
Selected Challenges in Material 

Simulations
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The quest for improved materials

2



time

Transition

metal

oxides

„Hard“ materials

Biomolecules

3



„Hard“ physics

• Magnetic materials / excitations

• Finite-temperature effects / 

Anharmonicities

• Polymorphism

• Charge Transfer
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Outline: Issues with Charge Transfer

• Amount of charge transfer

• Charge distribution

• Charge transfer → Structure?
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Charge Transfer In DFT: The Band Gap Problem

➢ Amount of transferred charge

➢ Charge localization
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Charge Transfer In DFT: The Band Gap Problem
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Charge Transfer In DFT: The Band Gap Problem

➢ Amount of transferred charge

➢ Charge localization
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Optimal mixing: Orbital independent of occupation
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Charge Transfer In DFT: The Band Gap Problem
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Charge Transfer In DFT: The band gap problem
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„optimal“ mixing

• Hybrid functional decrease charge-

transfer
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Karolewski et al., The Journal of Chemical Physics, 138 (20), 2013
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Exceptions to the rule: Large CT

L‘

L‘

L‘

L‘

Filled PBE-LUMO gets pushed further below the

Fermi-energy → charge-transfer increases
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Hofmann et al., New Journal of Physics, 15 (12), 123028, 2013



The performance of semilocal DFT for CT:

➢ Overestimate CT when it is small

➢ Underestimate CT when it is large

➢ Overdelocalize charge

Hofmann et al., NJP, 15 (12), 123028, 2013

Atalla et al., Phys. Rev. B 94, 035140 

Hofmann et al., NJP, 15 (12), 123028, 2013
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Outline: Issues with Charge Transfer

• Amount of charge transfer

• Charge distribution

• Charge transfer → Structure?
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Charge Transfer at the Interface

Integer Charge Transfer (ICT)

- 0 0 - 0 - 0

Experimental CT usually less than 1e / molecule

Fractional Charge Transfer (FCT)

? ? ? ? ? ? ?
Substrate

Adsorbate

Interaction Strengthweak

Not captured

semilocal functionals

(incl. +U)
Gruenewald et al., J. Phys. Chem. C, 2015, 119 (9), 4865

Braun et al., Advanced Materials, 2009, (21), 1450

strong
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Weak Interaction– TCNE/NaCl/Cu

TCNE / NaCl /Cu

TCNE / NaCl /Ag, curtesy Daniel Wegner
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TCNE/NaCl/Cu – PBE calculation

Charge donation (LUMO) :  ≈0.3 e

Charge backdonation:            0.0 e

Interpretation of fractional filling in DFT: N.D. Mermin, Phys. Rev. 137A, 1441 (1965)
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PBEh* (a = 0.8) results – single molecule

Singly Occupied

Molecular Orbital SUMO

Splitting quantitatively

likely overestimated

Charge donation (LUMO):  1.0 e

Charge backdonation:         0.0 e
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Density of States

Hofmann et al., ACS Nano, 9 (5) 5391, 2015
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Hofmann et al., ACS Nano, 9 (5) 5391, 2015
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… and observables
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Hofmann et al., ACS Nano, 9 (5) 5391, 2015
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❖ Consider two empty states localized on two different 

molecules

❖ Symmetry broken (e.g., lattice distortion, numerical 

inaccuracy, etc.)

❖ Now fill with single charge

Naive Explanation 28
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➢Ionization not possible → Workarounds

➢Optimal mixing depends on substrate (er)

➢Typically very small (<25%)

Optimal mixing in periodic systems

Wruss et al., The Journal of Physical Chemistry C, 122, 26, 2018

30



➢Small a: delocalized minimum

➢Large a: localized minima, delocalized transition

➢Optimal mixing: Undecided
Wruss et al., The Journal of Physical Chemistry C, 122, 26, 2018
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The performance of semilocal DFT for CT:

➢ Overestimate CT when it is small

➢ Underestimate CT when it is large

➢ Overdelocalize charge

Hofmann et al., NJP, 15 (12), 123028, 2013

Atalla et al., Phys. Rev. B 94, 035140 

Hofmann et al., NJP, 15 (12), 123028, 2013
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Outline: Issues with Charge Transfer

• Amount of charge transfer

• Charge localization

• Charge transfer beyond the first layer?
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Long-ranged Charge Transfer

Oehzelt et al. Sci. Adv. 2015;1:e1501127

▪ Predicted by „normal“ 

semiconductor picture

(Fermi-Dirac+Electrostatic)

▪ Conflicting experiments

▪ Potential (UPS/KP)

▪ Charge (Optics/Vibrations)

What can we learn

from (first principles) 

theory?
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Experiments: Wulf, Erley J. Phys. Chem.,1987,91(24), pp 6092–6094

Coverage Charge Interpretation

Low >>1 Monolayer

Medium ≈1 Second layer

High 0 Bulk

A convincing experiment? TCNE/Cu(111)
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DFT results for ad-hoc guess structure

LUMO

empty
LUMO: 

1.6 e
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DFT results for ad-hoc guess structure

LUMO

empty
LUMO: 

1.6 e

No indication for long-ranged charge transfer

No explanation of experiment



Determining bilayer structures

Experimentally:

▪ Too little material for (x-ray) diffraction

▪ Imaging techniques can‘t see „below“ bilayer

▪ Geometric and electronic structure rarely 

investigated together → comparison challenging

Computationally:

▪ Plausible guess structures

▪ Try and Error → Confirmation Bias

▪ Systematic → Configuration Explosion
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For each molecule:

Translation x: ~ 10 steps 

Translation y: ~ 10 steps

Rotation: ~ 10 steps

3 mol.: 𝟏𝟎 × 𝟏𝟎 × 𝟏𝟎 𝟑 = 𝟏 𝐛𝐢𝐥𝐥𝐢𝐨𝐧

Configurational Explosion

Solution: Simplify by exploiting

physics at the interface

arXiv:1811.11702
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• For commensurate interfaces, the primitive unit cell of the 

substrate is a natural grid.

• Intermolecular interaction induces only 

minor changes on geometry

assemblies of

molecules that each

sit in their own

minima

Building block 

approach

• Each molecule sits in dedicated adsorption site

Top 1 Bridge 1 Top 2 Bridge 2 Top 3

arXiv:1811.11702
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Define: 

▪ cell size

▪ number of molecules

▪ building blocks

▪ min. distance

Result:

List of polymorph candidates (typically a few 100.000)

Combine building blocks with cells

Too many for DFT Machine Learning
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The key idea of machine learning

• Exploit redundancies in related calculations

• Interpolate between calculations

• Smoothness assumption (regularization)

Smoothness assumption can be based on known physics

at this kind of interfaces
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Similar to isolated molecule Individual terms are small
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Similar to isolated molecule Individual terms are small

Larger distance → less interaction

Similar structures → similar interaction
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SAMPLE

Model
Machine 

Learning

Predict: Polymorphs, Defects, Disorder

Discretization

Physics at 

the Interface

List of Polymorph 

Candidates

Training Set

“Design of 

Experiments”
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Machine Learning Performance

Training set: 300

Validaton set: 59

RMSE:  <1 meV / Å²

~ 18 meV / mol
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Back to the original question

Where is the singly

charged species?

What is the correct

stucture?

A. Egger et al., in preparation
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Flat lying Standing

Building blocks

Energetically more

favorable Smaller footprint

A. Egger et al., in preparation
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Submonolayer: best energy per molecule

Monolayer Density
A. Egger et al., in preparation
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Closed layer: best energy per area

Monolayer Density
A. Egger et al., in preparation
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A. Egger et al., in preparation

Ab-initio thermodynamics
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A. Egger et al., in preparation

Ab-initio thermodynamics
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Compare to Experiment

A. Egger et al., in preparation
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Compare to Experiment

A. Egger et al., in preparation

Conclusion: 

There is a phase transition from lying to standing before

the formation of the second layer

„Standing“ obtains less charge than „Lying“
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Summary

58

DFT indispensible for materials science

• Prediction of new materials

• Understanding relevant processes

No functional is perfect

• Understand limitations and accuracy

• (Numerical) Reasons for those

Hard Problems ≠ unsolvable


