

Selected Challenges in Material Simulations

Computational Material Science

Oliver T. Hofmann

Graz University of Technology Institute of Solid State Physics

The quest for improved materials

Pharmaceuticals

Photovoltaic cells

OLED displays

Images from ecofriend.com/about-nano-structured-organic-photovoltaic-cells.html; www.techhive.com/article/3154575/smart-tv/lgs-new-oled-tvs-are-real-wall-huggers.html; apps.pharmacy.wisc.edu/sopdir/lian_yu/

"Hard" materials

- Magnetic materials / excitations
- Finite-temperature effects / Anharmonicities
- Polymorphism
- Charge Transfer

- Magnetic materials / excitations
- Finite-temperature effects / Anharmonicities
- Polymorphism
- Charge Transfer

Outline: Issues with Charge Transfer

Amount of charge transfer

• Charge transfer $\leftarrow \rightarrow$ Structure?

 \sim

Hybrid functional decrease chargetransfer

Karolewski et al., The Journal of Chemical Physics, 138 (20), 2013

Amount of transferred charge

Exceptions to the rule: Large CT

Filled PBE-LUMO gets pushed further below the Fermi-energy \rightarrow charge-transfer increases

Hofmann et al., New Journal of Physics, 15 (12), 123028, 2013

The performance of semilocal DFT for CT:

Overestimate CT when it is small

Atalla et al., Phys. Rev. B 94, 035140

> Underestimate CT when it is large

Hofmann et al., NJP, 15 (12), 123028, 2013

Outline: Issues with Charge Transfer

Amount of charge transfer

Charge distribution

Charge transfer ← → Structure?

Weak Interaction- TCNE/NaCI/Cu

TCNE / NaCI /Ag, curtesy Daniel Wegner

TCNE/NaCI/Cu – PBE calculation

Interpretation of fractional filling in DFT: N.D. Mermin, Phys. Rev. 137A, 1441 (1965)

PBEh* (α = 0.8) results – single molecule

Density of States

Hofmann et al., ACS Nano, 9 (5) 5391, 2015

Charge Distribution ...

Hofmann et al., ACS Nano, 9 (5) 5391, 2015

... and observables

Hofmann et al., ACS Nano, 9 (5) 5391, 2015

- Consider two empty states localized on two different molecules
- Symmetry broken (e.g., lattice distortion, numerical inaccuracy, etc.)
- Now fill with single charge

- Consider two empty states localized on two different molecules
- Symmetry broken (e.g., lattice distortion, numerical inaccuracy, etc.)
- Now fill with single charge

$$\frac{\delta\epsilon}{\delta n} > 0 \rightarrow \text{self-repulsion}$$

Optimal mixing in periodic systems

➢ Ionization not possible → Workarounds
➢ Optimal mixing depends on substrate (ε_r)
➢ Typically very small (<25%)

Wruss et al., The Journal of Physical Chemistry C, 122, 26, 2018

\geq Small α : delocalized minimum

 \succ Large α : localized minima, delocalized transition

Optimal mixing: Undecided

Wruss et al., The Journal of Physical Chemistry C, 122, 26, 2018

The performance of semilocal DFT for CT:

> Overestimate CT when it is small

Atalla et al., Phys. Rev. B 94, 035140

Underestimate CT when it is large

Hofmann et al., NJP, 15 (12), 123028, 2013

> Overdelocalize charge

Hofmann et al., NJP, 15 (12), 123028, 2013

Outline: Issues with Charge Transfer

Amount of charge transfer

Charge localization

Charge transfer beyond the first layer?

Long-ranged Charge Transfer

Oehzelt et al. Sci. Adv. 2015;1:e1501127

- Predicted by "normal" semiconductor picture (Fermi-Dirac+Electrostatic)
- Conflicting experiments
 - Potential (UPS/KP)
 - Charge (Optics/Vibrations)

What can we learn from (first principles) theory?

A convincing experiment? TCNE/Cu(111)

Experiments: Wulf, Erley J. Phys. Chem., 1987, 91(24), pp 6092–6094

-2

Energy

2

-2

Energy

Determining bilayer structures

Experimentally:

- Too little material for (x-ray) diffraction
- Imaging techniques can't see "below" bilayer
- Geometric and electronic structure rarely investigated together → comparison challenging

Computationally:

- Plausible guess structures
- Try and Error → Confirmation Bias
- Systematic → Configuration Explosion

Configurational Explosion

For each molecule:

Translation x: ~ 10 stepsTranslation y: ~ 10 stepsRotation: ~ 10 steps3 mol.: $(10 \times 10 \times 10)^3 = 1$ billion

Solution: Simplify by exploiting physics at the interface SAMPLE arXiv:1811.11702

- For commensurate interfaces, the primitive unit cell of the substrate is a natural grid.
- Each molecule sits in dedicated adsorption site

 Intermolecular interaction induces only minor changes on geometry

assemblies of molecules that each sit in their own minima

Building block approach

arXiv:1811.11702

Combine building blocks with cells

Define:

- cell size
- number of molecules
- building blocks
- min. distance

Result:

List of polymorph candidates (typically a few 100.000)

Too many for DFT **Machine Learning**

The key idea of machine learning

- Exploit redundancies in related calculations
- Interpolate between calculations
- Smoothness assumption (regularization)

Smoothness assumption can be based on known physics at this kind of interfaces

Machine Learning Performance

Back to the original question

A. Egger et al., in preparation

Building blocks

Flat lying

Energetically more favorable

Smaller footprint

A. Egger et al., in preparation

Submonolayer: best energy per molecule

Closed layer: best energy per area

A. Egger et al., in preparation

Compare to Experiment

Frequency / cm⁻¹

Summary

DFT indispensible for materials science

- Prediction of new materials
- Understanding relevant processes

Hard Problems *≠* unsolvable

No functional is perfect

- Understand limitations and accuracy
- (Numerical) Reasons for those