

Approaching Material Simulations in Practice

Institute of Solid State Physics

Purpose of this lecture:

- Repeat basic technical knowledge
- Demonstrate common failures and mistakes
- Raise awareness for plausbility checks

Example: Calculate the binding energy of F₂

#qm settings

xc b3lyp

charge 0

#convergence

```
sc_accuracy_etot 1e-6
```


	$E_{\text{porqu}}(0)$	F ₂
		#Geometry from experiment
F ₂ molecule	-5439.43	atom 0.0 0.0 0.0 F
F atom	-2716.54	atom 0.0 0.0 1.4 F
Bond energy	6.36	F
Experiment	1.64	atom 0.0 0.0 0.0 F

What went wrong?

Example: Inorganic/Organic Interfaces

DFT: Perdew's Ladder

Chemical Accuracy

- Each ladder allows fulfilling more theoretical constrains
- Higher rungs tend to perform better, but not always

... and a dozen vander-Waals corrections

10

"Users should stick to the standard functionals [...] or explain very carefully why not." (Kieron Burke, 2012) [... + a van-der-Waals correction]

Published in: Kieron Burke; The Journal of Chemical Physics 2012, 136, DOI: 10.1063/1.4704546 Copyright © 2012 American Institute of Physics

When is the calculation finished?

find the minimum

When is the calculation finished?

<u>Answer</u>: When *"property*" does not change

Adjusting knob between error bar and invested CPU time

Short answer: It depends.

Problem I: Connection between parameters and observables

- Adsorption / Cohensive / […] energy ↔ Total energy (1:1)
- Maximum force o Adsorption height (interaction dependent)

16

Short answer: It depends.

Problem I: Connection between parameters and observables

- Adsorption / Cohensive / […] energy ↔ Total energy (1:1)

Problem II:

- > Not transferrable between <u>different systems</u> (size dependence)
- > Not necessarily transferrable between <u>different codes</u>
- Sometimes not even transferrable between <u>different algorithms</u> within the same code

Weak correlation between total energy and energy gradient

No clear correlation between dipole moment and energy gradient

→ Converge observables explicitely!

Dipole moments and Basis Sets

- Hardly systematic
- Depends on #atoms
- BSSE-afflicted
- Overly confined

- Highly systematic (cutoff)
- Depends on unit cell size
- Pseudopotentials
- Overly delocalized

Dipole moments and Basis Sets

Dipole moments and Basis Sets

Today, all modern code yield the same result

If overconverged and used correctly

Structure Determines Function

Y. Zhang et al., Phys. Rev. Lett., 2016, 116, 016602.

Mobilities in Pentacene

Catalytic Triade

Y. Zhang et al., Phys. Rev. Lett., 2016, **116**, 016602.

Mobilities in Pentacene

Catalytic Triade

Complex geometries: How many minima exist?

Guess Geometry: How many minima exist?

Many non-trivial minima. Hard to find by trial and error!

Can we trust the differences? (Coordinate system)

Traditional approach: Point and Click

- Requires experience
- Easy to miss relevant minima

 Guess geometries far from harmonic part of PES

Inefficient Strategy

Systematic Exploration: Expensive

For each molecule:

Translation x: ~ 10 stepsTranslation y: ~ 10 stepsRotation: ~ 10 steps3 mol.: $(10 \times 10 \times 10)^3 = 1$ billion

Solution: Machine Learning

Systematic Exploration: Machine Learning

100 x 100 DFT evaluations

16 DFT evaluations

Pre-Optimization with Bayes Optimizers / GPR

Advantages:

- Very few calculations required (~10-50 force evaluations)
- Large movements possible
- More information about the potential energy surface (Barriers, attraction basin size, ...)

Disadvantages:

- > Hyperparameters!
- Manual identifications of soft degrees of freedom
- > "freezing" of DoFs can alter potential energy surface

Converged Result

E = reference $\Phi = 5.54 e V$

E = -0.13 eV Φ = 5.54 eV

Net remaining forces (excluding translations, rotations) in present geometry: || Forces on atoms || = 0.897187E-02 eV/A. Maximum force component is 0.897187E-02 eV/A. Present geometry is <u>c</u>onverged.

Plausible Result?

Geometry update – (Quasi-)Newton Methods

Approximate PES by quadratic function

Two variants:

- Newton methods: calculate exact *H*
- Quasi-newton:
 - approximate *H*

$$\tilde{H} \leftarrow \tilde{H} - \frac{\tilde{H}\Delta R(\tilde{H}\Delta R)^T}{\Delta R^T \tilde{H}\Delta R} - \frac{\Delta F\Delta H}{\Delta F^T \Delta R}$$

• update as search progresses [1]

[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006)

 \overline{R}

Guess Hessian: Scaled unit matrix $\tilde{H} = \beta \overline{\mathbf{1}}$

Assumption: Each DoF has same force constant

- Typically good for bulk systems (esp. metals, vdW)
- Terrible for complex molecules

Guess Hessian: Chemically motivated

Properties:

- k's parameterized [1]
- Different parameters exist
 - (e.g.: Lindh, Fischer)
- But not for everything
- Construction not unique

$$\begin{split} \tilde{E} &= E + F \Delta R \\ &+ \sum_{ij} k_{ij} \ d_{ij}^2 \quad \text{streching} \\ &+ \sum_{ijl} k_{ijl} \ a_{ijl}^2 \ \text{bending} \\ &+ \sum_{ijlm} k_{ijlm} \ \tau_{ijlm}^2 \quad \text{torsion} \end{split}$$

Effect of Guess Hessian

Speedup of calculation

Diagonal Default in most codes!

Initial

E = -0.13 eV Φ = 5.54 eV

E = reference $\Phi = 5.54 e V$ E = -1.95 eV Φ = 5.25 eV

Challenges:

- hard and soft degrees of freedom present
- large movements prevented by step control
- Initial Hessian sub-optimal (no vdW)

Summary

- > Mind defaults and algorthims
- Pre-screen geometries (if applicable), use modern technologies
- Select converged convergence thresholds
- Converge observables explicitely
- Check results for plausibility

