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Abstract—In the Internet of Things (IoT), devices, e.g. sensors
or actuators, transmit packets to transfer data. For the IoT
localization information is crucial, as it provides additional
context for the data. We envision that devices in the IoT know
their position and on receipt of a packet, the received signal
strength is measured. This measurement is used to build a device-
free localization (DFL) system to improve the dependability of
the IoT system. DFL systems are able to detect and track persons
within a target area that neither wear a device nor participate
actively in the process of localization. This work presents an
anomaly-based DFL system that measures if a person affects the
radio frequency (RF) propagation and determines the position
with a particle filter. In our 65 m2 indoor testbed, we employ eight
IEEE 802.15.4 compliant wireless transceivers and estimate the
position of a person with a median localization error of 1.4 m.

Index Terms—device-free localization, device-free localization
applications for the IoT, robust localization.

I. INTRODUCTION AND RELATED WORK

Localization is considered key for the Internet of Things
(IoT) where devices, named Things are equipped with sensors
and communication interfaces. In the past, dedicated hardware
for localization was employed, e.g. localization based on
phase measurements [1] or UWB [2]. Despite quite successful,
dedicated hardware increases cost and complexity of devices.

Additionally, new applications emerge, for instance, tracking
of goods or surveillance of assets. However, in some instances,
e.g. plant security, an intruder does not carry a device to track.
For such scenarios, device-free localization (DFL) systems
are suitable and expand IoT systems: First, DFL systems
complement active localization measurements by triggering
an alarm when the position of the active and device-free
localization system does not match or second, the DFL system
detects a person that does not carry a device. DFL systems
exploit the change of radio propagation to detect and track
persons within a target area. This is done by measuring the
received signal strength (RSS) e.g. as shown in [3], [4] or via
special sensor radars that measure the time-of-arrival [5]. As
shown in Figure 1, the radio propagation is distorted, when
a person or another obstacle is present. This allows tracking,
even when persons do not carry any devices. This tracking of
distortions even for standard communication devices is helpful
to increase the robustness of IoT systems when systems forecast
link qualities and avoid weak links beforehand.

RASID [6] was one of the first anomaly-based DFL systems
and records a silence profile, which serves as a basis to
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Fig. 1: Radio propagation obstructed by an obstacle.

detect an anomaly in the radio frequency (RF) propagation.
In a second step, anomaly detection was extended with a
particle filter, to allow tracking of persons [7]. Compared with
other DFL systems, e.g. fingerprint-based localization systems,
anomaly-based localization systems are easily calibrated during
a calibration phase, whereas fingerprint-based systems require
an extensive collection of fingerprints [3], [6]. In the past,
IEEE 802.11 RSS measurements have been investigated for
DFL. IEEE 802.15.4 allows implementation of cost-effective
radio interfaces with low power consumption that are suited
for the IoT.

In contrast to our previous work in [8] where we detect
presence of persons only, we add tracking functionality via
particle filtering in this publication. Different to [6], [7], our
DFL system runs with IEEE 802.15.4 compliant transceivers.

The contributions and structure of this paper are as follows:
In Section II, we present a DFL system based on anomaly
detection using IEEE 802.15.4 RSS measurements. Next, we
present our approach with a particle filter, mobility model
and elliptical weighting function calculated from the anomaly
values. In Section III we present implementation details.
Section IV discusses the results. Finally, we provide a summary
and an outlook to future work in Section V.

II. DESCRIPTION OF THE DFL SYSTEM

In this section, we introduce anomaly detection that deter-
mine the presence of a person and a particle filter that estimates
the position.

A. Anomaly-detection

Anomaly detection was first introduced by Kosba et al. in
[6]. The main idea is to record a probability density function
(PDF) of each stream, while the target area is vacant in a
calibration phase and analyze it for anomalous behavior during



an online phase. We implement the same steps as in [6] and
[8] according to Figure 2.
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Fig. 2: Principle of anomaly detection.

In a calibration phase, when a target area is vacant, RSS
values for k streams are recorded (Figure 2). A stream is
the continuous transmission of packets that results in RSS
measurements. For each stream j, a feature value xj,n with
time step n, is calculated from a sliding time window Wj,n =
[sj,n−l+1, sj,n−l+2, ..., sj,n] with the length l, where sj,n is
the RSS value. In our solution, we select the variance as a
feature value as suggested by [6], [7]. We aim to track moving
persons that result in high variances due to changes of the RSS.
The PDF f̂ of each stream j is estimated with a kernel density
estimator. With F̂j is the cumulative distribution function (CDF)
of f̂j , we calculate the upper bound uj = F̂−1

j (1− α). α is
the significance parameter, for dispersion features, such as the
variance, we calculate the 100(1−α)th percentile of the CDF
F̂j . The estimated PDF f̂j and the upper bound uj are the
silence profile for each stream j.

During the online phase, RSS are recorded for k streams,
the feature values xj,n are calculated from the sliding time
windows with length l Wj,n = [sj,n−l+1, sj,n−l+2, ..., sj,n].
A stream is considered anomalous when xj,n > uj , this is
described in terms of the anomaly score aj,n:

aj,n =
xj,n
uj

,where

{
aj,n < 1 if no anomaly is detected
aj,n ≥ 1, if anomaly is detected

(1)
In order to detect a person moving within a target area, the

anomaly scores aj,n for all streams are summed up to a global
anomaly score an and are smoothed exponentially. For details
on RSS samples, variances and anomalies, we refer to [8]. In
the IoT, anomaly detection is one option to detect weak links,
which is a first step to increase the robustness of the system.

B. Particle Filter

This section describes a particle filter that estimates the
position of a person within a target area based on anomaly
scores. Particle filters are sequential Monte Carlo methods that
estimate probability densities through random samples, called
particles, where Ns are the number of particles. Specifically, for
our DFL system, we use a variation of sequential importance
sampling with resampling (SIR) filter, named bootstrap filter.
Given the RSS vectors sn, we will estimate a position rn of a
person. The algorithm works as follows [9]:

1) Draw a new position rin for every particle within the
particle set rin−1 : i = 1, ..., Ns:

rin ∼ p(rn|rin−1), i = 1, ..., Ns. (2)

2) Calculate the particle weights:

win ∝ p(sn|rin), i = 1, ..., Ns. (3)

Normalize over the sum of the weights.
3) Resample Ns particles from the particle set.
Note, to avoid convergence problems resampling is per-

formed for every time step n. For RSS vectors sn we use
anomaly scores aj,n as described in the previous section.
Therefore, we determine the mobility model p(rn|rn−1) in
Section II-B1 and the importance function from (3) in Sec-
tion II-B2. We describe the particle with the following states.

rin = [xin y
i
n v

i
n θ

i
n]T , (4)

where xin, y
i
n is the 2D-position, vin the velocity and θin is

the heading of the ith particle.
1) Mobility Model of a Person: The goal of the mobility

model is to create a particle set that is able to follow a
movement of a person. The mobility model estimates the new
position of a particle dependent given the last state.

rin =

[
xin
yin

]
=

[
xin−1 + vincos(θin)∆n
yin−1 + vinsin(θin)∆n

]
. (5)

where vin = vin−1 + vin,noise and θin = θin−1 + θin,noise.
The starting particle set is given as θ ∼ U(0, 2π) and
v ∼ N (1.0 m/s, 0.3 m2/s2). In every time step ∆n noise is
added to the particles to account for uncertainties:
θnoise ∼ N (0, σ2

θnoise) and vnoise ∼ N (0 m/s, σ2
vnoise).

2) Importance function: The importance function calculates
a weight of each particle i depending on measurements and
the actual position of a particle. For every stream j the particle
weight is calculated as follows:

wij,n = aj,n
dj

diS1,j + diS2,j
(6)

Figure 3 shows the relation between the transceiver positions
and the ith particle from (6).
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Fig. 3: Importance function.

The weight of particle i is maximized, when the particle is
located within the line-of-sight (LOS) of the stream. This is
due to empirical studies, where the change in RSS is typically
the greatest when a person is within the LOS of the stream
[7]. The further away from the LOS, the lower the weight of
the particle. During resampling, Ns new particles are sampled



based on their weight, the lower the weight the less probable
it is for the particle to be resampled. The effect is that only
those particles survive that are close to a position of a person.
In future, a more adaptive importance function will take the
state of the stream and the result of the position estimation
into consideration. After weights for all Ns particles and k
streams have been calculated, the weight of particle i is the
mean of the weight of k streams. With tracking of persons, it
is possible to predict future link failures and therefore increase
the robustness of the IoT system.

III. IMPLEMENTATION

To evaluate the proposed DFL system, we setup a 65 m2

indoor testbed with eight transceivers that are mounted on
existing brackets at a height of 2.4 m. In general, when the
transceivers are mounted in the same height as the person, we
expect higher RSS variances.

Transceivers controlled by an Atmel ATxmega128A1 are
equipped with an Atmel AT86RF233 radio chip compliant
to IEEE 802.15.4. In previous work, we compared received
signal strength indicator (RSSI), energy detection (ED) and link
quality indicator (LQI) value for DFL measurements [8]. We
find that the ED serves best, as it offers the highest resolution of
1 dB in a range of –94 dBm to –10 dBm. For eight transceivers,
we use a sampling rate of 80 ms. The current state of our system
processes only single hop streams between transceivers. Other
streams are recorded and also available for future processing.
Figure 4 shows our testbed. The red circles are the positions
of the sensor nodes, the dashed lines indicate the streams.
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Fig. 4: Measurements of the testbed. The red circles are the
sensor nodes, the dashed line the streams.

IV. EVALUATION

This section evaluates the tracking performance of the
proposed DFL system. We envision that DFL systems are
integrated into IoT systems and that detection and tracking
of persons result in predicting of links that will be interfered
through man-made impairments. The localization error for
every time step n is the Euclidean distance between the ground
truth position and the position estimation. Throughout the
tests, following parameters were chosen: For the kernel density
estimator, we select an Epachnikov kernel, a window size
l = 15, a significance parameter α = 6, and a particle set with
Ns = 500. We tested six different walking patterns within the
target area and repeated the measurements up to four times. The
walking patterns comprise several routes through the target area,
e.g. entering from the left and leaving to the right, entering and
wait in front of a bookshelf, etc. In order to receive statistical

sound results for the localization error, 100 realizations of
the DFL system were performed for each measurement. We
determined the median localization error as 1.4 m and the 95
percentile is 4 m. Figure 6 shows an exemplary realization. The
person started top right and walked with a velocity of 0.5 m/s
in clockwise direction.

Figure 5 shows the particles (gray circles), the position
estimation (black cross) and the ground truth of the person
(blue circle) at two different times. Figure 6 shows that the
position estimation relates to the movement of the person.
However, in our indoor testbed especially in the very right
part, we experience high anomaly scores although the person is
several meters away from the streams. We assume that this is
caused by multipath effects that change the RSS significantly
and therefore, degrade the localization performance.
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Fig. 5: The blue circle is the ground truth, the black cross the
position estimation. The gray circles are the particles.
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Fig. 6: Exemplary result. The red circles are the sensor positions.
The blue line indicates the ground truth (walking with 0.5 m/s,
starting point is top right in clockwise direction). The black
crosses are the position estimations.

V. CONCLUSION AND FUTURE WORK

In this work, we detect whether a stream is affected by a
person with anomaly detection and present a SIR particle filter
to estimate the position of the person. The median localization
error is 1.4 m and the 95 percentile is 4.0 m. In future, we will
investigate how much our DFL can improve the dependability
of networks and active localization systems for the IoT by
predicting moving persons. Additionally, we will improve the
accuracy of the system by investigating methods to process data
according to a RF propagation model and adapt the importance
function accordingly.
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of Lübeck.



REFERENCES

[1] M. Pelka, C. Bollmeyer, and H. Hellbrück, “Indoor Localization based
on Bi-Phase Measurements for Wireless Sensor Networks,” in Wireless
Communications and Networking Conference (WCNC), 2015 IEEE. IEEE,
2015, pp. 1362–1367.

[2] M. Pelka and H. Hellbrück, “S-TDoA–Sequential time difference of
arrival—A scalable and synchronization free approach for Positioning,”
in Wireless Communications and Networking Conference (WCNC), 2016
IEEE. IEEE, 2016, pp. 1–6.

[3] M. Youssef, M. Mah, and A. Agrawala, “Challenges: Device-free
Passive Localization for Wireless Environments,” in Proceedings of the
13th Annual ACM International Conference on Mobile Computing and
Networking, ser. MobiCom ’07. New York, NY, USA: ACM, 2007,
pp. 222–229. [Online]. Available: http://doi.acm.org/10.1145/1287853.
1287880

[4] M. Seifeldin and M. Youssef, “A Deterministic Large-Scale Device-
Free Passive Localization System for Wireless Environments,” in
Proceedings of the 3rd International Conference on Pervasive
Technologies Related to Assistive Environments, ser. PETRA ’10. New
York, NY, USA: ACM, 2010, pp. 51:1–51:8. [Online]. Available:
http://doi.acm.org/10.1145/1839294.1839355

[5] S. Bartoletti, A. Conti, A. Giorgetti, and M. Z. Win, “Sensor Radar
Networks for Indoor Tracking,” IEEE Wireless Communications Letters,
vol. 3, no. 2, pp. 157–160, 2014.

[6] A. E. Kosba, A. Saeed, and M. Youssef, “RASID: A Robust WLAN Device-
free Passive Motion Detection System,” in IEEE International Conference
on Pervasive Computing and Communications (PerCom), March 2012, pp.
180–189.

[7] A. Saeed, A. E. Kosba, and M. Youssef, “Ichnaea: A Low-Overhead
Robust WLAN Device-Free Passive Localization System,” IEEE Journal
of Selected Topics in Signal Processing, vol. 8, no. 1, pp. 5–15, Feb 2014.

[8] M. Cimdins, M. Pelka, and H. Hellbrück, “Investigation of Anomaly-based
Passive Localization with Received Signal Strength for IEEE 802.15.4,” in
The Seventh International Conference on Indoor Positioning and Indoor
Navigation, Madrid, Spain, Oct. 2016.
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