

Reproducibility in DFT

Oliver T. Hofmann

Graz University of Technology Institute of Solid State Physics

Self-consistency cycle converged.

Writing energy levels:							
Potential vacuum level, "upper	" slab surface	: 1.05183443 e	٧				
Potential vacuum level, "lower	" slab surface	: -0.99735438 e	٧				
Work function ("upper" slab su	rface)	: 6.28672777 e	٧				
Work function ("lower" slab su	rface)	: 4.23753896 e	٧				
VBM (reference: upper_vacuum 1	evel)	: 6.29221153 e	٧				
CBM (reference: upper vacuum l	evel)	: 6.27296902 e	٧				
Energy and forces in a compact for	orm:						
I Total energy uncorrected	: -0.3	52548462337739F+07	/ eV				
I Total energy corrected	0.3	52548464211578F+07	/eV < do	not rely on this	value for anyt	hing but (periodi	ic) metals
Electronic free energy	: -0.3	52548466085418E+07	'eV	not rely on this	varue for anyc	ning bue (per ioui	.c) metail

How far can we trust these values?

How far can we trust these values?

Slides and discussion partly based on work of S. Cottenier

Why is this relevant?

- Accounting for <u>systematic errors</u> increases quantitative predictions
- Non-systematic approximations \rightarrow <u>error bars</u>

Material Design

Consistency with literature

Validation of Experiments

X-Ray Standing Wave Technique

Which structure is correct?

Wruss et al., The Journal of Physical Chemistry C, 120 (12), 6869, 2016

TU A practical problem

What accuracy / reproducibility do we expect?

Wruss et al., The Journal of Physical Chemistry C, 120 (12), 6869, 2016

How far can we trust these values?

Reproducability of adsorption heights

TU A practical problem

Which structure is correct?

Wruss et al., The Journal of Physical Chemistry C, 120 (12), 6869, 2016

How far can we trust these values?

Experimental values for FET-mobilities of pentacene

https://download.e-bookshelf.de/download/0000/7577/19/L-X-0000757719-0002284395.XHTML/index.xhtml

The benchmark problem: PTCDA/Ag(111)

Challenge: Reliability of benchmark (especially experimental)

Ruiz et al., Phys. Rev. Lett. 108, 146103, 2012

Theory

- Structural model
- Zero Temperature
- Clamped Nucleii
- Relativistics on/off

Experiment

- Interpretation
- Finite Temperature
- Zero-point motion
- Fully relativistic

Extrapolate to 0 K / estimate ZPE / switch on relativistics

Do not take experimental results at face value

Observation bias / confirmation bias

Observation bias / confirmation bias

Ruiz et al., Phys. Rev. Lett. 108, 146103, 2012

- Observation bias
- Higher Level not always more accurate

Directly related to piecewise linearity

- Observation bias
- Higher Level not always more accurate

Directly related to piecewise linearity

Hofmann et al., New Journal of Physics, 15 (12), 123028, 2013

- Observation bias
- Higher level not always more accurate
- Consistency (aeometry / electronic structure)

Difference has physical background

Wruss et al., The Journal of Physical Chemistry C, 123 (12), 7118, 2019

- Observation bias
- Higher level not always more accurate
- Consistency (geometry / electronic structure)
- Often impossible

Understanding of numerics / physics imperative!

How far can we trust these values?

Systematic evaluation against experiment

- Small systematic error for PBE (slope)
- Residual scatter (r)
- Some classes excluded (physics!)

Lejaeghere, K, CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 39 (1), 1

Practical application: Volume of β**-Sn**

Not an excluded class

Bare PBE result: Systematic error (3.8%): Zero-point correction: Non-systematic error (1.1):

Experiment:

Slide taken from S. Cottenier

28.37 Å³/atom

27.29 Å³/atom 27.38 Å³/atom 27.38 Å³/atom 27.38 ± 1.1 Å³/atom

26.46 Å³/atom (extrapolated to 0 K)

Lejaeghere, K, CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 39 (1), 1

Systematic evaluation against experiment

De Waele et al, PRB 94, (2016)

How far can we trust these values?

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere,* Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan Blügel, Volker Blum, Damien Caliste, Ivano E. Castelli, Stewart J. Clark, Andrea Dal Corso, Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst, Igor Di Marco, Claudia Draxl, Marcin Dułak, Olle Eriksson, José A. Flores-Livas, Kevin F. Garrity, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Grånäs, E. K. U. Gross, Andris Gulans, François Gygi, D. R. Hamann, Phil J. Hasnip, N. A. W. Holzwarth, Diana Iuşan, Dominik B. Jochym, François Jollet, Daniel Jones, Georg Kresse, Klaus Koepernik, Emine Küçükbenli, Yaroslav O. Kvashnin, Inka L. M. Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche, Lars Nordström, Taisuke Ozaki, Lorenzo Paulatto, Chris J. Pickard, Ward Poelmans, Matt I. J. Probert, Keith Refson, Manuel Richter, Gian-Marco Rignanese, Santanu Saha, Matthias Scheffler, Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma, Francesca Tavazza, Patrik Thunström, Alexandre Tkatchenko, Marc Torrent, David Vanderbilt, Michiel J. van Setten, Veronique Van Speybroeck, John M. Wills, Jonathan R. Yates, Guo-Xu Zhang, Stefaan Cottenier^{*}

Old methods Different values

Many modern materials codes tested

How well do two codes agree? Energy of element i (meV/atom) $\Delta_i(a,b) = \sqrt{\frac{\int_{0.94V_{0,i}}^{1.06V_{0,i}} \left(E_{b,i}(V) - E_{a,i}(V)\right)^2 dV}{0.12V_{0,i}}}$ (1)code 2 code 1 $(E_1 - E_2)^2$ Δ_i^2 Volume (Å³ /atom)

Comparison of all-electron codes

					er2	AE			
		average < Δ >	Elk	exciting	FHI-aims∕ti€	FLEUR	FPLO/T+F+s	RSPt	WIEN2k/acc
AE	Elk	0.6		0.3	0.3	0.6	1.0	0.9	0.3
	exciting	0.5	0.3		0.1	0.5	0.9	0.8	0.2
	FHI-aims/tier2	0.5	0.3	0.1		0.5	0.9	0.8	0.2
	FLEUR	0.6	0.6	0.5	0.5		0.8	0.6	0.4
	FPLO/T+F+s	0.9	1.0	0.9	0.9	0.8		0.9	0.9
	RSPt	0.8	0.9	0.8	0.8	0.6	0.9		0.8
	WIEN2k/acc	0.5	0.3	0.2	0.2	0.4	0.9	0.8	

All Electron (AE) versus Plan Waves

			ຸi _{ຈີ} AE						
		average <∆:	Elk	exciting	FHI-aims/ti	FLEUR	FPLO/T+F+S	RSPt	WIEN2k/acc
	Elk	0.6		0.3	0.3	0.6	1.0	0.9	0.3
AE	exciting	0.5	0.3		0.1	0.5	0.9	0.8	0.2
	FHI-aims/tier2	0.5	0.3	0.1		0.5	0.9	0.8	0.2
	FLEUR	0.6	0.6	0.5	0.5		0.8	0.6	0.4
	FPLO/T+F+s	0.9	1.0	0.9	0.9	0.8		0.9	0.9
	RSPt	0.8	0.9	0.8	0.8	0.6	0.9		0.8
	WIEN2k/acc	0.5	0.3	0.2	0.2	0.4	0.9	0.8	
PAW	GBRV12/ABINIT	0.9	0.9	0.8	0.8	0.9	1.3	1.1	0.8
	GPAW09/ABINIT	1.4	1.3	1.3	1.3	1.3	1.7	1.5	1.3
	GPAW09/GPAW	1.6	1.5	1.5	1.5	1.5	1.8	1.7	1.5
	JTH02/ABINIT	0.6	0.6	0.6	0.6	0.6	0.9	0.7	0.5
	PSlib100/QE	0.9	0.9	0.8	0.8	0.8	1.3	1.1	0.8
6280	VASPGW2015/VASP	0.6	0.4	0.4	0.4	0.6	1.0	0.8	0.3

Time heals old wounds

Table 2. Precision evolution of PAW and pseudopotential sets over time. The Δ values are expressed as an average over the all-electron methods (in millielectron volts per atom) and are listed chronologically per code. The corresponding code settings and the DFT-predicted EOS parameters are listed in tables S17, S19 to S26, S30, S31, and S33. The most recent potentials are the ones used to generate the data shown in Fig. 4.

	Year	$\langle \Delta angle$ versus AE
JTH01/ABINIT	2013	1.1
JTH02/ABINIT	2014	0.6
Vdb/CASTEP	1998	6.5
OTFG7/CASTEP	2013	2.6
OTFG9/CASTEP	2015	0.7
GPAW06/GPAW	2010	3.6
GPAW09/GPAW	2012	1.6
PSlib031/QE	2013	1.7
PSlib100/QE	2013	1.0
VASP2007/VASP	2007	2.0
VASP2012/VASP	2012	0.8
VASPGW2015/VASP	2015	0.6

Kurt Lejaeghere et al., Science, 351 6280

How far can we trust these values?

34

PBE – vdW-DF

specific adsorption sites Systematically favored

Hofmann et al., ACS Nano, 9 (5) 5391, 2015

Hofmann et al., ACS Nano, 9 (5) 5391, 2015

Summary

- Results essentially independent of used code
- Ab-initio calculations have systematic and nonsystematic errors
- Careful comparison to experiments (interpretation, physical)
- More sophisticated methods not always better (geometry, numerics)

Summary

Different functionals often qualitatively similar, sometimes quantative differences (physics!)

