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Slides and discussion partly based on work of S. Cottenier
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Why is this relevant?

• Non-systematic approximations → error bars

• Accounting for systematic errors increases

quantitative predictions

Material Design

Consistency with literature

Validation of Experiments
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SAMPLE

Measurement Interpretation

Additional knowledge and assumptions

A practical problem 5



Measurement Interpretation

Additional knowledge and assumptions

X-Ray Standing Wave Technique

A practical problem 6



Which structure is correct?

A practical problem

Wruss et al., The Journal of Physical Chemistry C, 120 (12), 6869, 2016
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Which structure is correct?What accuracy / reproducibility do we expect?

A practical problem

Wruss et al., The Journal of Physical Chemistry C, 120 (12), 6869, 2016
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Threshold

(eV/Å)

Dz

(Å)

0.1 n/a

0.01 ~ 0.1

0.005 ~0.05

0.001 0.01

Reproducability of adsorption heights 10



Which structure is correct?

A practical problem

Wruss et al., The Journal of Physical Chemistry C, 120 (12), 6869, 2016
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https://download.e-bookshelf.de/download/0000/7577/19/L-X-0000757719-0002284395.XHTML/index.xhtml

Experimental values for FET-mobilities of pentacene
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The benchmark problem: PTCDA/Ag(111)

Ruiz  et al., Phys. Rev. Lett. 108, 146103, 2012

Challenge: Reliability of benchmark

(especially experimental)
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ExperimentTheory

• Structural model

• Zero Temperature

• Clamped Nucleii

• Relativistics on/off

• Interpretation

• Finite Temperature

• Zero-point motion

• Fully relativistic

Extrapolate to 0 K / estimate ZPE / switch on relativistics

Do not take experimental results at face value
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Comparing to higher-level theory preferred, but: 

• Observation bias / confirmation bias

http://smbc-comics.com/index.php?db=comics&id=2192#comic
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Comparing to higher-level theory preferred, but: 

• Observation bias / confirmation bias

Ruiz  et al., Phys. Rev. Lett. 108, 146103, 2012
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Comparing to higher-level theory preferred, but: 

• Observation bias

• Higher Level not always more accurate

PBE
PBE PBE

PBE0

PBE0
PBE0

Directly related to piecewise linearity

Hofmann et al., New Journal of Physics, 15 (12), 123028, 2013
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Comparing to higher-level theory preferred, but: 

• Observation bias

• Higher Level not always more accurate

Directly related to piecewise linearity

Hofmann et al., New Journal of Physics, 15 (12), 123028, 2013
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Comparing to higher-level theory preferred, but: 

• Observation bias

• Higher level not always more accurate

• Consistency (geometry / electronic structure)

Strong hybridization

metallic

Weak interaction

Non-metallic

Wruss et al., The Journal of Physical Chemistry C, 123 (12), 7118, 2019

Difference has

physical background
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Comparing to higher-level theory preferred, but: 

• Observation bias

• Higher level not always more accurate

• Consistency (geometry / electronic structure)

• Often impossible

Understanding of numerics / physics imperative!
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Lejaeghere, K, CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 39 (1), 1

Systematic evaluation against experiment

▪ Small systematic error for PBE (slope)

▪ Residual scatter (r)

▪ Some classes excluded (physics!)

23



Practical application: Volume of b-Sn

Slide taken from S. Cottenier

Not an excluded class

Bare PBE result:

Systematic error (3.8%):

Zero-point correction:

Non-systematic error (1.1):

28.37 Å³/atom

27.29 Å³/atom

27.38 Å³/atom

27.38 Å³/atom

27.38 ± 1.1 Å³/atom

Experiment: 26.46 Å³/atom

(extrapolated to 0 K)

Lejaeghere, K, CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 39 (1), 1
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Systematic evaluation against experiment

De Waele et al, PRB 94, (2016)

Several more properties

have been investigated
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Kurt Lejaeghere et al., Science, 351 6280

Many modern materials codes

tested
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Kurt Lejaeghere et al., Science, 351 6280

How well do two codes agree?
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Comparison of all-electron codes

Kurt Lejaeghere et al., Science, 351 6280
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Kurt Lejaeghere et al., Science, 351 6280
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All Electron (AE) versus Plan Waves



Kurt Lejaeghere et al., Science, 351 6280
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Time heals old wounds



Kurt Lejaeghere et al., Science, 351 6280
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Will results at least be consistent?

Overall shape of PES (mostly) 

independent of vdW treatment

Lukas  Hörmann
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Will results at least be consistent?

Lukas  Hörmann
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Will results at least be consistent?

specific adsorption sites

Systematically favored

PBE – vdW-DF
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Will results at least be consistent?

Hofmann et al., ACS Nano, 9 (5) 5391, 2015
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Hofmann et al., ACS Nano, 9 (5) 5391, 2015
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Summary
➢ Results essentially independent of used code

➢ Ab-initio calculations have systematic and non-

systematic errors

➢ Careful comparison to experiments (interpretation, 

physical)

➢ More sophisticated methods not always better 

(geometry, numerics)
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Summary
➢ Different functionals often qualitatively similar, 

sometimes quantative differences (physics!)

Be aware of functional-inherent errors
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