TDDFT: From optical excitations to real-time dynamics

E.K.U. Gross Fritz Haber Center for Molecular Dynamics

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

What do we want to describe?

$$\hat{H}(t) = \hat{T}_{e} + \hat{W}_{ee} + \hat{W}_{nn} + \sum_{j,\alpha}$$

 $-\frac{Z_{\alpha} e^{2}}{|\mathbf{r}_{i} - \mathbf{R}_{\alpha}|} + \vec{\mathbf{r}}_{j} \cdot \vec{\mathbf{E}}(t) \cdot \sin \omega t$

What do we want to describe?

Electronic transport: Generic situation

Bias between L and R is turned on: U(t) \longrightarrow V

$$\hat{H}(t) = \hat{T}_{e} + \hat{W}_{ee} + \sum_{j,\alpha} - \frac{Z_{\alpha} e^{2}}{|r_{j} - R_{\alpha}|} + \vec{r}_{j} \cdot \vec{E}(t) \cdot \sin \omega t$$

$$\hat{H}(t) = \hat{T}_{e} + \hat{W}_{ee} + \sum_{j,\alpha} - \frac{Z_{\alpha} e^{2}}{|r_{j} - R_{\alpha}|} + \vec{r}_{j} \cdot \vec{E}(t) \cdot \sin \omega t$$

Three important approximations lead to this Hamiltonian:

- Nuclei treated as clamped or moving on classical trajectories **R**(t)
- Electron-photon interaction treated as classical field
- Non-relativistic limit

$$\hat{H}(t) = \hat{T}_{e} + \hat{W}_{ee} + \sum_{j,\alpha} - \frac{Z_{\alpha} e^{2}}{|r_{j} - R_{\alpha}|} + \vec{r}_{j} \cdot \vec{E}(t) \cdot \sin \omega t$$

Three important approximations lead to this Hamiltonian:

- Nuclei treated as clamped or moving on classical trajectories R(t)
- Electron-photon interaction treated as classical field
- Non-relativistic limit

Strong laser $(v_{laser}(t) \ge v_{en})$:

Non-perturbative solution of full TDSE required

Weak laser $(v_{laser}(t) \ll v_{en})$:

Calculate 1. Linear density response $\rho_1(\vec{r} t)$

2. Dynamical polarizability
$$\alpha(\omega) = -\frac{e}{E} \int z \rho_1(\vec{r}, \omega) d^3r$$

3. Photo-absorption cross section $\sigma(\omega) = -\frac{4\pi\omega}{c} \text{Im}\,\alpha$

Photo-absorption in weak lasers

- **Basic theorems of TDDFT**
- <u>TDDFT in the linear response regime:</u> -- Photo-absorption (optical and UV regime)
- <u>Real-time dynamics far from equilibrium</u> -- Laser-driven spin dynamics
 - -- Transport through molecular junctions

Basic theorems of TDDFT

(E. Runge, E.K.U.G., PRL 52, 997 (1984))

1-1 correspondence (TD analogue of Hohenberg-Kohn theorem):

The time-dependent density determines uniquely $v(rt) \xleftarrow{1-1} \rho(rt)$ the time-dependent external potential and hence all physical observables for fixed initial state.

TDKS theorem:

The time-dependent density of the <u>interacting</u> system of interest can be calculated as density 12

$$\varphi(\mathbf{rt}) = \sum_{j=1}^{N} \left| \varphi_{j}(\mathbf{rt}) \right|^{2}$$

of an auxiliary non-interacting (KS) system

$$i\hbar \frac{\partial}{\partial t} \varphi_{j}(rt) = \left(-\frac{\hbar^{2}\nabla^{2}}{2m} + v_{s}[\rho](rt)\right) \varphi_{j}(rt)$$

with the local potential

$$\mathbf{v}_{s}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{r}\mathbf{t}) = \mathbf{v}_{ext}(\mathbf{r}\mathbf{t}) + \int d^{3}\mathbf{r}'\frac{\rho(\mathbf{r}'\mathbf{t})}{|\mathbf{r}-\mathbf{r}'|} + \mathbf{v}_{xc}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{r}\mathbf{t})$$

Basic theorems of TDDFT

(E. Runge, E.K.U.G., PRL <u>52</u>, 997 (1984))

1-1 correspondence (TD analogue of Hohenberg-Kohn theorem):

The time-dependent density determines uniquely $v(rt) \xleftarrow{1-1} \rho(rt)$ the time-dependent external potential and hence all physical observables for fixed initial state.

TDKS theorem:

The time-dependent density of the *interacting* system of interest can be calculated as density 12

$$p(rt) = \sum_{j=1}^{N} \left| \varphi_j(rt) \right|^2$$

of an auxiliary non-interacting (KS) system

$$i\hbar\frac{\partial}{\partial t}\varphi_{j}(rt) = \left(-\frac{\hbar^{2}\nabla^{2}}{2m} + v_{s}[\rho](rt)\right)\varphi_{j}(rt)$$

with the local potential

$$\mathbf{v}_{s}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{rt}) = \mathbf{v}_{ext}(\mathbf{rt}) + \int d^{3}\mathbf{r}' \frac{\rho(\mathbf{r}'\mathbf{t})}{|\mathbf{r}-\mathbf{r}'|} + \mathbf{v}_{xc}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{rt})$$

Proof of the 1-1 correspondence between $v(\vec{r}t)$ and $\rho(\vec{r}t)$

G

$$\begin{array}{ccc} v(\vec{r} t) & \longrightarrow & \vec{j}(\vec{r} t) & \longrightarrow & \rho(\vec{r} t) \\ v'(\vec{r} t) & \longrightarrow & \vec{j}'(\vec{r} t) & \longrightarrow & \rho'(\vec{r} t) \end{array}$$

use

$$i\frac{\partial \vec{j}(\vec{r},t)}{\partial t} = \left\langle \Psi(t) \left| \left[\hat{j}(\vec{r}), \hat{H}(t) \right] \right| \Psi(t) \right\rangle \text{ and } \frac{\partial \rho(\vec{r},t)}{\partial t} = -\operatorname{div} j(\vec{r},t)$$
equation of motion for \vec{j}

to show that ρ and ρ' will become different from each other infinitesimally later than t_0

Simplest possible approximation for $v_{xc}[\rho](\vec{r}t)$

Adiabatic Local Density Approximation (ALDA)

$$\mathbf{v}_{xc}^{\text{ALDA}}(\vec{r} t) \coloneqq \mathbf{v}_{xc,\text{stat}}^{\text{hom}}(n) \Big|_{n=\rho(\vec{r} t)}$$

 $V_{xc,stat}^{hom}$ = xc potential of static homogeneous e-gas

Simplest possible approximation for $v_{xc}[\rho](\vec{r}t)$

Adiabatic Local Density Approximation (ALDA)

$$\mathbf{v}_{xc}^{\text{ALDA}}(\vec{r} t) \coloneqq \mathbf{v}_{xc,\text{stat}}^{\text{hom}}(n) \Big|_{n=\rho(\vec{r} t)}$$

 $V_{xc,stat}^{hom}$ = xc potential of static homogeneous e-gas

Any approximate ground-state-DFT xc functional can be used to generate an <u>adiabatic approximation</u> for TDDFT

$$\mathbf{v}_{xc}^{\text{adiab}}\left(\vec{r} \ t\right) \coloneqq \mathbf{v}_{xc,GS}^{\text{approx}}[\mathbf{n}] \mid_{\mathbf{n}=\rho(\vec{r} \ t)}$$

.

LINEAR RESPONSE THEORY

$$\begin{split} t &= t_0: \text{Interacting system in ground state of potential } v_0(r) \text{ with density } \rho_0(r) \\ t &> t_0: \text{Switch on perturbation } v_1(r \ t) \ (\text{with } v_1(r \ t_0) = 0). \\ \text{Density: } \rho(r \ t) &= \rho_0(r) + \delta\rho(r \ t) \end{split}$$

Consider functional $\rho[v](r t)$ defined by solution of interacting TDSE

Functional Taylor expansion of $\rho[v]$ around v_o :

$$\begin{split} \rho[\mathbf{v}](\mathbf{r} t) &= \rho[\mathbf{v}_0 + \mathbf{v}_1](\mathbf{r} t) \\ &= \rho[\mathbf{v}_0](\mathbf{r} t) & \longrightarrow \rho_o(\mathbf{r}) \\ &+ \int \frac{\delta \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v} (\mathbf{r}' t')} \Big|_{\mathbf{v}_0} \mathbf{v}_1(\mathbf{r}' t') d^3 \mathbf{r}' dt' & \longrightarrow \rho_1(\mathbf{r} t) \\ &+ \frac{1}{2} \int \int \frac{\delta^2 \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v} (\mathbf{r}' t') \delta \mathbf{v} (\mathbf{r}'' t'')} \Big|_{\mathbf{v}_0} \mathbf{v}_1(\mathbf{r}', t') \mathbf{v}_1(\mathbf{r}'', t'') d^3 \mathbf{r}' d^3 \mathbf{r}'' dt' dt'' & \longrightarrow \rho_2(\mathbf{r} t) \\ &\vdots \end{split}$$

$$\rho_{1}(\mathbf{r},\mathbf{t}) = \text{linear density response of interacting system}$$
$$\chi(\mathbf{r} t, \mathbf{r}'t') \coloneqq \frac{\delta \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v}(\mathbf{r}'t')}\Big|_{\mathbf{v}_{0}} = \frac{\text{density-density response function of interacting system}}{\delta \mathbf{v}(\mathbf{r}'t')}$$

Lehmann representation of the full response function

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \lim_{\eta \to 0^{+}} \sum_{\mathbf{m}} \left(\frac{\langle 0|\hat{\rho}(\mathbf{r})|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r}')|0\rangle}{\omega - (E_{\mathbf{m}} - E_{0}) + i\eta} - \frac{\langle 0|\hat{\rho}(\mathbf{r}')|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r})|0\rangle}{\omega + (E_{\mathbf{m}} - E_{0}) + i\eta} \right)$$

with the exact many-body eigenfunctions and energies of the initial unperturbed interacting system Hamiltnian $H(t_0)|m\rangle = E_m |m\rangle$

 $\Rightarrow \mbox{The exact linear density response} \\ \rho_1 (\omega) = \chi (\omega) v_1 \\ \mbox{has poles at the exact excitation energies } \Omega = E_m - E_0 \\ \label{eq:response}$

Analogous functional $\rho_s[v_s](r t)$ for <u>non</u>-interacting system

$$\rho_{S}[v_{S}](r t) = \rho_{S}[v_{S,0} + v_{S,1}](r t) = \rho_{S}[v_{S,0}](r t) + \int \frac{\delta \rho_{S}[v_{S}](r t)}{\delta v_{S}(r' t')} \bigg|_{v_{S,0}} v_{S,1}(r' t') d^{3}r' dt' + \cdots$$

 $\chi_{s}(r t, r't') \coloneqq \frac{\delta \rho_{s}[v_{s}](r t)}{\delta v_{s}(r't')} \bigg|_{v_{s,0}} = \frac{\text{density-density response function of}}{\underline{\text{non-interacting system}}}$

 χ_{s} (r,r', ω) has also poles as function of ω , but at the non-interacting single-particle (KS) excitation energies.

<u>GOAL</u>: Find a way to calculate $\rho_1(r t)$ without explicitly evaluating $\chi(r t, r't')$ of the <u>interacting</u> system

starting point: Definition of xc potential

$$\mathbf{v}_{xc}[\rho](\mathbf{r} t) \coloneqq \mathbf{v}_{s}[\rho](\mathbf{r} t) - \mathbf{v}_{ext}[\rho](\mathbf{r} t) - \mathbf{v}_{H}[\rho](\mathbf{r} t)$$

 v_{xc} is well-defined through the non-interacting and the interacting 1-1 mapping.

$$\frac{\delta v_{xc}[\rho](r t)}{\delta \rho(r't')}\bigg|_{\rho_0} = \left.\frac{\delta v_s[\rho](r t)}{\delta \rho(r't')}\bigg|_{\rho_0} - \left.\frac{\delta v_{ext}[\rho](r t)}{\delta \rho(r't')}\bigg|_{\rho_0} - \left.\frac{\delta(t-t')}{|r-r'|}\right|_{\rho_0} - \left.\frac{\delta(t-t')}{|r-r'|}\right|_{\rho_0}$$

$$f_{xc} + W_C = \chi_S^{-1} - \chi^{-1}$$

$$\chi_{\mathbf{S}} \bullet \left[\mathbf{f}_{\mathbf{x}\mathbf{c}} + \mathbf{W}_{\mathbf{C}} = \chi_{\mathbf{S}}^{-1} - \chi^{-1} \right] \bullet \chi$$

$$\chi_{\rm S} \bullet \left[f_{\rm xc} + W_{\rm C} = \chi_{\rm S}^{-1} - \chi^{-1} \right] \bullet \chi$$

$$\chi_{\rm S} (f_{\rm xc} + W_{\rm C}) \chi = \chi - \chi_{\rm S}$$

$$\chi = \chi_{s} + \chi_{s} \left(W_{_{ee}} + f_{_{xc}} \right) \chi$$

Act with this operator equation on arbitrary $v_1(r t)$ and use $\chi v_1 = \rho_1$:

$$\rho_{1}(\mathbf{r} \mathbf{t}) = \int \mathbf{d}^{3}\mathbf{r}' \mathbf{d}\mathbf{t}' \chi_{s}(\mathbf{r} \mathbf{t}, \mathbf{r}' \mathbf{t}') \left[\mathbf{v}_{1}(\mathbf{r} \mathbf{t}) + \int \mathbf{d}^{3}\mathbf{r}'' \mathbf{d}\mathbf{t}'' \left\{ \mathbf{W}_{ee}(\mathbf{r}' \mathbf{t}', \mathbf{r}'' \mathbf{t}'') + \mathbf{f}_{xe}(\mathbf{r}' \mathbf{t}', \mathbf{r}'' \mathbf{t}'') \right\} \rho_{1}(\mathbf{r}'' \mathbf{t}'') \right]$$

- Exact integral equation for $\rho_1(r t)$, to be solved iteratively
- Need approximation for $f_{xc}(\mathbf{r}'t',\mathbf{r}''t'') = \frac{\delta v_{xc}[\rho](\mathbf{r}'t')}{\delta \rho(\mathbf{r}''t'')}\Big|_{\rho_0}$ (either for f_{xc} directly or for v_{xc})

Total photoabsorption cross section of the Xe atom versus photon energy in the vicinity of the 4d threshold.

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980)]; crosses: experimental data [R. Haensel, G. Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969)].

Photo-absorption in weak lasers

Photo-absorption in weak lasers

Looking at those frequencies, Ω , for which $\rho_1(\omega)$ has poles, leads to a (non-linear) eigenvalue equation

M. Petersilka, U. J. Gossmann, E.K.U.G., PRL <u>76</u>, 1212 (1996) T. Grabo, M. Petersilka, EKUG, J. Mol. Struc. (Theochem) <u>501</u>, 353 (2000) M.E. Casida, Recent Advances in Density Functional Methods I, 155 (1996)

$$\sum_{q'} \left(A_{qq'}(\Omega) + \omega_q \delta_{qq'} \right) \beta_{q'} = \Omega \beta_q$$

where

$$\begin{split} \mathbf{A}_{qq'} &= \alpha_{q'} \int d^3 r \int d^3 r' \, \Phi_q(r) \Biggl(\frac{1}{|\mathbf{r} - \mathbf{r'}|} + \mathbf{f}_{xc}(\mathbf{r}, \mathbf{r'}, \mathbf{\Omega}) \Biggr) \Phi_{q'}(\mathbf{r'}) \\ & q = (\mathbf{j}, \mathbf{a}) \text{ double index} \qquad \alpha_q = \mathbf{f}_a - \mathbf{f}_j \end{split}$$

 $\omega_{a} = \varepsilon_{a} - \varepsilon_{i}$

$$\Phi_{q}(\mathbf{r}) = \varphi_{a}^{*}(\mathbf{r})\varphi_{j}(\mathbf{r})$$

Atom	Experimental Excitation Energies ¹ S→ ¹ P (in Ry)	KS energy differences ∧∈wa (Ry)	TDDFT	
Be	0.388	0.259	0.391	
Mg	0.319	0.234	0.327	
Ca	0.216	0.157	0.234	
Zn	0.426	0.315	0.423	
Sr	0.198	0.141	0.210	
Cd	0.398	0.269	0.391	

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL <u>76</u>, 1212 (1996)

Excitation energies of CO molecule [mH]

State	$\Omega_{ m expt~KS}$	KS-transition	$\Delta \epsilon_{\mathrm{KS}}$	TDDFT
$A \ ^1\Pi$	312.7	$5\sigma \rightarrow 2\pi$	252.3	310.2
a ³∏	232.3			221.4
I ¹ Σ-	363.1	$1\pi \rightarrow 2\pi$	362.6	362.6
e ³ Σ-	363.1			362.6
a' ³ Σ ⁺	312.7			314.9
D $^{1}\Delta$	375.9			380.7
d $^{3}\Delta$	344.0			339.6

Molecular excitation energies from time-dependent density-functional theory T Grabo, M Petersilka, EKU Gross, J Mol Struc-Theochem 501, 353 (2000).

Failures of ALDA in the linear response regime

• H₂ dissociation is incorrect: $E(^{1}\Sigma_{u}^{+}) - E(^{1}\Sigma_{g}^{+}) \xrightarrow[R \to \infty]{} 0 \text{ (in ALDA)}$

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))

- response of long chains strongly overestimated (see: Champagne et al., J. Chem. Phys. <u>109</u>, 10489 (1998) and <u>110</u>, 11664 (1999))
- in periodic solids, $f_{xc}^{ALDA}(q, \omega, \rho) = c(\rho)$ whereas, for insulators, $f_{xc}^{exact} \xrightarrow[q \to 0]{} 1/q^2$ divergent.
- charge-transfer excitations not properly described (see: Dreuw et al., J. Chem. Phys. <u>119</u>, 2943 (2003))

Failures of ALDA in the linear response regime

• H₂ dissociation is incorrect: $E(^{1}\Sigma_{u}^{+}) - E(^{1}\Sigma_{g}^{+}) \xrightarrow[R \to \infty]{} 0 \text{ (in ALDA)}$

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))

- response of long chains strongly overestimated (see: Champagne et al., J. Chem. Phys. <u>109</u>, 10489 (1998) and <u>110</u>, 11664 (1999))
- in periodic solids, $f_{xc}^{ALDA}(q, \omega, \rho) = c(\rho)$ whereas, for insulators, $f_{xc}^{exact} \xrightarrow[q \to 0]{} 1/q^2$ divergent.
- charge-transfer excitations not properly described (see: Dreuw et al., J. Chem. Phys. <u>119</u>, 2943 (2003))
 These difficulties have largely been solved by xc functionals more advanced than ALDA

Approximate functional used for fxc: **Bootstrap kernel:**

(Sharma, Dewhurst, Sanna, EKUG, PRL **107**, 186401 (2011))

PPV

PBTTT

Linear-response TDDFT is now being used to predict and to interpret experimental optical spectra in essentially all corners of physics and chemistry. Some examples:

Inorganic Chemistry

Luminescent Properties of Metal—Organic Framework MOF-5: Relativistic Time-Dependent Density Functional Theory Investigations

Min Ji, Xin Lan, Zhenping Han, Ce Hao,* and Jieshan Qiu

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China

ABSTRACT: The electronically excited state and luminescence property of metal—organic framework MOF-5 were investigated using relativistic density functional theory (DFT) and timedependent DFT (TDDFT). The geometry, IR spectra, and UV vis spectra of MOF-5 in the ground state were calculated using relativistic DFT, leading to good agreement between the experimental and theoretical results. The frontier molecular orbitals and electronic configuration indicated that the luminescence mechanism in MOF-5 follows ligand-to-ligand charge transfer (LLCT), namely, $\pi^* \rightarrow \pi$, rather than emission with the ZnO quantum dot (QD) proposed by Bordiga et al. The geometry and IR spectra of MOF-5 in the electronically excited state have been calculated using the relativistic TDDFT and compared with those for

the ground state. The comparison reveals that the Zn_4O_{13} QD is rigid, whereas the ligands BDC^{2-} are nonrigid. In addition, the calculated emission band of MOF-5 is in good agreement with the experimental result and is similar to that of the ligand H₂BDC. The combined results confirmed that the luminescence mechanism for MOF-5 should be LLCT with little mixing of the ligand-to-metal charge transfer. The reason for the MOF-5 luminescence is explained by the excellent coplanarity between the six-membered ring consisting of zinc, oxygen, carbon, and the benzene ring.

A NANOPLASMONIC SWITCH BASED ON MOLECULAR MACHINES

 Yue Bing Zheng¹, Ying-Wei Yang², Lasse Jensen¹, Lei Fang², Bala Krishna Juluri¹, Paul S. Weiss¹, J. Fraser Stoddart², Tony Jun Huang^{1*}
 ¹The Pennsylvania State University, University Park, Pennsylvania 16802 USA
 ²Northwestern University, Evanston, Illinois 60208 USA

ABSTRACT

We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental data show that an Au nanodisk array, coated with rotaxane molecular machines, switches its localized surface plasmon resonances (LSPR) reversibly when it is exposed to chemical oxidants and reductants. Conversely, bare Au nanodisks and disks coated with mechanically inert control compounds, do not display the same switching behavior. Along with calculations based on time-dependent density functional theory (TDDFT), these observations suggest that the nanoscale movements within surface-bound "molecular machines" can be used as the active components in plasmonic devices.

DOI: 10.1109/SENSOR.2009.5285604

978-1-4244-4193-8/09/\$25.00 ©2009 IEEE

First-principles calculation of electronic spectra of light-harvesting complex II⁺

Carolin König and Johannes Neugebauer*

Beyond the linear regime: Real-time TDDFT prediction of electron dynamics far from equilibrium Laser-induced spin dynamics in solids: Some predictions from real-time TDDFT

OUTLINE

- <u>Laser-induced demagnetisation (~ 50 fs)</u> found experimentally in 1996, explained by TDDFT in 2015
- <u>XC functionals for non-collinear magnetism</u>
- <u>Optically Induced Spin TRansfer OISTR (~ 5 fs)</u> predicted by TDDFT in 2016 found experimentally in 2018

First experiment on ultrafast laser induced demagnetization

Beaurepaire et al, PRL 76, 4250 (1996)

• Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)

- Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)
- Spin-flip electron-phonon scattering (ultimately leading to transfer of spin angular momentum to the lattice) Koopmans et al, PRL 95, 267207 (2005)

- Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)
- Spin-flip electron-phonon scattering (ultimately leading to transfer of spin angular momentum to the lattice) Koopmans et al, PRL 95, 267207 (2005)
- Super-diffusive spin transport
 Battiato, Carva, Oppeneer, PRL 105, 027203 (2010)

- Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)
- Spin-flip electron-phonon scattering (ultimately leading to transfer of spin angular momentum to the lattice) Koopmans et al, PRL 95, 267207 (2005)
- Super-diffusive spin transport
 Battiato, Carva, Oppeneer, PRL 105, 027203 (2010)
- Our proposal for the first 50 fs:

Laser-induced charge excitation followed by spin-orbit-driven demagnetization of the initially not excited electrons

Quantity of prime interest: vector field of spin magnetization $\vec{m}(\vec{r}, t)$

Cr monolayer in ground state

<u>Theoretical Approach: Real-time non-collinear-spin TDDFT</u> <u>with TD spin-orbit coupling</u>

$$i\frac{\partial}{\partial t}\psi_{k}(r,t) = \left[\frac{1}{2}\left(-i\nabla - A_{laser}(t)\right)^{2} + v_{s}\left[\rho,\boldsymbol{m}\right](r,t) - \mu_{B}\boldsymbol{\sigma}\cdot\boldsymbol{B}_{s}\left[\rho,\boldsymbol{m}\right](r,t)\right] + \frac{\mu_{B}}{2c}\boldsymbol{\sigma}\cdot\left(\nabla v_{s}\left[\rho,\boldsymbol{m}\right](r,t)\right) \times \left(-i\nabla\right)\right]\psi_{k}(r,t)$$

$$v_{s}[\rho,\boldsymbol{m}](r,t) = v_{lattice}(r) + \int \frac{\rho(r',t)}{|r-r'|} d^{3}r' + v_{xc}[\rho,\boldsymbol{m}](r,t)$$

$$B_{S}[\rho,\boldsymbol{m}](r,t) = B_{external}(r,t) + B_{xc}[\rho,\boldsymbol{m}](r,t)$$

where $\psi_k(r,t)$ are Pauli spinors

<u>Theoretical Approach: Real-time non-collinear-spin TDDFT</u> <u>with TD spin-orbit coupling</u>

$$i\frac{\partial}{\partial t}\psi_{k}(r,t) = \left[\frac{1}{2}\left(-i\nabla - A_{laser}(t)\right)^{2} + v_{s}\left[\rho,\boldsymbol{m}\right](r,t) - \mu_{B}\boldsymbol{\sigma}\cdot\boldsymbol{B}_{s}\left[\rho,\boldsymbol{m}\right](r,t)\right] + \frac{\mu_{B}}{2c}\boldsymbol{\sigma}\cdot\left(\nabla v_{s}\left[\rho,\boldsymbol{m}\right](r,t)\right) \times \left(-i\nabla\right)\right]\psi_{k}(r,t)$$

$$v_{S}[\rho,m](r,t) = v_{lattice}(r) + \int \frac{\rho(r',t)}{|r-r'|} d^{3}r' + v_{xc}[\rho,m](r,t)$$

$$B_{S}[\rho,m](r,t) = B_{external}(r,t) + B_{xc}[\rho,m](r,t)$$

$$Universal functionals of \rho and m$$

where $\psi_k(r,t)$ are Pauli spinors

$$n(\boldsymbol{r},t) = \sum_{j=1}^{N} \boldsymbol{\psi}_{j}^{\dagger}(\boldsymbol{r},t) \boldsymbol{\psi}_{j}(\boldsymbol{r},t)$$

$$\vec{\mathbf{m}}(\boldsymbol{r},t) = \sum_{j=1}^{N} \psi_{j}^{\dagger}(\boldsymbol{r},t) \vec{\boldsymbol{\sigma}} \psi_{j}(\boldsymbol{r},t)$$

Aspects of the implementation

• Wave length of laser in the visible regime (very large compared to unit cell)

Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant)

Laser can be described by a purely time-dependent vector potential

- Periodicity of the TDKS Hamiltonian is preserved!
- Implementation in ELK code (FLAPW) (<u>http://elk.sourceforge.net/</u>)

Aspects of the implementation

• Wave length of laser in the visible regime (very large compared to unit cell)

Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant)

Laser can be described by a purely time-dependent vector potential

- Periodicity of the TDKS Hamiltonian is preserved!
- Implementation in ELK code (FLAPW) (<u>http://elk.sourceforge.net/</u>)

ELK = <u>El</u>ectrons in <u>K</u>-Space or Electrons in Kay's Space

Sangeeta Sharma

Kay Dewhurst

Aspects of the implementation

• Wave length of laser in the visible regime (very large compared to unit cell)

Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant)

Laser can be described by a purely time-dependent vector potential

- Periodicity of the TDKS Hamiltonian is preserved!
- Implementation in ELK code (FLAPW) (<u>http://elk.sourceforge.net/</u>)

Demagnetisation in Fe, Co and Ni

K. Krieger, K. Dewhurst, P. Elliott, S. Sharma, E.K.U.G., JCTC 11, 4870 (2015)

Analysis of the results

Calculation without spin-orbit coupling

components of spin moment

Demagnetization occurs in two steps:

- Initial excitation by laser *moves* magnetization from atomic region into interstitial region. Total Moment is basically conserved during this phase.
- Spin-Orbit term drives demagnetization of the more localized electrons until stabilization at lower moment is achieved
- This is a local <u>mechanism</u>, hence occurs in this form in essentially all systems, e.g. magnetic clusters (Sanvito group, Dublin) or magnetic mono-layer / few-layer systems
- K. Krieger, J.K. Dewhurst, P. Elliott, S. Sharma, E.K.U. Gross, JCTC 11, 4870 (2015).
- K. Krieger, P. Elliott, T. Müller, N. Singh, J. K. Dewhurst, E.K.U. Gross, S. Sharma, J. Phys. Cond. Matter 29, 224001 (2017).
- V. Shokeen, M. Sanchez Piaia, J.Y. Bigot, T. Mueller, P. Elliott, J.K. Dewhurst, S. Sharma, E.K.U. Gross, Phys. Rev. Lett. 119, 107203 (2017).

Playing with laser parameters

Beyond 3D bulk

Cr monolayer

Effect of spin transport across interfaces: Ni@Al

Ni

Influence of the approximation for the xc functional

Ordinary LSDA yields GLOBAL collinearity

Construction of non-collinear LSDA

Kübler, Sandratskii (1980s)

$$\int \rho(\mathbf{r}) \mathbf{v}(\mathbf{r}) d^{3}\mathbf{r} - \int \vec{\mathbf{m}}(\mathbf{r}) \cdot \vec{\mathbf{B}}(\mathbf{r}) d^{3}\mathbf{r}$$
$$\equiv \sum_{\alpha,\beta=\uparrow\downarrow} \rho_{\alpha,\beta}(\mathbf{r}) \mathbf{v}_{\alpha,\beta}(\mathbf{r})$$

 $\{\rho(r), \vec{m}(r)\}$: 4 independent functions

 $\rho_{\alpha\beta}\,$ is Hermitian $\,\Rightarrow\,4$ independent functions

Non-collinear LSDA:

 $\vec{r}\,$ given point in space:

① Find unitary matrix U(r) such that (n, (r) = 0)

$$U^{+}(\mathbf{r})(\rho_{\alpha\beta})U(\mathbf{r}) = \begin{pmatrix} n_{\uparrow}(\mathbf{r}) & 0\\ 0 & n_{\downarrow}(\mathbf{r}) \end{pmatrix}$$

② Calculate
$$v_{_{xc}}^{\uparrow}(r)$$
 and $v_{_{xc}}^{\downarrow}(r)$ from $\left\{n_{_{\uparrow}},n_{_{\downarrow}}
ight\}$

using the normal LSDA expressions

$$\Im \left(v_{xc}^{\alpha\beta} \right) = U(r) \begin{pmatrix} v_{xc}^{\uparrow}(r) & 0 \\ 0 & v_{xc}^{\downarrow}(r) \end{pmatrix} U^{+}(r)$$

in this approximation $\vec{B}_{_{xc}}(r)$ and $~\vec{m}(r)$ may change their direction in space, but locally they are always parallel

Problem: In all standard approximations of E_{xc} (LSDA, GGAs) m(r) and B_{xc}(r) are locally parallel

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

Why is that important?

Ab-initio description of spin dynamics:

microscopic equation of motion (following from TDSDFT)

$$\dot{\vec{m}}(\vec{r},t) = \vec{m}(\vec{r},t) \times \vec{B}_{XC}(\vec{r},t) - \vec{\nabla} \cdot \vec{J}_{S}(\vec{r},t) + SOC$$

in absence of external magnetic field

 $\vec{J}_{s}(r,t) = \left\langle \hat{\sigma} \otimes \hat{p} \right\rangle$ spin current tensor

Consequence of local collinearity: m×B_{xc} = 0: → possibly wrong spin dynamics → how important is this term in real-time dynamics?

Construction of a novel xc functional for which m(r) and B_{xc}(r) are not locally parallel

Enforce property of the exact xc functional:

$$\boldsymbol{B}_{xc}^{exact}\left(\boldsymbol{r}\right) = \nabla \times A_{xc}^{exact}\left(\boldsymbol{r}\right)$$

K. Capelle, E.K.U. Gross, PRL 78, 1872 (1997)

By virtue of Helmholtz' theorem, any vector field can be decomposed as:

$$\boldsymbol{B}_{xc}^{GGA}(\boldsymbol{r}) = \nabla \times A_{xc}(\boldsymbol{r}) + \nabla \phi(\boldsymbol{r})$$

Enforce exact property by subtracting source term!

Explicit construction:

S. Sharma, E.K.U. Gross, A. Sanna, K. Dewhurst, JCTC14, 1247 (2018)

$$\nabla^2 \phi(\mathbf{r}) = 4\pi \nabla \cdot B_{xc}^{GGA}(\mathbf{r})$$
$$\tilde{B}_{xc}(\mathbf{r}) \cong B_{xc}^{GGA}(\mathbf{r}) - \frac{1}{4\pi} \nabla \phi(\mathbf{r})$$

$$B_{xc}^{SF}\left(\boldsymbol{r}\right) = s\,\tilde{B}_{xc}\left(\boldsymbol{r}\right)$$

Scaling factor, s, only depends on underlying functional (GGA/LSDA), nothing else

Left panel: Local xc torque for bulk Ni in (111) plane. Right panel: Local xc torque for 3ML Ni@5ML Pt in the (110) plane. The arrows indicate the direction and colors the magnitude.

The vector field B_{xc} for $BaFe_2As_2$ projected in a plane containing Fe atoms. Plot (a) is LSDA and plot (b) is source-free LSDA. The colored plane shows the magnitude of B_{xc} and the arrows indicate the direction. The black field lines originate from a regular grid in the plane and follow the vector field. LSDA field lines show a plane of magnetic monopoles while making LSDA source-free leads to more complicated but physical field lines. The arrows indicate that the removal of the source term leads to enhancement of non-collinearity.

Magnetic moment per atom. Calculations are performed using LSDA+U, PBE-GGA+U, LSDA_{SF} + U and PBE-GGA_{SF} + U.

Material	Expt	LSDA	PBE-GGA	LSDA _{SF}	PBE-GGA _{SF}
PrFeAsO	Fe: 0.5	1.40	1.9	0.65	0.63
	Pr: 0.87	0.30	0.30	0.81	0.83
NdFeAsO	Fe: 0.54	1.42	1.84	0.50	0.61
	Nd: 0.9	2.44	1.25	0.80	0.89

(a) Middle panel shows the total moment (red) and the bottom panel x (green), y (brown) and z (blue) projected moments for bulk Ni as a function of time. Dashed lines are the results obtained using the ALSDA and full lines the results obtained using the source-free functional. (b) The same as (a) but for bulk Co.

Optically induced spin transfer (OISTR)

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.Gross, Scientific Reports 6, 38911 (2016)

K. Dewhurst, P. Elliott, S. Shallcross, E.K.U. Gross, S. Sharma, Nano Lett. 18, 1842 (2018)

Global moment |M(t)| nearly preserved Local moments around each atom change

Mn₃Ga (ferri-magnet)

Ga Mn

TDDFT prediction for Mn_3Ga: ferri \rightarrow **ferro transition within 4 fs**

Mn₃Ga (ferri-magnet)

Ga Mn

TDDFT prediction for Mn₃Ga: ferri → ferro transition within 4 fs **OISTR experimentally confirmed!** (Aeschlimann group, 2018)

Kevin Krieger

Kay Dewhurst

Sangeeta Sharma

Peter Elliott

<u>Summary</u>

- Real-time TDDFT implemented in ELK (<u>http://elk.sourceforge.net/</u>)
- Demagnetization in first 50 fs is a **universal** two-step process:
 - 1. Initial excitation of electrons into highly excited delocalised states (without much of a change in the total magnetization)
 - 2. Spin-orbit coupling drives demagnetization of the more localized electrons
- Interfaces show spin currents as important as spin-orbit coupling
- New source-free xc functional
 - dramatically improves description of magnetic properties (pnictides)
 - non-vanishing local xc torque changes spin dynamics slightly
- OISTR: Ultrafast (5 fs) transfer of spin moment between sublattices. TDDFT prediction experimentally cofirmed

Future aspects in the field of laser-driven spin dynamics:

- Include relaxation processes due to el-el scattering
 - in principle contained in TDDFT,
 - but not with adiabatic xc functionals
 - need xc functional approximations with memory $v_{xc} \left[\rho(r't') \right] (rt)$
- Include relaxation processes due to el-phonon scattering
- Include relaxation due to radiative effects simultaneous propagation of TDKS and Maxwell equations
- Include dipole-dipole interaction to describe motion of domains construct approximate xc functionals which refer to the dipole int
- Optimal-control theory to find optimized laser pulses to selectively demagnetize/remagnetize, i.e. to switch, the magnetic moment
- Create Skyrmions with suitably shaped laser pulses

Bias between L and R is turned on: $U(t) \longrightarrow V$ for large t

Bias between L and R is turned on: U(t) \longrightarrow V for large t

Questions:

- After switching-on, does one always reach a steady state?
- Is the steady state unique?
- How to deal with time-dependent external fields?

TDKS equation (E. Runge, EKUG, PRL **52**, 997 (1984))

$$i\hbar \frac{\partial}{\partial t} \varphi_{j}(\mathbf{r}t) = \left(-\frac{\hbar^{2} \nabla^{2}}{2m} + v_{\kappa s}[\rho](\mathbf{r}t)\right) \varphi_{j}(\mathbf{r}t)$$
$$v_{\kappa s}[\rho(\mathbf{r}'t')](\mathbf{r}t) = v(\mathbf{r}t) + \int d^{3}r' \frac{\rho(\mathbf{r}'t)}{|\mathbf{r} - \mathbf{r}'|} + v_{\kappa s}[\rho(\mathbf{r}'t')](\mathbf{r}t)$$

TDKS equation

$$i\frac{\partial}{\partial t}\begin{pmatrix}\phi_{L}(t)\\\phi_{C}(t)\\\phi_{R}(t)\end{pmatrix} = \begin{pmatrix}H_{LL}(t) & H_{LC}(t) & H_{LR}(t)\\H_{CL}(t) & H_{CC}(t) & H_{CR}(t)\\H_{RL}(t) & H_{RC}(t) & H_{RR}(t)\end{pmatrix}\begin{pmatrix}\phi_{L}(t)\\\phi_{C}(t)\\\phi_{R}(t)\end{pmatrix}$$

Effective TDKS Equation for the central (molecular) region only

S. Kurth, G. Stefanucci, C.O. Almbladh, A. Rubio, E.K.U. Gross, Phys. Rev. B 72, 035308 (2005)

$$i \frac{\partial}{\partial t} \varphi_{C}(t) = H_{CC}(t) \varphi_{C}(t)$$

$$+ \int_{0}^{t} dt' [H_{CL}G_{L}(t,t')H_{LC} + H_{CR}G_{R}(t,t')H_{RC}] \varphi_{C}(t')$$

$$+ i H_{CL}G_{L}(t,0) \varphi_{L}(0) + i H_{CR}G_{R}(t,0) \varphi_{R}(0)$$
source term: $L \to C$ and $R \to C$ charge injection
memory term: $C \to L \to C$ and $C \to R \to C$ hopping

<u>Note</u>: So far, no approximation has been made.

Numerical examples for non-interacting electrons

Recovering the Landauer steady state

Time evolution of current in response to bias switched on at time t = 0, Fermi energy $\varepsilon_F = 0.3$ a.u. Steady state coincides with Landauer formula and is reached after a few femtoseconds

Can there be more than one steady state?

Multi-stability in TDHF and TDDFT for one-site Anderson model

E. Khosravi, A.M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, E.K.U.G. Phys. Rev. B <u>85</u>, 075103 (2012)

Is there always a steady state?

No steady state in two-site Anderson model

ELECTRON PUMP

Device which generates a net current between two electrodes (with <u>no</u> static bias) by applying a time-dependent potential in the device region

Experimental realization : Pumping through carbon nanotube by surface acoustic waves on piezoelectric surface (Leek et al, PRL <u>95</u>, 256802 (2005))

Pumping through a square barrier (of height 0.5 a.u.) using a travelling wave in device region $U(x,t) = U_0 \sin(kx \cdot \omega t)$ (k = 1.6 a.u., $\omega = 0.2$ a.u. Fermi energy = 0.3 a.u.)

Archimedes' screw: patent 200 B.C.

Current flows in direction opposite to sound wave

Excess Density

Current goes in direction opposite to the external field !!

G. Stefanucci, S. Kurth, A. Rubio, E.K.U. Gross, Phys. Rev. B 77, 075339 (2008)

G. Stefanucci, S. Kurth, A. Rubio, E.K.U. Gross, Phys. Rev. B 77, 075339 (2008)

Lecture Notes in Physics <u>706</u> (Springer, 2006) Lecture Notes in Physics <u>837</u> (Springer, 2012)