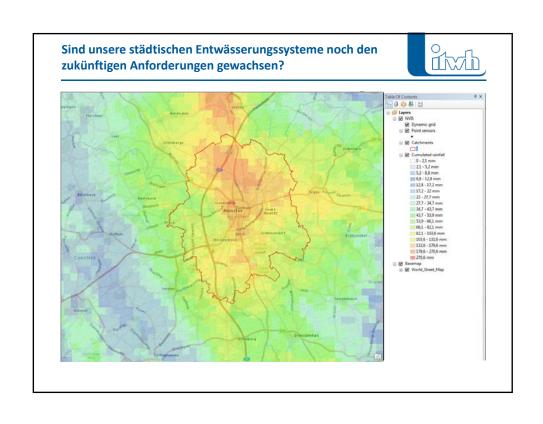

Dr. Lothar Fuchs Hannover 08.06.2017


Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

Gliederung

- Einleitung
- Veränderungen und Trends im Niederschlagsverhalten
- Klima- und Wettermodelle
- Zukünftige Auswirkungen des Klimawandels auf die Stadtentwässerung
- Anpassung der Entwässerungssysteme an den Klimawandel
- Kommunikation
- Zusammenfassung

www.muenster-journal.de/wp-content/uploads/149516Pa.jpg

www.wn.de/Muensterland/Unwetter-haelt-Muensterland-in-Aten

www.noz.de/deutschland-welt/nordrhein-westfalen/artikel/494155

Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

Heute:

 Statistische Auswertung der Niederschlagsdaten der Vergangenheit

Besser:

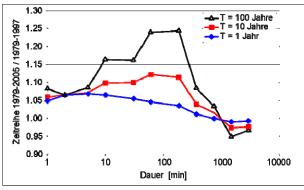
• Blick in die Zukunft

KOSTR Deutsche				State	dron	neteo	rolog	jie +							C	9)	
				Nie				öhe RA				len					
Rasterfeld Orbiname			te 33,			Jan 14		100	D**	0 20	,,,,						
lemenun; Setspenne		Jans	er-D	ezent	er.												
Describe	Waterdoorse T (d)																
			1				10		10		=		10		100		
	180	ski.	941	a	080	*	IN	n	166	m	TRI.	m	184	A	884	dá	
100	13	196.8	13	100.0	14	794.1	9,1	m1.5	19.4	200,0	11.5	375.6 398.3	16.2	495.5 NO.6	18.6	448.5	
15 mm	.62	100.0	918	129.1	14.8	101.0	10.4	100.0	10.3	276.8	20.0	1113	22.6	2914	26.0	277.8	
20 000	10.5	62.7	13.3	1187	16.8	WO	19,1	198.2	22.8	191.2	28.5	200,7	36.5	213.)	28,9	248.7	
More	11.1	927	19.8	96.0	38.7	111.0	33.6	191.7	37.8	186.1	29,0	1613	314	11%3	16.0	104.6	
AT year.	114	80.3	10.0	96,2	24.6	81.2	27.8	947.9	32.4	198.7	38,5	1073	31.7	110.0	419	100.0	
No.	11.5	19.1	21.2	10.1	TR.P.	13.5	in A	81.0	10.5	10.3	827	190.0	83	86.0	813	36.7	
13	10.0	25.4	22.5	21.8	98.8	41.6	05.4	88.0	40.2	96.7	40,7	114	10.5	40.4	16.2	TER	
11	11.4	12.2	24.9	23,1	82.8	81.0	31.0	31.0	46.0	63.6	10.2	46.3	15.0	94.0	61.6	96.0	
44	10,0	10,0	266,6	18,6	16,7	24,0	417.7	20,0	40.0	20,0	88,7	10,0	10,0	46,0	86,7	45,6	
61.	21.5	9.9	29.5	13.5	39.2 43.6	18.2	46.9	24.7	54.5	25.3	50,3	29.3	64.6 71.0	29.9	72.3	30.5	
12.9	21.5	5.8	21.9	13	45.0	13.3	51.5	15.9	50.9	18.5	64.5	29.0	71.0	21.9	79.5	29.5	
19.0	26.2	4.4	27.5	2.0	43.5		55.0	9.7	68.3	15.5	73.8	114	104	12.4	19.3	13.9	
24.9	36.7	3,6	40.2	4.6	62.7	6.7	62,1	12	71.6	8.3	37.2	8.9	84.1	9.7	11.6	10.0	
48.5	31.7	2.2	47,6	2.6	69.7	3.5	79.6	4.3	60.5	4.7	96,3	5,0	51.6	5.4	961.5	6.0	
72.6	42.5	1.6	52.7	2.6	66.1	2.5	76.2	2.9	86.4	3.3	90.A	3.4	99.5	3.9	110.0	4.2	
0 0 0	der üb leuerst lieders lieders	erschn ufe in j chlags chlags	(vin, h) hohe in spende	definie (mm) in (ii) s i	ne Nie	denschli	egsdeu	er eins	hielic				rt einm	al emei	ide		
				-					nero.o								
Wederkehrinb	ened	Fierr	ensete		15 min		60 min		12.6				28				
14			tor [-]		0.50		8,50		0.50				1.50				
				(mar) dor()		9.26		14.50		25.80				150			
100 a			(mm)		25.00		47.50		95.80				6,96				
Nienn die an n Abhängigk	gegebe eit von	enen V n Wied	Verte für lenkehnir	Planur stervall	gurve	cke her	rangezi	ogen we	irden, s	alle fü	rN(D)) bzw. I	MN(D)T)			
bei 1 a : bei 5 a - bei 50 a	945	D as	**	Tolera Tolera Tolera	ND4B1	eg von e	+15 %										
Dersoksionlig	jung Si	nden.															

Fragen:

- Welche Veränderungen des Klimas sind zukünftig zu erwarten?
- Wie verändert sich das Niederschlagsgeschehen insbesondere in Hinblick auf Starkregen?
- Welche Unsicherheiten sind in den Klimaprojektionen enthalten?
- Wie können Veränderungen im Klima in die Bemessungspraxis einfließen bzw. wie können unsere Stadtentwässerungssysteme an die zu erwartenden Veränderungen der Starkregen angepasst werden?
- Können die auftretenden Fragen alleine von der Siedlungswasserwirtschaft gelöst werden?
- · Wie können wir mit dem Bürger kommunizieren?

Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?


Trends der Vergangenheit:

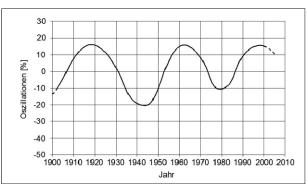
- Emscher/Lippe Region (Ereignisse pro Jahr > 5 mm):
 - bis 1996 20 Ereignisse pro Jahr
 - 1996 2006 30 Ereignisse pro Jahr
- Nordrhein-Westfalen
 - Zeitreihe 1950 2008 keine statistischen Trends
- Italien
 - Zeitreihe seit 1920 signifikante Erhöhung der Niederschlagssummen für kürzere Dauern
- Schweden
 - Malmö: Eindeutiger Trend für kürzere Dauerstufen
 - · Stockholm: kein Trend

Trends der Vergangenheit:

• Dänemark: Vergleich Zeitreihen 1979-2005 und 1979-1997

nach Madsen et al.; 2009

08.06.2017

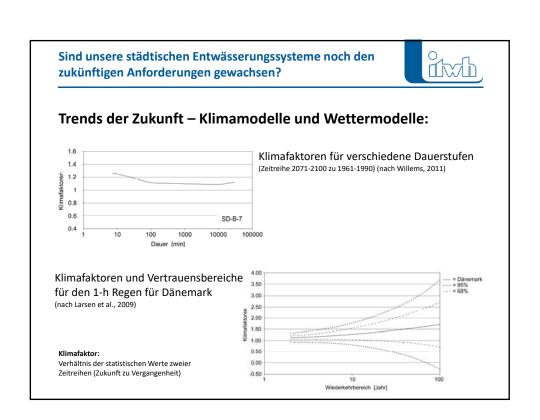

© itwh, 2016

Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

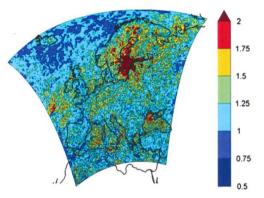
Trends der Vergangenheit:

Oszillationen im Niederschlag (10 min Intervalle, 1898-2005)

nach Ntegeka und Willems, 2008


08.06.2017

© itwh, 2016

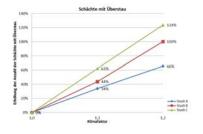

Trends der Zukunft - Klimamodelle und Wettermodelle:

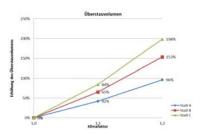
- Klimamodelle
 - abhängig von Prognose Bevölkerungsentwicklung, Industrialisierung, Ausstoß Treibhausgase – diverse Szenarien
 - · Globale Modelle, langfristig
- Wettermodelle
 - · Ausgehend von Klimamodellen
 - kleinräumiger, oft kurzfristiger
 - Statistische Interpolation oder dynamische Verfahren
- Klimafaktor
 - Verhältnis der statistischen Werte zweier Zeitreihen (Zukunft zu Vergangenheit)

Trends der Zukunft - Klimamodelle und Wettermodelle:

Klimafaktor:

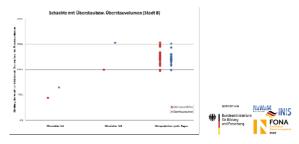
- Nordeuropa > 1,5
- Ostseeraum > 1,75
- Deutschland: 1-1,5


Klimafaktoren, Wiederkehrzeit 5 Jahre, Niederschlagsdauer 1 h (Zeitreihe 2071-2100 zu 1961-1991) basierend auf einem globalen Klimamodell mit statistischem downscaling Verfahren (nach Larsen et al. 2009)


Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

Trends der Zukunft – Auswirkungen Auslastung Kanalnetz:

- Untersuchung von drei großstädtischen Kanalnetzen
- Ansatz Modellregen, T = 5 Jahre
- Klimafaktor auf den Modellregen von 1,0; 1,1; 1,2



Signifikante Erhöhung der Schächte mit Überstau bzw. des Überstauvolumens

Trends der Zukunft – Auswirkungen Auslastung Kanalnetz:

- Untersuchung eines großstädtischen Kanalnetzes
- Ansatz Modellregen, T = 5 Jahre
- Klimafaktor auf den Modellregen von 1,0; 1,1; 1,2
- Seriensimulation synthetischer Regen aus Klimaprojektionen

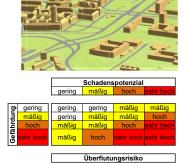
> Ebenfalls signifikante Erhöhung

Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

Trends der Zukunft – Auswirkungen Auslastung Kanalnetz:

- Keine ungleichmäßige Überregnung aber Ingenieurpraxis
- Radarniederschlagsdaten: Erhöhung der Anzahl der überlasteten Schächte im Gegensatz zu gemessenen Punktniederschlägen

Trends der Zukunft – Auswirkungen Kosten Sanierung:


- Überflutungsschäden
 - Roskilde/Dänemark: 6 Mio. €/Jahr (Faktor 10)
 - England: Faktor 2,5 bis 2080
 - GDV (Starkregen Quintia 2013): 200 Mio. €
- Anpassung Entwässerungssysteme
 - Roskilde/Dänemark: 10% der jährlichen Unterhaltungskosten
 - Dänemark: 20% der jährlichen Unterhaltungskosten

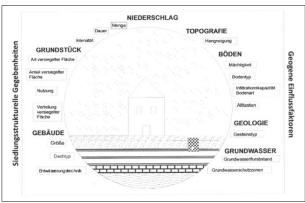
Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

Anpassung Entwässerungssysteme:

- · Klimafaktor i.d.R. nicht
- Überflutungsprüfung als Regel
- Adaptionsstrategie
 - Überflutungsprüfung Gefährdung ermitteln
 - Schadenspotenzial bestimmen
 - Überflutungsrisiko bestimmen
 - Maßnahmen ableiten auf der Oberfläche

Anpassung Entwässerungssysteme - Adaptionsstrategie:

- Integrierter Ansatz lokaler Wasserkreislauf
- Dezentral: Abkoppelung befestigter Flächen
 - Gründächer
 - Mulden-Rigolen-Systeme
 - Retentionsteiche, Versickerungsteiche, Retentionsbodenfilter, Feuchtgebiete
 - Regenwasserspeicher
 - · durchlässige Befestigungen



Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

Anpassung Entwässerungssysteme - Adaptionsstrategie:

 Einflussfaktoren auf die dezentrale Regenwasserbewirtschaftung

08.06.2017

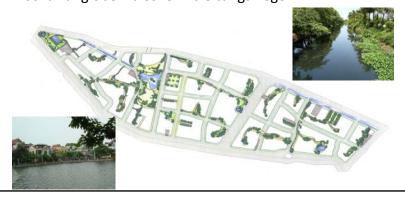
© itwh, 2016

Anpassung Entwässerungssysteme - Adaptionsstrategie:

- Semizentral: Nutzung bestehender Grünflächen zur Rückhaltung/Bewirtschaftung bei extremen Niederschlägen
 - Sportplätze
 - Parkanlagen
 - Spielplätze
- Zusammenarbeit mit Stadt-/Landschaftsplanern

Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?

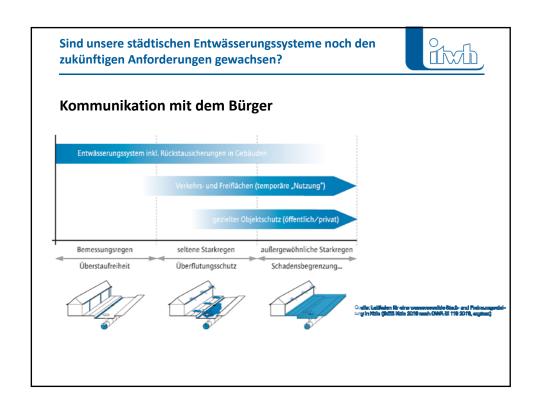
Anpassung Entwässerungssysteme - Adaptionsstrategie:

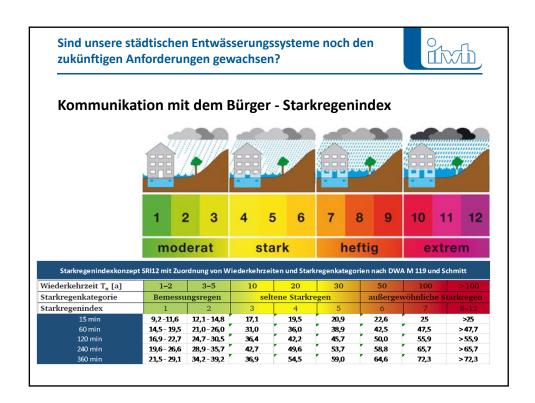

- Semizentral: Nutzung bestehender Grünflächen zur Rückhaltung/Bewirtschaftung bei extremen Niederschlägen
- · Schaffung oberirdischer Ableitungswege

Anpassung Entwässerungssysteme - Adaptionsstrategie:

- Semizentral: Nutzung bestehender Grünflächen zur Rückhaltung/Bewirtschaftung bei extremen Niederschlägen
- Schaffung oberirdischer Ableitungswege

Sind unsere städtischen Entwässerungssysteme noch den zukünftigen Anforderungen gewachsen?




Anpassung Entwässerungssysteme - Adaptionsstrategie:

Notabflusswege schaffen

Zusammenfassung

- Blick in die Vergangenheit liefert unscharfe Tendenzen
- Klima-/Wettermodelle abhängig von Eingangsgrößen Treibhausgase, Bevölkerungsentwicklung, ...
- Tendenz: Erhöhung der Starkniederschläge
- Überstaunachweis mit Klimafaktor und Modellregen nicht die Regel
- · Überflutungsprüfung erforderlich
 - Fließwege aufzeigen
 - · Gefährdung ermitteln
 - · Schadenspotential abschätzen
 - Risiko bewerten

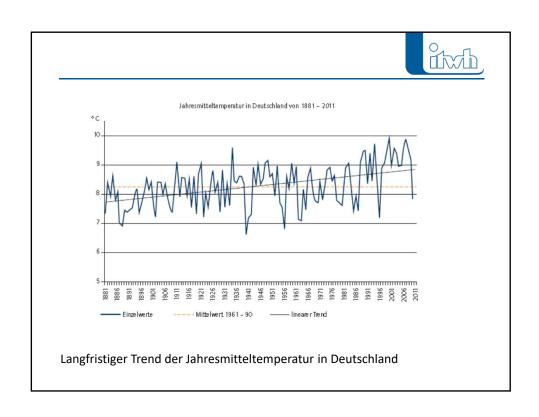
Zusammenfassung

- Maßnahmen ableiten
- Adaption der Entwässerungssysteme -Regenwasserbewirtschaftung
 - dezentrale und semizentrale Lösungen
 - oberirdische Abflusswege einbeziehen
 - Integration in die Stadtplanung
- Schaffung von Notabflusswegen
- Kommunikation

Wir sollten Wasser nicht als Feind

sondern als Freund betrachten

Mit dem Wasser leben



Danke für Ihre Aufmerksamkeit

Autor: Dr. Lothar Fuchs ITWH GmbH Engelbosteler Damm 22 D-30167 Hannover Tel: +49-511-97193-0 Fax: +49-511-97193-77 Lifuchs@twh.de Internet: www.itwh.de

