room depicted in Fig. 11. The channel sounder measures a
bandwidth of 7 GHz centered around a center frequency of
7 GHz. To have a comparable setup as in Section III-A we
reduced the overall bandwidth by filtering with a root-raised-
cosine pulse with the same parameters as above. The algorithm
detects twelve MPCs in the first 15 m of the signal which are
listed in Table III. The detected MPCs {1, 3, 9} match well
with the MPCs used for simulation and presented in Table I.
The differences can be explained by the uncertainty in the
floorplan and that only a geometric ray tracer was used for
generating the specular MPCs. MPC component 4 which is
seen in the simulation (reflection at plaster board west) is not
detected by the algorithm in the real data, as metal furniture
was present in the western part of the room which is also
depicted in Fig. 1.

IV. CONCLUSIONS

In this extended abstract we presented a variational Bayesian
framework capable of estimating the dispersion parameters of
specular multipath components as well as the power delay
profile of interfering dense multipath. The algorithm is capable
of inferring the number of multipath components and enforces
a sparse solution to keep the number of unwanted multipath
component artifacts at a minimum.

1More details about the measurement setup can be found in [24]



4

REFERENCES

[1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, February 2014.

[2] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, March 2014.

[3] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled
tactile internet,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 3, pp. 460–473, March 2016.

[4] R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and
H. Wymeersch, “Location-aware communications for 5G networks: How
location information can improve scalability, latency, and robustness of
5G,” Signal Processing Magazine, IEEE, vol. 31, no. 6, pp. 102–112,
Nov 2014.

[5] L. Muppirisetty, T. Svensson, and H. Wymeersch, “Spatial wireless chan-
nel prediction under location uncertainty,” Wireless Communications,
IEEE Transactions on, vol. 15, no. 2, pp. 1031–1044, Feb 2016.

[6] M. Froehle, T. Charalambous, I. Nevat, and H. Wymeersch, “Channel
prediction with location uncertainty for ad-hoc networks,” IEEE Trans-
actions on Signal and Information Processing over Networks, vol. PP,
no. 99, pp. 1–1, 2017.

[7] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,
O. Edfors, and F. Tufvesson, “Scaling up mimo: Opportunities and
challenges with very large arrays,” IEEE Signal Processing Magazine,
vol. 30, no. 1, pp. 40–60, Jan 2013.

[8] K. Witrisal, P. Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufves-
son, K. Haneda, D. Dardari, A. F. Molisch, A. Conti, and M. Z. Win,
“High-accuracy localization for assisted living: 5G systems will turn
multipath channels from foe to friend,” IEEE Signal Process. Mag.,
vol. 33, no. 2, pp. 59–70, Mar. 2016.

[9] C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and U. C.
Fiebig, “Multipath assisted positioning with simultaneous localization
and mapping,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6104–
6117, Sep. 2016.

[10] E. Leitinger, P. Meissner, C. Rudisser, G. Dumphart, and K. Witrisal,
“Evaluation of position-related information in multipath components for
indoor positioning,” IEEE J. Sel. Areas Commun., vol. 33, no. 11, pp.
2313–2328, Nov. 2015.

[11] E. Leitinger, F. Meyer, F. Tufvesson, and K. Witrisal, “Factor graph
based simultaneous localization and mapping using multipath channel
information,” in Proc. IEEE ICC-Workshops, 2017.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal
statistical society, series B, vol. 39, no. 1, pp. 1–38, 1977.

[13] B. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Inge-
man Pedersen, “Channel parameter estimation in mobile radio environ-
ments using the SAGE algorithm,” Selected Areas in Communications,
IEEE Journal on, vol. 17, no. 3, pp. 434 –450, mar 1999.

[14] A. Richter, “Estimation of Radio Channel Parameters: Models and
Algorithms,” Ph.D. dissertation, Ilmenau University of Technology,
2005.

[15] C. M. Bishop and M. E. Tipping, “Variational relevance vector ma-
chines,” in Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence. Morgan Kaufmann Publishers Inc., 2000, pp.
46–53.

[16] D. Shutin, T. Buchgraber, S. R. Kulkarni, and H. V. Poor, “Fast varia-
tional sparse Bayesian learning with automatic relevance determination
for superimposed signals,” IEEE Trans. Signal Process., vol. 59, no. 12,
pp. 6257–6261, Dec 2011.

[17] T. Buchgraber, “Variational sparse Bayesian learning: Centralized and
distributed processing,” Ph.D. dissertation, 2013.

[18] D. Shutin and B. Fleury, “Sparse variational Bayesian SAGE algorithm
with application to the estimation of multipath wireless channels,” Signal
Processing, IEEE Transactions on, vol. 59, no. 8, pp. 3609 –3623, aug.
2011.

[19] D. Shutin, W. Wang, and T. Jost, “Incremental sparse Bayesian learning
for parameter estimation of superimposed signals,” in 10th International
Conference on Sampling Theory and Applications, 2013.

[20] S. Ries and T. Kaiser, “Towards beamforming for UWB signals,” in 2004
12th European Signal Processing Conference, Sept 2004, pp. 829–832.

[21] J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A. Molisch, “A
measurement-based statistical model for industrial ultra-wideband chan-
nels,” Wireless Communications, IEEE Transactions on, vol. 6, no. 8,
pp. 3028–3037, Aug. 2007.

[22] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[23] K. Witrisal, E. Leitinger, S. Hinteregger, and P. Meissner, “Bandwidth
scaling and diversity gain for ranging and positioning in dense multipath
channels,” IEEE Wireless Communications Letters, 2016.

[24] S. Hinteregger, E. Leitinger, P. Meissner, J. Kulmer, and K. Witrisal,
“Bandwidth dependence of the ranging error variance in dense multi-
path,” in 2016 24th European Signal Processing Conference (EUSIPCO)
(EUSIPCO 2016), Budapest, Hungary, 2016.


