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Recap

m Path integrals describe quantum nuclear statistics (and some
dynamical aspects) within Born-Oppenheimer approximation (i.e.
a single potential-energy surface)

m Instanton theory is derived to give rate for reaction through a
potential barrier

m Steepest-descent approximation can be treat integration over real
time in a simple way, requiring only information at ¢ = 0 which
can be computed efficiently
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Electron-transfer in solution

potential energy
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Diabatic representation

Ulx) +V, (x)

m diabatic states shown in blue/green
m coupling, A, is found in potential terms
m weak coupling means you are likely to stay on the same diabatic

state (i.e. change adiabatic state)
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Adiabatic representation
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Wom = Winonm diagonal matrix of eigenvalues of V

Cm = (6n|V?6m)

m avoided crossing of adiabatic states (black dashed in previous
figure)

m coupling in kinetic terms

m weak coupling means you are likely to stay on the same adiabatic

state (i.e. change diabatic state)

m We will use diabatic representation in the following as it is simpler
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Mean-field path-integral sampling
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Only difference from Born-Oppenheimer case is that V(z) is a
matrix and the trace is taken over position and electronic states.
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Mean-field path-integral sampling

Closer look at product of matrix exponentials:
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The matrix exponential is easily evaluated on the computer (e.g.
using Padé approximation or eigenvalue decomposition). The result
is approximately equal to (derived from splitting operator into
diagonal and non-diagonal elements):

“BNV e AnVo — By Ae AN (Vot+11)/2
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m For each term in sum, some beads feel blue potential, others feel
green

m Each time you change state, you introduce a factor of A
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Why can’t we use mean-field ring-polymer
molecular dynamics?
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Consider:
m Zero coupling, A =0
m Initial position on left (electronic state blue)

m System should remain for all time on blue state as it is not
coupled to green

m However, the mean-field RPMD trajectory can pass over to the
right if it has enough energy to overcome the barrier changing
directly from all blue to all green without penalty
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Exact nonadiabatic rate

Probability of transmission:

P(E) = 21’2 Tx[F§(H — E)F§(H — E))

Flux: i
Fr= 2A(j0)(1] = [1)(0])

Thermal rate: )
Zo= — | P(E)e PEAE
Ko= 5 / (E)e
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Fermi’s golden rule
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Alternative formulation of the exact
nonadiabatic rate
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Alternative formulation of the exact
nonadiabatic rate

As in the Born-Oppenheimer case, the exact rate can be written as
an integral over the flux-flux correlation function:

kZy = %/ Crr(t)dt,

where the flux-flux correlation function is

CFF(t) = Tr[e—THFe—(5—T)I:Ieth/hFe—iI:It/h]

m Rate is exact for any value of 7 as this is equivalent to choosing
different contour integrations in the ¢ complex plane
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Fermi’s golden rule

Take limit A < 1.

A? 3 hop .
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Only after integrating over ¢ do the two terms give equal results, so

you only need to consider one of them (multiplied by 2) to get the
rate
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Classical golden-rule rate

2 N . N N
% /Tr[e—THoe—(,@—T)I-heiHlt/ﬁe—iHot/h]dt dt

In the classical limit, replace operators by classical numbers:

kZy =

2
kZy = 22 Trfe —THo—(ﬁ—T)Hlei(Hl—Ho)t/h] dt

—27rhA— Trle ™Ho=B=DHi5(H) — Hy)]

h2 // ~rHo=(8~ T)Hlfs( Vo)dfﬂdp

m classical rate depends exponentially on barrier height

m the top of the barrier is defined at the lowest-energy configuration
where Vy = V4.
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Marcus theory

m for harmonic system

m Vo(z) = 2mQ2(z + €)% and Vi(z) = imQ2(z — )? — €
m with reorganization energy A = 2mQ?¢?

A? 7B _so—e2/an

kMarcus = A 2
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Golden-rule instanton rate theory

Take limit A <« 1. Define o =7 and m = Sh— 7,

A2
kZy =
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where S = Sy + .51, 7 is chosen such that % =0, and
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Asymmetric system-bath model
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= Mattiat & J.O.R. “Effects of tunnelling and asymmetry for system-bath
models of electron transfer.” J. Chem. Phys. 148, 102311 (2018);

arXiv:1708.06702 [physics.chem-ph]. 2


http://dx.doi.org/10.1063/1.5001116
http://arxiv.org/abs/1708.06702

Wolynes theory
Take limit A <« 1. Define o =7 and 7, = Sh — 7,

2 ~ N
kZO — % /Tr[e—(’ro-f—it)Ho/ﬁe—(Tl—it)H1/h]dt
2
_ % / o0/

LAY 2mh ooym

T Rz —¢"(0)
where

oSO/ _ AN/eSo(xo,...,zNO)/hS1(xNO,...,xN)/th

m ¢ defined with optimal 7 such that ¢'(0) = 0

m Steepest-descent integration over ¢ but not x

m Not a true asymptotic approximation (because ¢ depends on £) so
not exact in i — 0 limit, except for harmonic model. 18/ 2



Marcus turnover curve

— classical
3 — semiclassical
107 —  Quantum

m Increasing the bias lowers the barrier height and increases the rate

m Once the bias is larger than the reorganization energy, the barrier
height goes back up and the rate decreases

m The difference between classical and quantum is mostly due to

tunnelling effects, which are well described by instanton theory
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Results
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m Effect of changing coupling strength in system with a potential
barrier (see also talk by Joe Lawrence)

m small A is well described by Fermi’s golden rule
m large A is well described by Born-Oppenheimer
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Summary of most important concepts

Diabatic representation simpler than adiabatic (when it is
available)

Mean-field path-integral used for sampling but not dynamics

Fermi’s golden-rule is valid in small A limit;
Born-Oppenheimer TST is valid in large A limit

Golden-rule instanton theory derived from first principles

Wolynes theory (like the related “quantum instanton” theory) is
less rigorous and will not tend to correct classical limit
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