

Institut für Statistik

Seminarvortrag

8. Jänner 2026, 14:00 Uhr

SR für Statistik (NT03098), Kopernikusgasse 24, 3.OG.

Optimal transport between random measures, totally convex functions and the Brenier theorem

ALESSANDRO PINZI

(Bocconi University, Italy)

Abstract

The first part of this talk is devoted to recall the basics on the Optimal Transport problem. In particular, the existence of optimal transport plans and their characterization through c -concavity functions. When we apply this theory to the Euclidean setting, using the squared distance as cost, c -concavity boils down to usual convexity, and this allows us to prove the celebrated Brenier theorem about the existence and uniqueness of optimal transport maps. In the second part, I will present recent results concerning the Optimal Transport problem between laws of random measures in the Wasserstein-on-Wasserstein space $\mathcal{P}_2(\mathcal{P}_2(H))$, built over a Hilbert space H . Despite the lack of smoothness of the cost, the fact that the space $\mathcal{P}_2(H)$ is not Hilbertian, and the curvature distortion induced by the underlying Wasserstein metric, we will show how to recover, at the level of random measures in $\mathcal{P}_2(\mathcal{P}_2(H))$, the same deep and powerful results linking Euclidean Optimal Transport problems in $\mathcal{P}_2(H)$ and convex analysis. Our approach relies on the notion of totally convex functionals, on their total subdifferentials, and on their Lions-Lagrangian liftings in the space of square-integrable H -valued maps $L^2(Q, \mathbb{M}; H)$. With these tools, we identify a natural class of regular measures on $\mathcal{P}_2(H)$ for which the Monge formulation of the OT problem has a unique solution, and, when H has finite dimension, we will show that this class includes relevant examples of measures with full support arising from the push-forward of nondegenerate Gaussian measures in $L^2(Q, \mathbb{M}; H)$. The talk is based on a joint work with Giuseppe Savaré.

G. Pammer