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Path-integral approach to Quantum Statistics

Quantum partition function can be defined as

Z = Tr[e−βĤ ] = ΛN
∫

e−S◦(x)/~ dx,

where (using cyclic boundary conditions: x0 ≡ xN )

S◦(x) =

N∑

i=1

m

2τN
|xi − xi−1|2 + τNV (xi).

This is equivalent to what you saw in first lectures:

S◦/~ = βNUN

imaginary time: τ = β~ and τN = τ/N

S◦ is classical action (does not explicitly contain ~)

Λ =
√

m
2πτN~ . Change to Λf for mass-weighted f -dimensional

system
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Path-integral approach to Quantum Statistics

Quantum density matrix can be defined as

ρ(x′, x′′) = 〈x′|e−βĤ |x′′〉

or equivalently the imaginary-time propagator is

K(x′, x′′, τ) = 〈x′|e−Ĥτ/~|x′′〉 = ΛN
∫

e−S(x)/~ dx,

where (no cyclic boundary conditions)

S(x) =

N∑

i=1

m

2τN
|xi − xi−1|2 + τN

[
1
2V (x0) +

N∑

i=1

V (xi) + 1
2V (xN )

]
.

Here, x0 ≡ x′ and xN ≡ x′′ are fixed; there are N − 1 free beads,
x = {x1, . . . , xN−1}, and N intervals.
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Steepest-descent Approximation

f(
t)

t ∗

e−
f(
t)
/

t ∗t t

An integral of this form has the asymptotic approximation∗

∫
e−f(t)/~ dt ∼

∫
e−f(t

∗)/~−(t−t∗)2f ′′(t∗)/2~ dt, ~→ 0

=

√
2π~
f ′′(t∗)

e−f(t
∗)/~,

where t∗ is chosen at a minimum such that f ′(t∗) = 0.

∗Recommended reading: chapter 6 from Bender & Orzag
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Steepest-descent approximation to path
integral

path, x̃, with minimum action, S(x̃), will dominate

K(x′, x′′, τ) = ΛN
∫

e−S(x)/~ dx

∼ ΛN
∫

e−S(x̃)/~−(x−x̃)
T∇2S(x̃)(x−x̃)/2~ dx

Find matrix, U, with columns as eigenvectors of the Hessian,
∇2S(x̃) such that UT∇2S(x̃)U = D is a diagonal matrix with the
(positive) eigenvalues, mη2k, along the diagonal. N.B. it is an
orthogonal matrix such that UUT = 1. Then define normal mode
transform, q = UT (x− x̃) and hence qT = (x− x̃)TU.
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Steepest-descent approximation to path
integral

K(x′, x′′, τ) ∼ ΛN
∫

e−S(x̃)/~−(x−x̃)
TUUT∇2S(x̃)UUT (x−x̃)/2~ dx

∼ ΛNe−S(x̃)/~
∫

e−q
TDq/2~ dq

∼ Λe−S(x̃)/~
N−1∏

k=1

Λ

∫
e−mη

2
kq

2
k/2~ dqk

∼ Λe−S(x̃)/~
N−1∏

k=1

√
m

2πτN~

√
2π~
mη2k

∼
√

C

2π~
e−S(x̃)/~
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Steepest-descent approximation to path
integral

We have defined:

C = 2π~
m

2πτN~

N−1∏

k=1

1

τNη2k

=
mN

τNN

N−1∏

k=1

1

mη2k

=
mN

τNN

∣∣∇2S(x̃)
∣∣−1

because the determinant of a matrix is equal to the product of its
eigenvalues.∗

∗For numerically stable ways to compute this efficiently see Winter & J.O.R.
“Divide-and-conquer method for instanton rate theory.” submitted to JCTC
(2019).
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Steepest-descent approximation to path
integral

More generally in f -dimensions, and allowing for more than one
minimum-action pathway, it becomes

K(x′, x′′, τ) ∼
∑

min-S paths

√
C

(2π~)f
e−S(x̃)/~

where

C =

(
m

τN

)f
(detJ)−1

and the scaled Hessian matrix is

J =
τN
m

∇2S(x̃).
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Compute Z for anharmonic well

Here we use cyclic path integral:

Z = ΛN
∫

e−S◦(x)/~ dx

∼ ΛN (2π~)N/2
∣∣∇2S◦(x̃)

∣∣−1/2 e−S◦(x̃)/~

The minimum-action pathway is clearly collapsed at the bottom of
the well, x̃i = 0, where S◦ = 0.

Z ∼
(
m

τN

)N/2 ∣∣∇2S◦(x̃)
∣∣−1/2

Obtain eigenvalues of ∇2S◦(x̃) by comparing with corresponding
cyclic Hückel problem. They are (assuming N is even)

mη2k =
4

τ2N
sin2 |k|π

N
+ ω2

e for k ∈ {−N/2, . . . , N/2− 1},

where ωe =
√
∇2V (0)/m is the harmonic frequency of the well.
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Compute Z for anharmonic well

It can be shown that the product of these eigenvalues gives∗

Z ∼
(
m

τN

)N/2∏

k

√
1

mη2k
= [2 sinh(τω(N)

e /2)]−1

where sinh(τNω
(N)
e /2) = τNωe/2.

Therefore in the limit N →∞, Z tends to [2 sinh(β~ωe/2)]−1,
which is of course the result for the partition function of a quantum
harmonic oscillator. In other words, the steepest-descent
approximation is here equivalent to a harmonic approximation of
the well.

∗The proof can be found in Kleinert’s book on Path Integrals, but the easiest
way to check it for yourself is to compare numerical results for a range of
parameters.
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Connection to Classical Mechanics
What are the properties of a minimum-action path, x̃? They obey:

0 =
∂

∂xi
S(x̃) for i ∈ {1, . . . , N − 1}

=
m

τN
(−x̃i+1 + 2x̃i − x̃i−1) + τN∇V (x̃i)

This rearranges to give

∇V (x̃i) = m
−x̃i+1 + 2x̃i − x̃i−1

τ2N

which is the finite-difference version of Newton’s second law,
F = ma, in imaginary time τ = −it. Equivalent to usual equation
with the modification that F = ∇V instead of the usual F = −∇V .
Therefore in the limit N →∞, the minimum-action path is a
classical trajectory moving on the upside-down potential-energy
surface.
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Principle of least action
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Numerically finding minimum-action
pathways

Easiest method: simply minimize S(x) using quasi-Newton solver
e.g. L-BFGS.∗

G =
∂S

∂x
H =

∂2S

∂x∂x

Taylor expansion around current point, x0,

G(x) ≈ G(x0) + H(x0) · (x− x0)

so choose Newton-Raphson step to attempt to find G(x) = 0,

x− x0 = −H(x0)
−1G(x0)

∗More efficient and more complicated methods exist using Hamilton-Jacobi
formalism, e.g. Cvitaš. “Quadratic string method for locating instantons in
tunneling splitting calculations.” J. Chem. Theory Comput. 14, 1487 (2018).
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Minimum-action pathway in 2D model of
malonaldehyde
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Notes for practical implementation

Fix end points in correct places if known, otherwise you may want
to optimize end beads as well.

Choose good initial guess with a small number of beads, e.g.
evenly spaced in straight line. In some cases, an angular
coordinate will be better.

Iteratively optimize and grow the number of beads until
convergence. Add new beads in between the old ones (maybe
using spline interpolation or normal mode transforms)

Implementation in i-PI and Molpro, as well as our own group code

Consider building a machine-learning PES around the pathway
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Tunnelling splitting
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Tunnelling splitting

Path can be broken into pieces which remain in a well:

K0(τ) ∼
(

m

2πτN~

)f/2
(det J0)

− 1
2 ,

or which tunnel from one well to another (at a specified time):

K ′1(τ) ∼ 1

τN

(
m

2πτN~

)f/2√Skink
2π~

(det ′J)−
1
2 e−Skink/~.

Ω = lim
τ→∞

K ′1(τ)

K0(τ)

=
1

Φ

√
Skink
2π~

e−Skink/~,

where

Φ = τN

(
det ′J

det J0

) 1
2

.
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Tunnelling splitting

In low-temperature limit, β →∞, only the ground state tunnelling
states contribute to the partition function

Z =
∑

ν

e−βEν = e−βE0
∑

ν

e−β(Eν−E0)

=

∫
K(x, x, τ)dx

Define tunnelling matrix, Wij = −~ΩijAij

Z ∼ Z0

∞∑

n=0

1

~n

∫ β~

τn−1

dτn · · ·
∫ β~

τ1

dτ2

∫ β~

0
dτ1 Tr[(−W)n]

= Z0 Tr[e−βW],

So splitting pattern, Eν − E0 is defined as eigenvalues of W.
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Tunnelling splitting in methane cation∗
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∗Gandolfi, Calderini, Laude, Tew & J.O.R. “Quantum tunnelling and the
geometric-phase effect in the methane cation.” In preparation (2019).
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Convergence of tunnelling calculation

Converge of the action with respect to β and N simultaneously∗

β~

N 15 30 60 120 240

8 9.309 8.762 5.967 3.242 1.655
16 9.381 9.336 8.762 5.967 3.242
32 9.399 9.406 9.336 8.762 5.967
64 9.403 9.423 9.406 9.336 8.762

128 9.404 9.427 9.423 9.406 9.336
256 9.404 9.428 9.427 9.423 9.406
512 9.405 9.428 9.428 9.427 9.423

∗Example from J.O.R. & Althorpe. “Ring-polymer instanton method for
calculating tunneling splittings.” J. Chem. Phys. 134, 054109 (2011).
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http://dx.doi.org/10.1063/1.3530589


Tunnelling matrix for CH4
+
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N.B. Negative signs in adjacency
matrix are necessary to take
account of geometric phase effect.

A =




0 1 0 −1 1 1
1 0 −1 0 −1 1
0 −1 0 1 1 1
−1 0 1 0 −1 1
1 −1 1 −1 0 0
1 1 1 1 0 0



.

Eigenvalues of W = −~ΩA are
[−2~Ω, 2~Ω], both triply
degenerate with irrep F2 and F1

in Td(M) molecular symmetry
group.
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Summary of most important concepts

A steepest-descent approximation to the path integral gives a
simpler object that can be computed much more efficiently.

One just needs to find the minimum-energy pathway and the
Hessians of each bead.

It is equivalent to making a harmonic approximation when
computing partition-functions, so should not be applied to very
anharmonic environments such as liquids.

Can be used to compute tunnelling splittings of molecules and
clusters in the gas phase

We will show in the next lectures how to use it to compute
reaction rates of molecules in the gas phase, or those absorbed on
surfaces or trapped in solids.
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