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Recap

Path integrals describe quantum nuclear statistics (and some
dynamical aspects) within Born-Oppenheimer approximation (i.e.
a single potential-energy surface)

Instanton theory is derived to give rate for reaction through a
potential barrier

Steepest-descent approximation can be treat integration over real
time in a simple way, requiring only information at t = 0 which
can be computed efficiently
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Electron-transfer in solution

nuclear configuration
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Diabatic representation

Ĥ =
p̂2

2m
+

(
V0(x̂) ∆(x̂)
∆(x̂) V1(x̂)

)

x

U
(x

)
+
V
n
(x

)

diabatic states shown in blue/green

coupling, ∆, is found in potential terms

weak coupling means you are likely to stay on the same diabatic
state (i.e. change adiabatic state)
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Adiabatic representation

Ĥ =
p̂2

2m
+W (x̂)− ~2

2m
(2F̂ · ∇+ Ĝ)

Wnm = Wnδnm diagonal matrix of eigenvalues of V

F̂nm = 〈φn|∇φm〉
Ĝnm = 〈φn|∇2φm〉

avoided crossing of adiabatic states (black dashed in previous
figure)

coupling in kinetic terms

weak coupling means you are likely to stay on the same adiabatic
state (i.e. change diabatic state)

We will use diabatic representation in the following as it is simpler
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Mean-field path-integral sampling

Z = Tr[e−βĤ ]

' Tr

[
N∏
i=1

e−βN V̂/2e−βN p̂
2/2me−βN V̂/2

]

Only difference from Born-Oppenheimer case is that V(x) is a
matrix and the trace is taken over position and electronic states.

Z '
(

m

2πβN~2

)N/2 ∫
e−βNUN (x)dx

UN (x) =

N∑
i=1

m

2β2N~2
|xi − xi−1|2 −

1

βN
ln tr

[
N∏
i=1

e−βNV(xi)

]
.
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Mean-field path-integral sampling

Closer look at product of matrix exponentials:

tr

[
N∏
i=1

e−βNV(xi)

]
=

∑
abcd...z

[e−βNV(x1)]ab[e
−βNV(x2)]cd · · · [e−βNV(xN )]za

The matrix exponential is easily evaluated on the computer (e.g.
using Padé approximation or eigenvalue decomposition). The result
is approximately equal to (derived from splitting operator into
diagonal and non-diagonal elements):

e−βNV ≈
(

e−βNV0 −βN∆e−βN (V0+V1)/2

−βN∆e−βN (V0+V1)/2 e−βNV1

)

For each term in sum, some beads feel blue potential, others feel
green

Each time you change state, you introduce a factor of ∆
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Why can’t we use mean-field ring-polymer
molecular dynamics?

HN (p,x) =

N∑
i=1

p2i
2m

+
m

2β2N~2
|xi − xi−1|2 −

1

βN
ln tr

[
N∏
i=1

e−βNV(xi)

]
.

Consider:

Zero coupling, ∆ = 0

Initial position on left (electronic state blue)

System should remain for all time on blue state as it is not
coupled to green

However, the mean-field RPMD trajectory can pass over to the
right if it has enough energy to overcome the barrier changing
directly from all blue to all green without penalty
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Exact nonadiabatic rate

Probability of transmission:

P (E) = 2π2~2 Tr[F̂ δ(Ĥ − E)F̂ δ(Ĥ − E)]

Flux:

F̂ =
i

~
∆
(
|0〉〈1| − |1〉〈0|

)

Thermal rate:

kZ0 =
1

2π~

∫
P (E) e−βE dE

9 / 22



Fermi’s golden rule

P (E) = 4π2∆2 |〈ψ0(E)|ψ1(E)〉|2

x

V
n
(x

)
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Alternative formulation of the exact
nonadiabatic rate

δ(Ĥ − E) =
1

2π~

∫ ∞
−∞

e−i(Ĥ−E)t/~dt

kZ0 =
2π2~2

2π~

∫
Tr[e−βĤ F̂ δ(Ĥ − E)F̂ δ(Ĥ − E)] dE

=
2π2~2

(2π~)3

∫∫∫
Tr[e−βĤ F̂ e−i(Ĥ−E)z/~F̂ e−i(Ĥ−E)t/~] dEdzdt

=
2π2~2

(2π~)3

∫∫∫
Tr[e−βĤ F̂ e−iĤz/~F̂ e−iĤt/~]e−iE(−z−t)/~ dEdzdt

=
2π2~2

(2π~)2

∫∫
Tr[e−βĤ F̂ e−iĤz/~F̂ e−iĤt/~]δ(z + t) dzdt

=
1

2

∫
Tr[e−βĤ F̂ eiĤt/~F̂ e−iĤt/~] dt
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Alternative formulation of the exact
nonadiabatic rate

As in the Born-Oppenheimer case, the exact rate can be written as
an integral over the flux-flux correlation function:

kZ0 =
1

2

∫ ∞
−∞

CFF (t) dt,

where the flux-flux correlation function is

CFF (t) = Tr[e−τĤ F̂ e−(β−τ)ĤeiĤt/~F̂ e−iĤt/~]

Rate is exact for any value of τ as this is equivalent to choosing
different contour integrations in the t complex plane
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Fermi’s golden rule

Take limit ∆� 1.

CFF (t) =
∆2

~2
Tr[e−τĤ |0〉〈1| e−(β−τ)ĤeiĤt/~ |1〉〈0| e−iĤt/~]

+
∆2

~2
Tr[e−τĤ |1〉〈0| e−(β−τ)ĤeiĤt/~ |0〉〈1| e−iĤt/~]

=
∆2

~2
Tr[e−τĤ0e−(β−τ)Ĥ1eiĤ1t/~e−iĤ0t/~]

+
∆2

~2
Tr[e−τĤ1e−(β−τ)Ĥ0eiĤ0t/~e−iĤ1t/~]

Only after integrating over t do the two terms give equal results, so
you only need to consider one of them (multiplied by 2) to get the
rate
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Classical golden-rule rate

kZ0 =
∆2

~2

∫
Tr[e−τĤ0e−(β−τ)Ĥ1eiĤ1t/~e−iĤ0t/~]dt dt

In the classical limit, replace operators by classical numbers:

kZ0 =

∫
∆2

~2
Tr[e−τH0−(β−τ)H1ei(H1−H0)t/~] dt

= 2π~
∆2

~2
Tr[e−τH0−(β−τ)H1δ(H1 −H0)]

=
∆2

~2

∫∫
e−τH0−(β−τ)H1δ(V1 − V0)dxdp

classical rate depends exponentially on barrier height

the top of the barrier is defined at the lowest-energy configuration
where V0 = V1.
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Marcus theory

for harmonic system
V0(x) = 1

2mΩ2(x+ ξ)2 and V1(x) = 1
2mΩ2(x− ξ)2 − ε

with reorganization energy λ = 2mΩ2ξ2

kMarcus =
∆2

~

√
πβ

λ
e−β(λ−ε)

2/4λ

x

V
n
(x

)

λ

V‡

ε
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Golden-rule instanton rate theory

Take limit ∆� 1. Define τ0 ≡ τ and τ1 ≡ β~− τ ,

kZ0 =
∆2

~2

∫
Tr[e−(τ0+it)Ĥ0/~e−(τ1−it)Ĥ1/~]dt

=
∆2

~2

∫∫∫
K0(x

′, x′′, τ0 + it)K1(x
′′, x′, τ1 − it)dx′dx′′dt

∼ ∆2

~2

√
C0

2π~

√
C1

2π~

√
2π~
−Σ

e−(S0+S1)/~

where S = S0 + S1, τ is chosen such that ∂S
∂τ = 0, and

Σ =

∣∣∣∣∣∣∣
∂2S
∂x′∂x′

∂2S
∂x′∂x′′

∂2S
∂x′∂τ

∂2S
∂x′′∂x′

∂2S
∂x′′∂x′′

∂2S
∂x′′∂τ

∂2S
∂τ∂x′

∂2S
∂τ∂x′′

∂2S
∂τ2

∣∣∣∣∣∣∣ .
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Asymmetric system-bath model

Mattiat & J.O.R. “Effects of tunnelling and asymmetry for system-bath
models of electron transfer.” J. Chem. Phys. 148, 102311 (2018);
arXiv:1708.06702 [physics.chem-ph].
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Wolynes theory

Take limit ∆� 1. Define τ0 ≡ τ and τ1 ≡ β~− τ ,

kZ0 =
∆2

~2

∫
Tr[e−(τ0+it)Ĥ0/~e−(τ1−it)Ĥ1/~]dt

=
∆2

~2

∫
e−φ(t)/~dt

≈ ∆2

~2

√
2π~
−φ′′(0)

e−φ(0)/~

where

e−φ(0)/~ = ΛN
∫

e−S0(x0,...,xN0
)/~−S1(xN0

,...,xN )/~dx

φ defined with optimal τ such that φ′(0) = 0
Steepest-descent integration over t but not x
Not a true asymptotic approximation (because φ depends on ~) so
not exact in ~→ 0 limit, except for harmonic model. 18 / 22



Marcus turnover curve
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Increasing the bias lowers the barrier height and increases the rate

Once the bias is larger than the reorganization energy, the barrier
height goes back up and the rate decreases

The difference between classical and quantum is mostly due to
tunnelling effects, which are well described by instanton theory
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Results
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TST

Marcus theory

Effect of changing coupling strength in system with a potential
barrier (see also talk by Joe Lawrence)

small ∆ is well described by Fermi’s golden rule

large ∆ is well described by Born-Oppenheimer
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Summary of most important concepts

Diabatic representation simpler than adiabatic (when it is
available)

Mean-field path-integral used for sampling but not dynamics

Fermi’s golden-rule is valid in small ∆ limit;
Born-Oppenheimer TST is valid in large ∆ limit

Golden-rule instanton theory derived from first principles

Wolynes theory (like the related “quantum instanton” theory) is
less rigorous and will not tend to correct classical limit
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