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École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

E-mail: michele.ceriotti@epfl.ch

The vast majority of atomistic simulations of matter treat the nuclei as classical point parti-
cles, evolving in time according to Hamiltonian dynamics, and following classical Boltzmann
statistics. As a matter of fact, this is quite a harsh approximation when dealing with hydrogen-
containing compounds. Hydrogen nuclei – as well as other light elements – exhibit significant
deviations from classical behavior up to and above room temperature. Here I will present
an overview of path integral methods, that can be used to include nuclear quantum effects in
atomic-scale models. I will cover the basic theory, discuss some of the practicalities in the
implementation and use, and finally introduce the most recent advances towards making these
techniques less computationally demanding by using colored (correlated) stochastic dynamics.

Simulations that describe matter at the level of individual atoms offer a very high level
of accuracy, transferability and predictive power. In order to make them practically fea-
sible, a number of approximations are often introduced that trade off the accuracy in de-
scribing some physical effects in exchange for a reduced complexity and computational
cost. Perhaps the most widely adopted approximation is the decoupling of the electronic
structure problem from that of the statistical and dynamical behavior of the atomic nuclei.
This can take the form of Born-Oppenheimer approximation1 – where the ground-state
electronic structure problem is solved for a given configuration of the nuclei – or can be
realized by modeling the interaction between the atoms using an empirical force field that
represent effectively (and inexpensively) the potential energy surface for the atoms treated
as point particles.

The Born-Oppenheimer approximation is generally very satisfactory, except when the
system evolves in an electronic excited state or for a few ultra-fast chemical reactions.
However, it only consists in a factorization of the combined electronic-nuclear wavefunc-
tion, and in principle the nuclei should be treated as quantum particles. The vast majority
of atomistic simulations are performed with an additional approximation, that is to treat the
nuclei as classical particles that evolve in time following Hamilton’s equations and that are
subject to Boltzmann, classical statistics. These are certainly reasonable approximations
at high temperature, and when dealing with heavy nuclei. If however one compares the
thermal energy kBT and the quantum of harmonic energy �ω for a molecular vibration of
frequency ω at temperature T , it will become clear that for many compounds �ω/kBT � 1
even well above room temperature, which casts some shadows on the consequences of ne-
glecting the quantum nature of the nuclear degrees of freedom in simulations.

There are several examples of the impact of the quantum mechanical behavior of nuclei
on experimental observables. The heat capacity of substances deviates from the Dulong-
Petit prediction of 3kBT per atom (that corresponds to classical statistics for a harmonic
crystal), in particular for stiff bonds (as in diamond) or for hydrogen-containing com-
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pounds. The kinetic energy distribution of atomic nuclei, as measured by neutron Comp-
ton scattering, differs dramatically from the Maxwell-Boltzmann distribution2. Reaction
rates at low temperature do not follow an Arrhenius behavior. The stability of different
compounds or phases varies with isotope composition, and one can for instance estimate
(extrapolating the values measured for 1H2O, 2H2O, 3H2O) that the pH of water would
be around 8.5 if nuclei behaved classically. Some of these phenomena – isotope sub-
stitution effects in particular – simply cannot be observed in the absence of a quantum
mechanical treatment of the nuclear degrees of freedom, while others entail a deviation of
computed properties from their experimental counterparts. Neglecting nuclear quantum ef-
fects (NQEs) is particularly detrimental in the case of ab initio molecular dynamics, where
the ground-state electronic structure problem is solved on the fly, and the nuclei evolve
on the bare Born-Oppenhemier potential energy surface. Simulations employing empiri-
cal force fields can include NQEs indirectly, by fitting the parameters of the inter-atomic
potential to experimental observables, or more directly using approximate techniques such
as Feynman-Hibbs effective potentials3.

Solving the Schrödinger equation for the nuclei is impractical except for very simple
systems. Here we will discuss how the imaginary-time path integral formalism4–7 can
be used to evaluate accurately NQEs in complex condensed-phase applications8–10. We
will focus on static, equilibrium properties, but will briefly mention extensions to the path
integral formalism that can be used to treat approximately quantum dynamics11, 12. We will
focus on the case in which different nuclei can be treated as distinguishable particles, which
is often true except for cases at cryogenic temperatures. Particle exchange statistics can be
included within a path integral formalism, but at the cost of considerable complication and
an increase of the computational cost5, 13.

1 Imaginary-Time Path Integrals

The path integral formulation of quantum mechanics makes it possible to express all the
quantities that describe a physical system in terms of exponential averages of an appropri-
ate action integral over the possible paths joining two points in phase space – much like the
minimum action principle makes it possible to formulate classical mechanics as the mini-
mization of the action over a tentative path4. Furthermore, it makes it possible to express
the quantum mechanical partition function at inverse temperature β = 1/kBT

a

Z = Tr e−βĤ

as the path integral

Z =

�
D [q (τ)] e−

1
�
� β�
0 [ 12mq̇(τ)2+V (q(τ))]dτ . (1)

The symbol
�
D [q (τ)] · is a functional integral over all the possible closed paths in con-

figuration space, weighed with the exponential of an action-like integral over the path. In
the following we will discuss how to give a practical definition of Eq. (1), and how to use
this formalism to compute experimental observables including NQEs.

aWe consider for simplicity the case of a single particle with position q and mass m in an external potential V
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1.1 Trotter Factorization

Start by writing the partition function in the position representation

Z =

�
dq1

�
q1

���e−βĤ
���q1

�
.

The Hamiltonian can be written as the sum of a potential and kinetic energy terms, Ĥ =

V̂ + T̂ , and the position ket is an eigenstate of the potential energy, so that e−βV̂ |q1� =

e−βV (q1) |q1�. Unfortunately, one cannot factor e−βĤ into the product e−βV̂ e−βT̂ , because
potential and kinetic energy are not commuting operators. However, the error in doing such
a factorization decreases when βĤ becomes small. So, one could writeb

e−βĤ =
�
e−βĤ/P

�P

≈
�
e−βP V̂ /2e−βP T̂ e−βP V̂ /2

�P

+O
�
β2
P

�
,

which becomes exact in the P → ∞ limit. Note that we have also introduced the shorthand
βP = β/P . One can show that the partition function converges to the exact quantum
mechanical result with a leading error of O

�
β2/P 2

�
, and in practice for a system with a

maximum frequency ωmax one needs a number of imaginary time slices that is at least a
small multiple of β�ωmax.

One can then introduce P − 1 closure relations
�
dqj |qj� �qj |, obtaining

Z ≈ ZP =

�
dq1 . . . dqP

��
q1

���e−βPV (q1)/2e−βP T̂ e−βPV (q2)/2
���q2

�
. . .

. . .
�
qP

���e−βPV (qP )/2e−βP T̂ e−βPV (q1)/2
���q1

��
.

(2)

The terms with the potential energy are just scalar values, that can be brought outside
the quantum mechanical brackets. One is then left with a series of terms corresponding
to the off-diagonal elements of the kinetic energy operator, that are readily evaluated by
transforming in the momentum representation:

�
qi

���e−βP T̂
���qj

�
=

�
dp

�
qi

���e−βP T̂
���p
�
�p|qj� =

=
1

2π�

�
dpe−βP p2/2meip(qi−qj)/� =

=
1

2π�

�
2πm

βP
e−

1
2βPmω2

P (qi−qj)
2

(3)

where we have used �p|q� = e−ipq/�/
√
2π�, performed the integral over the momentum

and introduced the spring constant ωP = 1/βP�. Plugging Eq. (3) into Eq. (2) one finally
obtains the path integral configuration partition function

ZP =

�
m

2π�2βP

�P/2 �
dq1 . . . dqP e

−βP

�P
i=1[V (qi)+

1
2mω2

P (qi−qi+1)
2] (4)

where cyclic boundary conditions are implied in the sum, i+ P ≡ i.

bNote that we use the Trotter splitting eA+B ≈ eA/2eBeA/2, which has a lower error than the asymmetric
splitting eAeB .
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Ignoring for a second the configuration-independent pre-factor, let us discuss the con-
nection between Eq. (4) and the Feynmann path integral (1). Consider qi to be a discrete
sample from a continuous path, taken at τi = β�i/P . Then one can see the sum in the
exponential as a discretization of a Riemann integral, and (qi+1 − qi) / (τi+1 − τi) as a
finite-difference approximation to q̇ (τi)

β

P

P�

i=1

(τi+1 − τi)

β�/P

�
V (qi) +

1

2
m
(qi − qi+1)

2

(τi+1 − τi)
2

�
≈ 1

�

� β�

0

dτ

�
V (q (τ)) +

1

2
mq̇ (τ)

2

�
.

The multiple integrals over the qj coordinates are the discrete equivalent of the path in-
tegral

�
D [q (τ)]. Even though most path integral simulations can be implemented and

understood without reference to the formulation in terms of a functional integral, it is use-
ful to keep this limit in mind, particularly when writing estimators for physical observables
that are usually better behaved when they can be expressed as the discretized version of a
corresponding path integral14.

Figure 1: (Left panel) Cartoon representation of a classical ring polymer corresponding to the discretized path
integral partition function (4). (Right panel) In a multi-atom setting, the ring polymer metaphor can be somewhat
misleading. The path integral partition function is best seen as a sequence of imaginary-time slices: atoms within
each replica interact with the physical potential, and the spring terms connect corresponding atoms in adjacent
slices.

Eq. (4) corresponds precisely to the classical partition function of a cyclic polymer
composed of P atoms, each of which is subject to the potential V and of a harmonic
attractive interaction with its nearest neighbors. This isomorphism motivates the common
practice of referring to the set of replicas for one atom as a “ring polymer” or a “necklace”
and to each replica as a “bead”. While this is a very suggestive metaphor, and can also be
extended to give a pictorial representation of the Monte Carlo moves that are introduced to
treat particle exchange effects5, one has to keep in mind that in a real system it is better to
regard the path integral partition function as describing a collection of “parallel universes”,
with atoms interacting with each other within each imaginary time slice and the kinetic
part of the action corresponding to springs that connect each atom to its counterpart in the
two adjacent time slices (see Figure (1)).
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1.2 Estimators

Having defined an isomorphism between the quantum partition function of a system of
distinguishable nuclei and the ring-polymer configurational partition function (4), one may
proceed to evaluate experimental observables. To do so, one has to introduce appropriate
estimators, functions of the coordinates of the ring polymer that correspond to physical
quantities. The simplest case is that of the potential energy, or of any observable Â (q)
that depends solely on the atomic positions, such as a bond length, a radial distribution
function, or the relative stability of two molecular configurations. The quantum mechanical
expectation value can be written as �A� = Tr

�
Âe−βĤ

�
/Tr e−βĤ . The operator Â can

be kept on the left, so that after the Trotter factorization and the splitting of the integral
it appears close to the �q1| in Eq. (2), yielding a term A (q1). Since all the replicas are
equivalent, one may as well average over the value of the observable computed on all the
beads, so that the expectation value reads

�A�P =

�
dq1 . . . dqP e

−βP

�P
i=1[V (qi)+

1
2mω2

P (qi−qi+1)
2] 1

P

�P
i=1 A (qi)

�
dq1 . . . dqP e

−βP

�P
i=1[V (qi)+

1
2mω2

P (qi−qi+1)
2]

. (5)

This average can be computed easily by sampling the ring polymer configurations consis-
tently with the ring polymer energy

�P
i=1

�
V (qi) +

1
2mω2

P (qi − qi+1)
2
�

at the inverse
temperature βP , with Monte Carlo or (as it will be discussed in Section 2) molecular dy-
namics, and accumulating statistics for each replica. Note that this does not necessarily
mean that averages will converge faster then if one was sampling just one replica, as in
classical sampling: different path integral replicas are typically highly correlated with one
another, which means that in most cases very little is gained by the average in (5).

While it is simple to write an estimator for observables that depend only on the po-
sitions, it is generally more complex to extract momentum-dependent quantities. A good
example is that of the total energy, that contains both the position-dependent potential en-
ergy, but also a kinetic energy term. The simplest form of an estimator for the total energy
of the system can be obtained recalling the thermodynamic relation between the partition
function and the mean energy �E� = −Z−1∂Z/∂β. Once applied to Eq. (2), this reads

�E� =
�
dq1 . . . dqP e

−βP

�P
i=1[V (qi)+

1
2mω2

P (qi−qi+1)
2]ETD (q1, . . . qP )�

dq1 . . . dqP e
−βP

�P
i=1[V (qi)+

1
2mω2

P (qi−qi+1)
2]

,

the ensemble average of the so-called thermodynamic (or primitive) energy estimatorc

ETD (q1, . . . qP ) =
P

2β
− 1

P

P�

i=1

1

2
mω2

P (qi − qi+1)
2
+

1

P

P�

i=1

V (qi) .

One can immediately recognize the estimator for the potential energy, and infer that the
thermodynamic estimator for the kinetic energy alone reads

TTD (q1, . . . qP ) =
P

2β
− 1

P

P�

i=1

1

2
mω2

P (qi − qi+1)
2
. (6)

cWhen doing the derivation keep in mind that ωP = 1/βP � and that the constant scaling of ZP also depends
on β
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Note that this estimator does not depend solely on the distribution of individual beads,
but also on the cross-correlations between different replicas in the ring polymer. This is a
general feature for non-local estimators that also contain a kinetic energy (or momentum)
contribution.

Unfortunately, the thermodynamic kinetic energy estimator (6) is not very efficient,
because its variance grows with the number of beads15 as P/β2. This means that com-
puting the average to a given accuracy becomes more difficult as the number of replicas is
increased, making the simulation even more computationally demanding.

Luckily, it is possible to exploit the virial theorem and do an integration by parts to
derive the so-called centroid-virial kinetic energy estimator

TCV (q1, . . . qP ) =
1

2β
+

1

2P

P�

i=1

(qi − q̄)
∂V

∂qi
, q̄ =

1

P

P�

i=1

qi, (7)

that does not exhibit this pathological behavior of the fluctuations15. This case is a typical
example of a recurring theme in path integral methods: one can write estimators that yield
the same average value, but have very different statistical convergence properties. See
for instance Ref.16 for a discussion of efficient estimators for the heat capacity, Ref.14

for an estimator of the distribution of particle momenta, and Refs.17, 18 for a comparison
of different estimators for the isotope fractionation ratio – the relative propensity of the
isotopes of the same element for different stable phases.

1.3 High-order Path Integrals

We have seen that Eq. (2) can be interpreted as a discretized form of a line integral over
closed paths in configuration space. The error arising from using a finite P is effectively
a discretization error, so one might wonder if it is possible to increase the order of conver-
gence by employing a different summation rule. The crux is the error arising from splitting
the exponential of the Hamiltonian, neglecting the commutator

�
T̂ , V̂

�
. Hence, one can

hope to increase the order of convergence by including extra terms that also depend on
this commutator. A considerable amount of research has been devoted to this topic, in
part also because of a connection with algorithms to propagate Hamiltonian dynamics in
real time19–22, 16, 23. Among the many factorizations that have been proposed, one of the
simplest and most successful is the Suzuki-Chin propagator

e−2βĤ/P = e−
1
3βP V̂ee−βP T̂ e−

2
3βP V̂oe−βP T̂ e−

1
3βP V̂e +O

�
β5
P

�
, (8)

in which one introduces two distinct modified potential energy operators that act on the
odd and the even beads:

V̂e = V̂ +
α

6mω2
P

����
∂V

∂q

����
2

, V̂o = V̂ +
1− α

12mω2
P

����
∂V

∂q

����
2

.

The parameter α ∈ [0, 1] can be tuned to optimize the prefactor for the discretization error.
The square modulus of the force can typically be computed without additional effort, in
particular when using molecular dynamics to sample the ring polymer partition function,
as we will discuss in Section 2. However, the factorization (8) becomes inconvenient pre-
cisely when one wants to integrate the dynamics that arises from V̂e,o: the derivative of
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|∂V/∂q|2 contains the second derivative of the potential, which often is considerably more
computationally demanding than the force. In these cases, one can get around this diffi-
culty by sampling the Trotter partition function, and using statistical reweighing to recover
sampling consistent with the Suzuki-Chin modified potential16, 24–26. This technique works
very well for small clusters; however, the difference between the Trotter and the Suzuki-
Chin potential energy is size-extensive, which means that it becomes progressively less
efficient to include reweighing factors in the averages as the number of atoms is increased,
somewhat limiting the applicability of this approach25.

2 Path Integral Molecular Dynamics

As it has been already discussed above, the ring polymer partition function (2) only needs
to depend explicitly on coordinates, and it can be sampled by Monte Carlo techniques.
While Monte Carlo moves can be very effective in sampling phase space – and for in-
stance they are used extensively in techniques to include particle exchange statistics27, 13 –
they typically do not exploit the possibility of obtaining the inter-atomic forces with little
overhead over the calculation of the potential energies. In many cases, particularly when
one does not want to develop custom-tailored Monte Carlo moves for the specific system
at hand, it can be much more effective to sample the Boltzmann distribution by integrating
in time Hamilton’s equations

q̇ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂q
= −∂V

∂q
. (9)

In practice, it is easy to see that the constant pre-factor in Eq. (2) corresponds to a
Gaussian integral over a set of auxiliary variables that can be taken to be the conjugate
momenta to qi’s, so that one can equivalently write the ring polymer partition function as

ZP =
1

(2π�)P

�
dp1 . . . dpP

�
dq1 . . . dqP e

−βP

�P
i=1

�
V (qi)+

p2i
2m+ 1

2mω2
P (qi−qi+1)

2

�

.

(10)
Note that the momenta pi are exclusively sampling devices, and are in no way related to
the physical momentum. Among other things, this means that one could change the inertial
mass in the p2i /2m term to be something different from the physical mass, with no other
effect than changing the partition function by an immaterial, temperature-independent scal-
ing.

2.1 Implementation: Normal Modes Propagator

While the underlying idea behind path integral molecular dynamics (PIMD) is very simple,
there are some technical aspects that should be considered in order to obtain an efficient
implementation. Start by splitting the path integral Hamiltonian into a “free-particle” com-
ponent, and one that depends on the physical potential:

HP = H0 + VP =

P�

i=1

�
p2i
2m

+
1

2
mω2

P (qi − qi+1)
2

�
+

P�

i=1

V (qi) .
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The free ring-polymer Hamiltonian H0 is just a multi-dimensional harmonic oscillator, and
therefore it can be diagonalized exactly by the unitary transformation

p̃j =
�

i

piCij , q̃j =
�

i

qiCij , Cij =

�
2

P
·





1/
√
2 j = 0

cos 2πij/P j < P/2

(−1)
i
/
√
2 j = P/2

sin 2πij/P j > P/2

.

q̃j and p̃j are the position and momentum of the j-th free-particle normal mode, which has
an associated frequency

ωj = 2ωP sin jπ/P. (11)

Considering that for a physical system that contains a normal mode of frequency ωmax one
has to use at least 2β�ωmax replicas, a converged PIMD calculation will involve normal-
mode vibrational frequencies larger than 4ωmax. This implies that in principle one should
use a much smaller time step to integrate the equations of motion for PIMD compared
to conventional classical molecular dynamics, adding further computational burden to the
technique.

Luckily, one can exploit the possibility of diagonalizing the free ring-polymer Hamil-
tonian to avoid reducing the time step. This can be achieved by doing a so-called staging
transformation28, which will not be discussed here, or by performing the integration in the
normal modes basis. In the latter case, one can for instance manipulate the inertial mass
of the conjugate momenta in the normal modes representation, so as to artificially slow
down the dynamics of the fast ring-polymer normal modes without changing the sampling
properties. In most cases, however, this is not necessary: one can perform a multiple time
step procedure29 to integrate the normal modes analytically based on the evolution of a free
ring polymer and then include the physical potential using a velocity Verlet algorithm30.

This is based on the symmetric Trotter splitting of the Liouville operator for HP into
the part related to H0 and that related to the physical potential L = L0 +LV . Considering
the evolution of the ring polymer over a time step Δt

e−ΔtL ≈ e−ΔtLV /2e−ΔtL0e−ΔtLV /2.

This corresponds to the following recipe for the evolution across a time step:

pi ←pi −
Δt

2

∂V (qi)

∂qi

p̃j ←
�

i

piCij q̃j ←
�

i

qiCij

�
p̃j
q̃j

�
←

�
cosωjΔt −mωj sinωjΔt

[1/mωj ] sinωjΔt cosωjΔt

��
p̃j
q̃j

�

pi ←
�

j

Cij p̃j qi ←
�

j

Cij q̃j

pi ←pi −
Δt

2

∂V (qi)

∂qi
.

(12)
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In practice, one could reduce the number of normal modes transformations (that can be
performed by fast Fourier transform, and therefore are not dramatically demanding any-
way) by keeping the momenta in the normal modes representation, and transforming the
physical forces in the normal modes basis. See for instance Ref.31 for a discussion of
Eq. (12) in a many-atoms context.

It is also worth mentioning that whenever the inter-atomic potential can be split in a part
that varies on a short length scale (such as intra-molecular bends and stretches) and a long-
range scale (such as electrostatics), the normal-modes representation can also be exploited
within a ring-polymer contraction scheme32, 33, that reduces the cost of the simulation by
computing the long-range part of the potential on a reduced number of replicas.

2.2 Efficient Stochastic Thermostatting

Molecular dynamics generates trajectories that are consistent with a Boltzmann distribu-
tion. However, they do not yield ergodic sampling, because they conserve the total energy
and so a single MD simulation cannot account for the thermal fluctuations that are char-
acteristic of a constant-temperature ensemble, and that are needed to converge averages
based on the partition function (10). This fact has been recognized for a long time, and
led to the development of modified dynamical equations that describe the heat exchange
with a reservoir, and generate ergodic canonical trajectories34–40. In principle, any of these
techniques could be applied to PIMD, which is just classical molecular dynamics in an
extended phase space. Perhaps, the simplest technique to be used in conjunction with the
normal-modes propagation in Eq. (12) is one that applies Langevin dynamics in the normal
modes representation, so that the friction can be tuned to match the critical-damping value
for the free ring-polymer normal modes. We introduce a Langevin term in the equation of
motion for the momenta, corresponding to a further term Lγ in the Liouvillian, that can
therefore be split as

e−ΔtL ≈ e−ΔtLγ/2e−ΔtLV /2e−ΔtL0e−ΔtLV /2e−ΔtLγ/2.

This splitting corresponds to applying the following step

˙̃pj ← e−γjΔt/2p̃j +
�
(1− e−γjΔt)m/βnξj

twice per time step, immediately before and immediately after the Hamiltonian propa-
gator (12). ξj’s are uncorrelated Gaussian random numbers, such that �ξj (t) ξj� (t�)� =
δjj�δ (t− t�). Note that in the most naive implementation this step requires also to trans-
form forth and back to normal modes representation, a problem that is easily circumvented
by propagating the momenta in the normal modes form. The friction can be taken to be
γj = λωj , where ωjs are the free ring polymer normal mode frequencies, and λ is a scal-
ing that can be set to one to have critical damping of harmonic oscillations, or to a smaller
value when one needs a more gentle thermostatting. The centroid mode (that has zero
frequency in the free particle limit) can be treated separately, using either a white-noise
Langevin thermostat or stochastic velocity rescaling39, 31.

2.3 Approximate Quantum Dynamics

Even though, strictly speaking, path integral molecular dynamics is just a sampling tech-
nique to obtain static, equilibrium averages, it can be used as the basis to compute ap-
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proximate time correlation functions that include some of the nuclear quantum effects on
dynamical properties. Examples of time-dependent properties that can be estimated in
this way include diffusion coefficients, reaction rates, vibrational spectra. The two main
techniques are centroid molecular dynamics (which amounts at performing microcanonical
molecular dynamics on the centroid potential of mean force11, 41) and ring-polymer molec-
ular dynamics (which corresponds to molecular dynamics on the ring polymer potential
energy surface, using the physical masses in the definition of the Hamiltonian42, 43, 12). The
use of both these techniques can be partially justified based on how they can capture quan-
tum mechanical behavior in some limits, or as approximations to more rigorous formula-
tions of quantum dynamics44–48. They typically behave similarly for dynamical properties
that evolve on a long time scale, but exhibit evident artifacts for short-time dynamics, e.g.
for the stretching modes in IR spectra49. Interestingly, using physical masses but ther-
mostatting the internal modes of the ring polymer – an approach that is half-way between
the two techniques – eliminates the most apparent artifacts50, 51, providing a reliable albeit
approximate method to probe the impact of quantum nuclei on vibrational properties.

3 Accelerating Convergence with Colored Noise

An alternative approach to accelerate the convergence of physical observables in path in-
tegral molecular dynamics combines a simulation with a small number of replicas with
correlated-noise Langevin dynamics52, 53. The idea is that a non-equilibrium Langevin dy-
namics generates frequency-dependent fluctuations, that can be used to mimic the effect of
zero-point energy on a multi-dimensional harmonic oscillator, without the need of know-
ing the normal modes frequencies or eigenvectors. By combining colored noise with path
integral molecular dynamics one can obtain a simulation protocol that, in the harmonic
limit, yields exact results for any number of beads. As the number of replicas is increased,
this protocol converges by construction to PIMD, and so the method can be made as accu-
rate as one wishes, and in most cases has smaller errors than plain PIMD for any number
of replicas.

3.1 A Brief Introduction to Colored Noise

Stochastic differential equations (SDEs) combine a random/noisy term together with de-
terministic prescriptions for the time evolution of a system54. The prototypical example for
the application of SDEs to a physical problem is the Langevin equation, that was originally
introduced as a model for Brownian motion55, and has been used extensively to describe
the coupling between an open system and an external bath56. Langevin dynamics introduce
a friction term −γp and a Gaussian random force ξ on top of Hamiltonian dynamics

q̇ =p/m

ṗ =− V �(q)− γp+
�
2mγ/βξ(t).

(13)

The balance between the noisy force (which is uncorrelated in time, �ξ (t) ξ (t�)� =
δ (t− t�)) and the friction guarantees canonical sampling at inverse temperature β.

If the problem of integrating out the degrees of freedom associated with the bath is
considered carefully57, 58, one will find that in the general case it is not possible to represent
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Figure 2: Two Markovian trajectories in the extended (q, p, s) space will appear as history-dependent, non-
Markovian trajectories when projected into the (q, p) subspace.

the effect of the bath by equations as (13), but that the friction and the noisy force have to
be associated to a finite memory kernel, leading to the non-Markovian dynamics

q̇ = p/m

ṗ = −V �(q)−
� t

−∞
K(t− s)p(s)ds+

�
2m/βζ(t).

(14)

The autocorrelation of the noisy force H (t) = �ζ (t) ζ (0)� must be related to the mem-
ory of the friction K (t) by a fluctuation-dissipation relation H (t) = K (t) to guarantee
constant-temperature sampling. Besides giving the possibility of modeling the statistical
mechanics and the dynamical behavior of an open system59, 60, a generalized Langevin
equation of this form gives a great deal of freedom for manipulating the sampling proper-
ties of a molecular dynamics simulation by changing the form of the memory kernels K (t)
and H (t). However, integrating an equation of motion of this form is not very practical,
since one would need to generate Gaussian random numbers with prescribed correlation61,
to store the past trajectory of p (t) and to perform an integral over the past history to com-
pute the friction term.

Fortunately, one can reverse the reasoning that leads to Eqs. (14) starting from Marko-
vian equations for the combined system/bath ensemble to show that a non-Markovian dy-
namics for (q, p) can be obtained by supplementing the physical variables with a vector s
of ns fictitious momenta62–64, and integrating the Markovian equations

q̇ =p/m
�
ṗ
ṡ

�
=

�
−V �(q)

0

�
−
�
app aTp
āp A

��
p
s

�
+
√
m

�
bpp bT

p

b̄p B

��
ξ

�
,

(15)

in the extended phase space comprising (q, p, s). The additional degrees of freedom encode
the memory of the system relative to the (q, p) physical variables - e.g. two trajectories
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starting at the same (q, p) position (that would necessarily evolve in the same way in a
Markovian context) can now lead to different time evolution, if they correspond to different
values of the s momenta (Figure 2). Let Ap and Bp be the full (ns + 1)×(ns + 1) matrices
in Eq. (15). The fluctuation-dissipation relation that guarantees canonical sampling is then
Ap + AT

p = β−1BpB
T
p . Eq. (15) corresponds to a non-Markovian dynamics (14) with

K (t) = 2appδ (t)− aTp e
−|t|Aāp.

Formulating the Generalized Langevin Equation (GLE) in this Markovian form is not
only convenient for the sake of integrating the dynamics on a computer. If one considers a
harmonic model, for which the force V � (q) = mω2q is linear, the whole set of dynamical
equations for (q, p, s) constitutes a linear, Markovian stochastic differential equation (an
Ornstein-Uhlenbeck process54) that can be solved analytically. The opportunity of comput-
ing exactly and inexpensively the response of a normal mode of frequency ω to a given set
of GLE parameters Ap and Bp makes it possible to optimize iteratively the parameters to
fulfill the desired sampling properties (e.g. ergodicity, small disturbance on the dynamics,
etc.) as a function of the normal mode frequency.

A crucial feature of Eqs. (15) that makes this approach very useful is that, when ap-
plying identical equations with independent random terms to a set of arbitrarily-coupled
degrees of freedom, the dynamical behavior is invariant to a unitary transformation of the
coordinates to which the stochastic dynamics is applied. This property, that is a conse-
quence of the linear nature of the SDE and of the Gaussian statistics of ξ, means that one
can apply the GLEs to the Cartesian coordinates of a set of atoms and obtain the same re-
sponse as if the GLEs had been applied to the normal modes of the system. Hence, one can
optimize Ap and Bp based on a simple, one-dimensional harmonic oscillator model, but
the predictions will be verified in a realistic physical model without the need of knowing
explicitly the normal modes basis. This idea has been applied to obtain efficient sampling
of many frequencies at the same time, and to avoid disrupting adiabatic decoupling in
Car-Parrinello molecular dynamics40, 65, but also to thermostat efficiently PIMD31 and to
stabilize resonances in multiple time step integration66.

3.2 Quantum thermostats

Generalized Langevin dynamics that satisfy the fluctuation-dissipation relation can be used
to alter the dynamical properties of a trajectory, and also to make sampling more efficient
in PIMD31. By releasing the constraint Ap + AT

p = β−1BpB
T
p , one is effectively in

a non-equilibrium scenario, that can be understood in terms of simultaneous coupling to
multiple heat baths at different temperature. The practical effect of this simulation protocol
is that a steady state will be reached, in which normal modes of different frequency will
have fluctuations that are consistent with different values of the temperature. This peculiar
non-equilibrium GLE is particularly useful to model inexpensively the quantum nature of
atomic nuclei.

To see how, consider a one-dimensional harmonic oscillator of frequency ω, sam-
pled canonically at inverse temperature β = 1/kBT . The phase-space distribution of
position and momentum are Gaussian distributions ρ(p) ∝ exp−p2/2σ2

p and ρ(q) ∝
exp−q2/2σ2

q , irrespective of the underlying classical or quantum description. However,
the classical and quantum distributions differ because of the magnitude of fluctuations:
for a classical oscillator σ2

p = m/β and σ2
q = 1/βmω2, while for a quantum oscilla-
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Figure 3: The phase-space distribution of positions for a harmonic oscillator at finite temperature T is a Gaussian,
both in classical and quantum mechanical treatments. The only difference between the two cases is the amplitude
of the distribution. Quantum fluctuations can be mimicked in a classical context by increasing the temperature
T �, that however will be frequency dependent.

tor σ2
p = m�ω

2 coth β�ω
2 and σ2

q = �
2mω coth β�ω

2 . A classical oscillator would exhibit
the very same behavior as the quantum mechanical one if it were modeled at an effective
temperature

T �(ω) =

�
p2
�

mkB
=

m
�
q2
�

kB
=

�ω
2kB

coth
�ω

2kBT
. (16)

such that the fluctuations match those predicted by quantum mechanics at temperature T
(see Figure 3).

The problem with this idea is that the effective temperature T �(ω) depends on the
oscillator frequency as well as on the physical target temperature. In the case of a multi-
dimensional oscillator (that can be taken to be a decent model for a solid at low tem-
perature) one would need to associate a different temperature to each normal mode. If
one wanted to do so using conventional thermostatting, one would need to know the nor-
mal modes frequencies and phonon displacement patterns, and apply tailored white-noise
thermostats at different temperatures working in the normal modes representation. The
advantage of a non-equilibrium GLE formulation, instead, is that the dynamical response
of the system determines the fluctuations along different directions automatically, without
the need of knowing the normal modes of the system being studied. If one can fit a set
of Ap and Bp parameters that enforce the frequency-dependent temperature (16), for any
frequency within a range that encompasses the vibrational modes relevant for the system
at hand, then it suffices to apply the same GLE to each Cartesian degree of freedom. The
quantum T �(ω) curve is then enforced automatically, giving quantum fluctuations at the
cost of conventional molecular dynamics.

This “quantum thermostat” (QT) idea67, 65 works surprisingly well also for strongly
anharmonic potentials, and the main limitation when applying it to real systems does not
depend much on failure to describe strongly anharmonic behaviour. One can see that large
deviations from quantum behavior are caused by zero-point energy leakage, i.e. the fact
that due to weak anharmonic couplings energy flows from the fast normal modes, that are
thermostatted at high T � to account for the large zero-point energy, to slow normal modes
that are nearly classical65. This energy flow was not accounted for when designing T �(ω),
and so there will be a (significant) deviation between the desired quasi-harmonic quan-
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tum fluctuations and the actual fluctuations. This problem is common to semi-classical
methods to treat quantum dynamics68, and has been also recognized in other stochastic
approaches to obtain approximate quantum effects69, 70. Rather than trying to remedy this
problem by exploiting information on the anharmonic couplings – which would be an ad-
hoc, non-transferable solution, requiring in-depth knowledge of the system – one can con-
trol zero-point energy leakage by exploiting the tunability of the GLE thermostats, enforc-
ing a strong coupling across the whole frequency range so as to counterbalance effectively
the zero-point energy leakage. This approach improves significantly the performance of
the quantum thermostat when applied to anharmonic problems65, 71, and made it possible
to describe semi-quantitatively the role of NQEs in several real applications72, 73.

3.3 Combining Generalized Langevin Equations and PIMD

The approximations behind the quantum thermostat and related semi-classical methods are
basically uncontrolled, and very hard to gauge unless it is possible to perform a harmonic
analysis. Therefore, the quantum thermostat can be regarded as an inexpensive technique
to assess qualitatively the importance of NQEs, but it is not recommend if one wants to
infer quantitative conclusions. One could then imagine to combine colored-noise and path
integral molecular dynamics: the former is only exact in the harmonic limit, while the
latter converges systematically but often requires a large number of replicas and is therefore
computationally demanding.

The crux is designing a GLE thermostat that enforces exact quantum fluctuations in
the harmonic limit for any number of replicas, even in cases where PIMD alone would
be far from converged. Such a PI+GLE method inherits from the quantum thermostat the
property of being exact for harmonic problems, and naturally converge to (Boltzmann-
sampled) PIMD when the number of beads is large enough to have a converged result in
the absence of correlated noise.

In order to work out the properties of the GLE that would achieve this goal, one
can proceed in the same way as with the quantum thermostat, only considering that
now, in the presence of a harmonic potential of frequency ω, the ring-polymer nor-
mal mode frequencies will be changed from the free-particle value (11) and become

ωj =
�
ω2 + 4P 2 sin2 jπ/P . These are the frequencies that will be picked up by the

colored-noise dynamics. Introducing a frequency-dependent configurational temperature
T ∗(ω) =

�
q2
�
(ω)mω2/kB (momentum fluctuations are not important per se in a PIMD

framework), one gets the requirement for having quantum fluctuations of the beads to be

mω2

kBT

�
q2
�
=

mω2

PkBT

�

i

�
q2i
�
=

mω2

PkBT

�

j

�
q̃2j
�

=
1

P

�

j

T ∗ (ωj) /T

ω2
j /ω

2
=

�ω
2kBT

coth
�ω

2kBT
.

(17)

Since ωj depends on the physical frequency ω, Eq. (17) must be seen as a functional equa-
tion that defines the T ∗ (ω) curve. As shown in Ref.52, Eq. (17) can be conveniently written
as a function of the a-dimensional parameter x = β�ω/2, that expresses qualitatively how
much an oscillator deviates from a classical behavior, and can be solved numerically with
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Figure 4: The average value of the potential energy, the virial kinetic energy and the constant-volume heat ca-
pacity for a simulation of a flexible water model74 at T=298 K, plotted as a function of the number of beads.
The results obtained with conventional PIMD and PI+GLE are compared, and the value of V obtained with the
original quantum thermostat (QT) is also reported. (Adapted from Ref.52)

an iterative technique. As the number of path integral replicas is increased, the curve re-
mains constant up to a larger value of x, that corresponds to the fact that PI+GLE behaves
as conventional PIMD with Boltzmann sampling of the ring-polymer Hamiltonian for os-
cillators with larger and larger frequency. This implies that PI+GLE is bound to converge
to the exact quantum averages, just because in the large P limit it converges to PIMD.

Figure 4 shows the convergence with number of beads of potential and kinetic energy
for a quantum simulation of an empirical water model74 at room temperature, compar-
ing plain PIMD and PI+GLE. Colored noise accelerates dramatically the convergence of
observables to the quantum expectation values, and the possibility of converging results
systematically makes it possible to assess the error. A careful examination of Figure 4
shows that the mean kinetic energy �T � converges somewhat more slowly than �V �.

This is due to a specific shortcoming of PI+GLE, that becomes clear when one consid-
ers the expression for the centroid-virial kinetic energy estimator (7) in a one-dimensional
harmonic potential, that reads:

�T � = 1

2β
+

1

2P
ω2

P−1�

i=0

�
q2i
�
− 1

2
ω2

�
q̄2
�

= �V �+ 1

2β
− 1

2
ω2

�
q̄2
�
.

(18)
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Figure 5: The quantum contribution to the potential energy, and to the kinetic energy of hydrogen and oxygen
atoms as computed by the centroid virial estimator for a simulation of a flexible water model74 at T=298 K,
plotted as a function of the number of beads. Note the much accelerated convergence rate of the kinetic energy
when using PIGLET compared to PI+GLE. (Adapted from Ref.53)

The quantum mechanical expectation values for potential and kinetic energy of a harmonic
oscillator of frequency ω read

�V � = �T � = �ω
4

coth
β�ω
2

, (19)

so it is not sufficient that the fluctuations of q are consistent with �V � = �ω
4 coth β�ω

2 , but it
is also necessary to make sure that the fluctuations of the centroid satisfy 1

2ω
2
�
q̄2
�
= 1

2β .
This observation is a sign of a general limitation of the PI+GLE scheme, that enforces only
quantum fluctuations for the “marginal” distribution of the beads, which is sufficient to
guarantee accelerated convergence of any observable that depends only on q but does not
necessarily help converging more complex estimators that also depend on the correlations
between different beads.

Fortunately, it is relatively easy to extend the PI+GLE idea to include further corre-
lations. When PIMD is propagated in the normal modes representation as discussed in
Section 2 one can apply different thermostats to the various normal modes, and tune them
separately to warrant faster convergence of multiple estimators simultaneously. This idea
is used for instance in the PIGLET scheme53 to converge simultaneously structural ob-
servables and the centroid-virial kinetic energy estimator, obtaining a further improvement
over the PI+GLE scheme, as shown in Figure 5.
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4 Conclusive Remarks

Atomistic simulations of ever-increasing accuracy are making it possible to model
molecules and materials with predictive accuracy. One of the fundamental physical effects
that is still ignored in many simulations involves the deviations from classical behavior of
the atomic nuclei, that is very pronounced, at room temperature and below, for the lightest
elements – hydrogen in particular. The importance of nuclear quantum effects has been
demonstrated very clearly, for instance, by pioneering path integral molecular dynamics
studies of water and charged water defects75, 10, 76, 77, and it is essential when it comes to
compare with experiments – such as deep inelastic neutron scattering2, 78, 14, 72, 79, or iso-
tope fractionation measurements80–83, 17, 84 – for which the quantum mechanical nature of
nuclei is the very origin of the observed signal. Nevertheless in many modern simula-
tions of water and H-containing compounds nuclear quantum effects are still ignored. This
is at times justified: in neat water quantum effects along different molecular directions
cancel out almost perfectly74, 85, 86, and so overall NQEs on many thermodynamic quanti-
ties are small. However, simulations that aim at probing the dissociation of covalent O-H
bonds87, 88, studying self-ionization or re-combination of hydronium and hydroxide89, and
more in general quantitatively characterizing the behavior of hydrogen bonds in unusual
environments (high pressure, confinement, interfaces, solvation shells of ions, . . . ) should
always at the very least assess whether NQEs do or do not play a major role. In many cases,
the only excuse for not including NQEs is the large computational overhead involved in
path integral simulations, combined with the technical complexity of the method and the
fact that few up-to-date, well-maintained implementations exist in mainstream atomistic
simulation packages. In this lecture we have provided a concise but complete introduc-
tion to the theory and the practical implementation of atomistic modeling of the quantum
nature of atomic nuclei by path integral molecular dynamics. When one looks beyond its
cumbersome notation, PIMD is just classical dynamics in an extended phase space, which
means that all the tricks that are used in classical simulations (including e.g. thermostats
for sampling the canonical ensemble9, or barostats for simulations at constant-pressure90)
can be applied transparently. What is more, simulating NQEs does not need to involve an
increase of several orders of magnitude in computational effort. High-order factorizations
of the quantum partition function lead to accelerated convergence in some circumstances,
and correlated-noise thermostats give an accurate estimate of NQEs in water at room tem-
perature with as little as six path integral beads.

The implementation burden that has been traditionally associated with path integral
simulations is also being reduced by the introduction of modularly designed packages that
deal with the PIMD aspects of the simulation while delegating to external codes the evalu-
ation of energy and forces. An example of this concept is given by i-PI88, an open-sourced

Python package that is already interfaced with the development versions of CP2K91, 92,
LAMMPS93 and FHI-AIMS94. When one also considers that the evaluation of energy
and forces over multiple PI replicas involves a trivial layer of concurrency, that is ideally
adapted to massively parallel high-performance computing, one can conclude that time is
ripe for making the modeling of nuclear quantum effects in hydrogen-containing liquids
and solids routine.

dhttp://epfl-cosmo.github.io/gle4md/index.html?page=ipi
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87. Michele Ceriotti, Jérôme Cuny, Michele Parrinello, and David E Manolopoulos, Nu-
clear quantum effects and hydrogen bond fluctuations in water., Proc. Natl. Acad.
Sci. USA, 110, 15591–6, 2013.

88. Michele Ceriotti, Joshua More, and David E. Manolopoulos, i-PI: A Python interface
for ab initio path integral molecular dynamics simulations, Comput. Phys. Commun.,
185, 1019–1026, 2014.

89. Ali Hassanali, Meher K Prakash, Hagai Eshet, and Michele Parrinello, On the recom-
bination of hydronium and hydroxide ions in water., Proc. Natl. Acad. Sci. USA,
108, 20410–5, 2011.

22



90. Glenn J Martyna, Adam Hughes, and Mark E Tuckerman, Molecular dynamics algo-
rithms for path integrals at constant pressure, J. Chem. Phys., 110, 3275, 1999.

91. “CP2K”, http://www.cp2k.org.
92. Joost VandeVondele, Matthias Krack, Fawzi Mohamed, Michele Parrinello, Thomas

Chassaing, and Jürg Hutter, Quickstep: Fast and accurate density functional calcula-
tions using a mixed Gaussian and plane waves approach, Comput. Phys. Commun.,
167, 103–128, 2005.

93. Steve Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J.
Comput. Phys., 117, 1–19, 1995.

94. Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren,
Karsten Reuter, and Matthias Scheffler, Ab initio molecular simulations with numeric
atom-centered orbitals, Comput. Phys. Commun., 180, 2175–2196, 2009.

23




