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TDDFT propagation with clamped nuclei
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Moving nuclei



Stationary Schrödinger equation
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Hamiltonian for the complete system of Ne electrons with coordinates
and Nn nuclei with coordinates( ) rrr

eN1 ≡ ( ) RRR
nN1 ≡

( ) ( )R,rER,rĤ   Ψ=Ψ



Time-dependent Schrödinger equation
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Born-Oppenheimer approximation

.Rfor each fixed nuclear configuration
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Born-Huang expansion of the full electron-nuclear wave function

( ) ( ) ( )= ⋅∑   
BO
R,J J

J
Ψ r, R,t Φ r χ R,t

and insert expansion in the full Schrödinger equation → standard 
non-adiabatic coupling terms from Tn acting on  ( ).BO

J,R rΦ  

Expand full molecular wave function in complete set of BO states:



Plug Born-Huang expansion in full TDSE:
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Plug Born-Huang expansion in full TDSE:

( ) ( ) ( ) ( )t k n k k ki R, t T R, t R R, t∂ χ = χ +∈ χ

( ) Rk∈

( ) ( ) ( ), , ,adiab BO
k kt tχΨ ≈ ΦR r R r R Adiabatic approximation



Plug Born-Huang expansion in full TDSE:

( ) ( ) ( ) ( )t k n k k ki R, t T R, t R R, t∂ χ = χ +∈ χ

( ) Rk∈

( ) ( ) ( ), , ,adiab BO
k kt tχΨ ≈ ΦR r R r R Adiabatic approximation

In calculations of vibrational spectra one usually makes two approximations:
• Adiabatic approximation
• Harmonic approximation   



Vibrational spectra are usually very well described within
the adiabatic approach, but not always! (Hammes-Schiffer)

Dramatic failures of the adiabatic approximation:

 Zewail experiments

 Calculation of electronic currents associated with 
nuclear motion
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When only few BO-PES are important, the BO expansion 
gives a perfectly clear picture of the dynamics 

Na++ I-

Na + I
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B BO

01 1,R
O

00 0 0,Rχ R Φ r χ R,R Φr rΨ

When only few BO-PES are important, the BO expansion 
gives a perfectly clear picture of the dynamics 

Na++ I-

Na + I
emitted neutral Na atoms



Effect of tuning pump wavelength (exciting to different 
points on excited surface)

300

311

321

339

λpump/nm

Different periods 
indicative of anharmonic 
potential

T.S. Rose, M.J. Rosker, A. Zewail, JCP  91, 7415 (1989)



( ) ( ) ( ), , ,BO BOt tχΨ ≈ ΦR r R r R

( ) ( ) ( ) 22
, ,BO BO BOt t dρ χ= Φ∫r R r R R

( ) ( ) ( ) ( )2* *, Im , Im 0= Ψ ∂ Ψ = Φ ∂ Φ =∫ ∫r rj r R R RBO BO BO BOt d t dχ

Time-dependent electronic  (N-body, or one-body) density:

very close to true TD density

completely wrong!!  Dramatic failure of adiabatic approximation

( )Φ r RBOwith non-degenerate, real-valued BO state 

Adiabatic approximation (dynamics on a single BO-PES)

Most dramatic failure of the adiabatic approximation: Calculation 
of electronic flux density associated with nuclear motion   



Problem: Born-Huang expansion not feasible 
for larger molecules and solids



The exact factorisation



The exact factorisation

“Exactification”

of the adiabatic approximation

( ) ( ) ( )   
adiab BOΨ r,R, t r χ R, t= Φ ⋅R

( ) ( ) ( )   
exactΨ r,R, t r, t χ R, t= Φ ⋅R



Outline

• Show that the factorisation 

is an exact representation of the electron-nuclear wave function

• Concept of exact geometric phase 

• Concept of exact and unique time-dependent PES 
and the exact classical force on the nuclei

• Nuclear-velocity perturbation theory
-- electronic currents associated with nuclear motion 
-- vibrational circular dichroism

( ) ( ) ( )   Ψ r,R, t r, t χ R, t= Φ ⋅R
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Theorem I

The exact solutions of

can be written in the form

( ) ( )R,rER,rĤ   Ψ=Ψ

( ) ( ) ( )   Ψ r,R r χ R= Φ ⋅R

where ( ) 1 rΦrd
2

 =∫ R for each fixed .R

N.I. Gidopoulos, E.K.U. Gross, Phil. Trans. R. Soc. 372, 20130059 (2014)

The factors χ and Φ are unique (up to within 
an R-dependent gauge transformation).



( ) ( )
 

2R : e dr (r,R)χ = Ψ∫
iS R

( ) S R

Proof of Theorem I:

Choose:

( ) Ψ r,R

with some real-valued funcion

( ) ( ) ( )    Φ r : Ψ r,R / χ R=R

Given the exact electron-nuclear wavefuncion

( ) 1 rΦrd
2

 =∫ RThen, by construction, 

Note: If we want χ(R) to be smooth, S(R) may be discontinuous 
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Theorem II: satisfy the following equations:( ) ( )  R r   and  RΦ χ

N.I. Gidopoulos, E.K.U. Gross, Phil. Trans. R. Soc. 372, 20130059 (2014)



Eq.  ( )
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Theorem II: satisfy the following equations:( ) ( )  R r   and  RΦ χ

Exact PES

Exact Berry connection
N.I. Gidopoulos, E.K.U. Gross, Phil. Trans. R. Soc. 372, 20130059 (2014)



How do the exact PES look like?
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MODEL

Nuclei (1) and (2) are heavy: Their positions are fixed

S. Shin, H. Metiu, JCP 102, 9285 (1995), JPC 100, 7867 (1996) 







( ) ( ) ( ) ( )   
*
R RA R dr r  i  rν ν= Φ − ∇ Φ∫

( ) ( ) ( ) 

  
i RR : e Rθχ = χ

( ) ( ) ( )   R  r r,R / RΦ = Ψ χ

Exact Berry connection 

Insert:

( ) ( ) ( ){ } ( )    

2*
νA R Im dr r,R  r,R / Rν ν= Ψ ∇ Ψ χ −∇ θ∫

( ) ( ) ( ) ( )    

2
A R J R / R Rν ν ν= χ −∇ θ

with the exact nuclear current density Jν



Another way of reading this equation:
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2M

1 ext
nnn

N

ν

2
νν

ν

n

=







++++∇−∑ ( )R ∈

Conclusion: The nuclear Schrödinger equation

yields both the exact nuclear N-body density and the 
exact nucler N-body current density

A. Abedi, N.T. Maitra, E.K.U. Gross, JCP 137, 22A530 (2012)



The exact vector potential defines an “exact geometric phase”                   

( )exact exact= ⋅∫  γ A R dR
 



Question: How does this exact geometric phase compare to the 
usual Born-Oppenheimer (Longuet-Higgins) phase                   

( )BO BO= ⋅∫  γ A R dR
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Question: How does this exact geometric phase compare to the 
usual Born-Oppenheimer (Longuet-Higgins) phase                   

( )BO BO= ⋅∫  γ A R dR
 



Look at Shin-Metiu model in 2D:

+ ++
–



BO-PES of 2D Shin-Metiu model



BO-PES of 2D Shin-Metiu model

conical intersection
with Berry phase π



In this system, the geometric phase associated with the 
exact vector potential is zero!!

(although there is a proper geometric phase of π in BO)   



In this system, the geometric phase associated with the 
exact vector potential is zero!!

(although there is a proper geometric phase of π in BO)   

How can this be true, 
in view of BO being the M→ꝏ limit of the exact treatment? 



• Non-vanishing geometric phase results from a non-analyticity
in the electronic wave function                as function of R.  

• Such non-analyticity is found in BO approximation.

( ) 
BO rΦR



• Non-vanishing geometric phase results from a non-analyticity
in the electronic wave function                as function of R.  

• Such non-analyticity is found in BO approximation.

Does the exact electronic wave function show such 
non-analyticity as well (in 2D Shin-Metiu model)? 

Look at

as function of nuclear mass M. 

( ) 
BO rΦR

( ) ( )D = ∫ R  R rΦ r dr

S.K. Min, A. Abedi, K.S. Kim, E.K.U. Gross, PRL 113, 263004 (2014)



M = ∞

D(R)



M = ∞

D(R)



Question: Can one prove in general that the exact molecular
geometric phase vanishes? 



Question: Can one prove in general that the exact molecular
geometric phase vanishes? 

Answer:  No! There are cases where a nontrivial Berry phase 
appears in the exact treatment. 

R. Requist,  F. Tandetzky, EKU Gross, Phys. Rev. A 93, 042108 (2016).
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Note: When the vector potential cannot be gauged away, this 
can have two distinct reasons. 

Either
• The curl of nuclear velocity field does not vanish 

Or
• The phase θ(R) has a discontinuity/non-analyticity
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Note: When the vector potential cannot be gauged away, this 
can have two distinct reasons. 

Either
• The curl of nuclear velocity field does not vanish 

→ geometrical phase with any value in [0,π]

Or
• The phase θ(R) has a discontinuity/non-analyticity



( ) ( ) ( ) ( )    

2
A R J R / R Rν ν ν= χ −∇ θ

Note: When the vector potential cannot be gauged away, this 
can have two distinct reasons. 

Either
• The curl of nuclear velocity field does not vanish 

→ geometrical phase with any value in [0,π]

Or
• The phase θ(R) has a discontinuity/non-analyticity

→ topological phase with quantized value nπ



Time-dependent case



Theorem T-I

The exact solution of

can be written in the form

where

( ) ( ) ( )   ti r,R, t H r,R, t  r,R, t∂ Ψ = Ψ

( ) ( ) ( )   Rr,R, t r, t  R, tΨ = Φ χ

( ) 

2

Rdr r, t 1Φ =∫ for any fixed             .R, t

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)
JCP 137, 22A530 (2012)
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Theorem T-II

( ) ( )t,R  and  t,r   R χΦ satisfy the following equations

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)
JCP 137, 22A530 (2012)
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Theorem T-II

( ) ( )t,R  and  t,r   R χΦ satisfy the following equations

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)
JCP 137, 22A530 (2012)

Exact TDPESExact TD vector potential



The nuclear equation of motion yields the true nuclear 
N-body density  and the true nuclear N-body current density that 
one would also obtain from the full electron-nuclear wave function Ψ.

Note: Theorem T-III similar to TDKS theorem!!

Consequence:

The gradient of the TDPES appearing in this Schrödinger equation
is the only correct classical force on the nuclei, unique up to within an
R-dependent gauge transformation. 

Theorem T-III



Properties of the exact electronic EoM:

• Non-linear equation in 𝜙𝜙𝑅𝑅 𝑟𝑟 because  of 𝐴𝐴[𝜙𝜙]
• Non-adiabatic terms are not operators in the electronic Hilbert space  

• in BO-basis: non-Hermitian matrix, still the time-propagation conserves norm

• Electronic EoM depends on 𝜒𝜒 𝑅𝑅

Properties of the exact nuclear EoM:

• Standard TDSE
• Scalar potential is time-dependent Nn-body interaction

• Vector potential is Nn-body operator, i.e. 3D vector field depending on ( )1 nNR R
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• Vector potential is Nn-body operator, i.e. 3D vector field depending on ( )1 nNR R
 



On the exact level, the two EoMs are equivalent to the full TDSE

Crucial advantage:
Nuclei and electrons satisfy separate equations

Useful starting point to make approximations⇒
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HBO

Allows the calculation of electronic flux densities very efficiently

A. Schild, F. Agostini, EKUG., J. Phys. Chem. A 120, 3316 (2016)

Use electronic EoM of exact factorization and treat the non-
adiabatic terms in 1st-order perturbation theory 

A. Scherrer, F Agostini, D. Sebastiani, EKUG., R. Vuilleumier, 
JCP 143, 074106 (2015) , and   PRX 7, 031035 (2017).



( )

4

2 2 2 2 202 1

1 1 1RV
Rx y R R x yα β α

 
= − + + − 

+ + +  − + +

Model Study: 
One electron in 2D (x,y), one nucleus in 1D (R), and another very heavy
nucleus clamped at the origin, all interacting with soft Coulomb potentials

Lowest 20 Born−Oppenheimer 
potential energy surfaces and 
initial BO wave function. 



Top: nuclear density (left) and flux density (right) for the exact nuclear wave function χ and for the Born−Oppenheimer 
(BO) nuclear wave function χBO, after one-quarter of the tunneling time, for a nucleus with mass 50 me. Below: electron 
density (top) and flux density (below, with contours indicating the magnitude and arrows indicating the direction, for 
points where the flux is more than 1% of its maximum value) at that time for the exact wave function (left), for the BO 
electronic wave function corrected by nuclear velocity perturbation theory (NVPT, center), and for the NVPT electronic 
wave function at the expectation value of nuclear position and momentum (right).



Vibrational circular dichroism 

Absorption difference between lefthanded and righthanded
circularly polarized light: 
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Electronic contributions to the linear current and to the magnetic 
dipole moment vanish identically in the adiabatic approximation.

Employ the exact factorization: 
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and evaluate ΦR within first-order nuclear-velocity PT, employing 
DFT-PT 



(S)-d2-oxirane

Vibrational modes at 896 cm−1 (left) and at 1089 cm−1 (right) for (S)-d2-oxirane, with nuclear 
velocities indicated as blue arrows. The corresponding vector potential is shown as red arrows.



Normal modes, dipole and rotational strengths, for (S)-d2-oxirane..

DMFP DNVP RMFP RNVP
ῦ(cm−1) (10−44 esu2 cm2) (10−44 esu2 cm2)
647.50 0.55 0.85 −0.35 −0.45
733.42 123.35 124.88 8.73 10.54
769.76 53.44 51.77 3.17 3.29
856.38 145.31 145.55 4.31 2.70
894.67 9.78 10.24 −3.37 −3.89
936.33 39.73 39.24 −19.14 −20.26
1088.21 3.79 4.44 6.95 8.34
1093.95 1.41 1.71 −3.98 −4.97
1210.44 26.26 26.09 9.56 10.45
1326.86 0.34 0.37 −0.91 −0.76
1377.38 11.65 10.78 −7.50 −8.17
2235.16 49.17 50.88 −22.60 −22.90
2244.19 12.63 12.81 16.80 16.78
3047.68 11.43 11.66 −32.80 −32.59
3054.15 58.64 60.16 46.63 47.04

A. Scherrer, F Agostini, D. Sebastiani, EKUG., R. Vuilleumier, JCP 143, 074106 (2015) 
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