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Multiscale Phenomena in Chemistry
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• Chemists need to think about the relation between microscopic 
properties and macroscale observables

• Usually this implies combining a model for a molecule- or atom-
level property with a model for its impact at the macroscale

• E.g. water molecules form strong hydrogen bonds à boiling 
point of water much higher than that of H2S

• There are many intermediate length scales: supramolecular 
constructs (e.g. proteins/micelles), cells, etc

• Also there are many time scales: molecular periodic motions 
(electrons, vibrations) à millions of years



Multiscale Models of Different Types
• The most accurate theoretical models in chemistry tend to be 

applicable only for small molecules (and short timescales)
• This is because electronic structure theory methods typically 

scale steeply in terms of computational effort: N3 or worse
• Size of phase space (number of conformers, timescale for 

reaching equilibrium in simulations) grows very steeply with N
• Modelling is of necessity always in one sense multi-scale: 

quantum chemistry is used to predict molecular level properties, 
and a separate theory (e.g. statistical mechanics) is used to 
predict or rationalize macroscale observables

• In a fully-fledged multiscale model, a computer program is used 
to carry out integrated modelling of multiple scales



An Aside: Molecular Mechanics Force-Fields
In molecular mechanics, the potential energy of the system for a given 
arrangement of nuclei is obtained as a ‘mechanical’ expression based on the 
energy required to distort bond lengths & angles, distort dihedrals, and allow 
non-bonded atoms to interact via. Coulomb’s Law + Lennard-Jones terms:

θi is an angle, φi a dihedral angle, and kij, ki, rij0, θi
0, Ai and ni are parameters.

E.g. a dimer of water molecules: the sum includes 4 
O–H stretching terms and 2 H–O–H bending terms



A Commonly Used Multiscale Model: QM/MM

5

The most fundamental description of molecular systems is based 
on nuclei and electrons (quantum mechanics, QM). In QM/MM, this 
level is used for a small “QM” region, with the bulk of the system 
described as atoms with bonds (molecular mechanics, MM)

MM is efficient à QM/MM applicable with thousands
of atoms, only treating the detailed
electronic structure of 10-200 atoms in
the QM region.

There are also QM/QM methods, with 
an accurate QM method for the core, and
a faster one for the environment.

MMQM



Hybrid Methods: Hamiltonian
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The overall energy includes
an energy term for both subsystems
and a coupling term:

BA

V = V A
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+ V B
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High-level energy of A Low-level energy of B

This also yields (in principle) an 
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Hybrid Methods: Diversity
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Within the above framework, there
are very many variations on how to
treat A and B, and the coupling between
them.

One frequently use distinction is between additive methods and 
subtractive ones.  Another distinction is between QM/QM and 
QM/MM schemes. For QM/MM methods, there can be mechanical 
embedding or electronic embedding. Finally the treatment of 
boundary region bonds can be quite diverse.
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Additive/Substractive Methods
In additive methods, the energy of A is 
computed at one level of theory, that
of B at another, and the coupling between
them at a third level.
Much diversity: nature of the coupling term (and to some extent 
the treatment of the environment B) can vary a lot
Subtractive methods treat the whole system at the lower level of 
theory, and correct this at the
high level for the active region:
This can also be viewed as a high level calculation on the model, to 
which is added a corrective environment term:
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ONIOM (NB: original form)
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One of the most commonly used subtractive methods is ONIOM: 
“Our own N-layered Integrated molecular Orbital and molecular 
Mechanics” method.

ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations 
and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + 
H2 Oxidative Addition
M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber and K. Morokuma
J. Phys. Chem. 1996, 100, 19357-19363.

ONIOM is potentially n-layered, hence the acronym: like an onion, 
there can be many successive layers



ONIOM: Gradients
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The gradient (and higher derivatives) of the ONIOM energy can 
be straightforwardly computed from the gradients of the different 
methods
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ONIOM: Application
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J. Phys. Chem. 1996, 100, 19357-19363.

transition state has been predicted theoretically,11 while for
asymmetric reactants, the transition states are also asymmetric
with the two forming bonds often differing distinctly in their
lengths.12,13 It has been shown that high levels of electron
correlation are required to obtain activation energies quantita-
tively in agreement with experimental values.13 Owing to strong
electronic and correlation effects, the Hartree-Fock method
badly overestimates these activation energies, and MP2 results
are often far too low. Our interest in using the ONIOM scheme
for this type of reaction comes from the difficulty in obtaining
good agreement with experimental results at modest levels of
electron correlation and the possible quantitative evaluation of
the activation energy for larger systems where steric effects are
important.
In this section, we will apply the ONIOM3 method, as well

as IMOMM and IMOMO methods, to three Diels-Alder
reactions: acrolein + isoprene (2-methyl-1,3-butadiene), ac-
rolein + 2-tert-butyl-1,3-butadiene, and ethylene + 1,4-di-tert-
butyl-1,3-butadiene. For the first two reactions, the results are
compared with experimental results and for the third with
benchmark calculations. Geometry optimizations will be per-
formed at a variety of combinations of levels in ONIOM3,
IMOMO, and IMOMM as well as in pure B3LYP and HF.
Higher level single point energies will also be determined. The
integrated methods should allow us to more easily separate
electronic and steric effects and to achieve high accuracy at a
fraction of the cost.
A. Geometry Optimization of Acrolein + Isoprene Sys-

tem. For acrolein + isoprene and acrolein + 2-tert-butyl-1,3-
butadiene reactions, we have divided our real system into three
layers as shown in Figure 2. The small model (SModel),
ethylene + butadiene, with six non-H atoms is to describe the
electron reorganization during the reaction and is treated at the
highest level of approximation. The intermediate model (IMo-
del), acrolein+ butadiene, with eight non-H atoms is to describe
the electronic effects on the electron reorganization and is treated
at a medium level, and the full real system including the
substituent (methyl or tert-butyl) at the butadiene 2-position is
to describe mainly the steric effects and is treated at the lowest
level.
In these reactions, four products and corresponding transition

states are possible with the carbonyl group at the endo or exo
position with respect to the diene and with the alkyl substituent
on the diene closer to or further from the carbonyl group.13,14

We examined the four transition states in the Diels-Alder [4
+ 2] addition of acrolein to isoprene with the B3LYP method.
It was determined that the structure with the lowest energy has
the endo carbonyl and the isoprene methyl group away from
the carbonyl group. In the following calculations, we considered
only this regio- and stereospecific transition state.
To test the reliability of the ONIOM scheme for the

optimization of geometries, we compared the B3LYP/6-31G
geometry (which is considered as our benchmark geometry) to
the ONIOM (B3LYP/6-31G:HF/6-31G:MM3) geometries as
shown in Figure 2. Additional IMOMM (B3LYP/6-31G:MM3:
MM3) results are also presented here for comparison.
The benchmark B3LYP/6-31G geometry is very asymmetric

with the two forming C-C bonds being 2.587 Å (adjacent to
the aldehyde group) and 2.049 Å (next to the methyl group). In
the ethylene + butadiene case at the same level of theory, these
values are 2.265 Å for both sides. The reason for this strong
asymmetry clearly is the electronic effects of the aldehyde group.
The effects of the methyl group are not significant to the
geometry of this transition state. As a matter of fact, the four
possible transition states for this reaction all exhibit nearly the
same geometry with these two distances being 2.56 ( 0.03 Å
on the side of the aldehyde and 2.06 ( 0.01 Å on the opposite
side, regardless of the position of the methyl group. The
B3LYP/6-31G//B3LYP/6-31G barrier from trans-1,3-butadiene,
19.8 kcal/mol, compares well with the experimental value of
18.7( 0.8 kcal/mol,15 giving credibility to our benchmark result.
The ONIOM3(B3LYP:HF:MM3) optimized structure in

Figure 2 looks quite reasonable as compared to the pure MO
one. A single point B3LYP/6-31G energy at this ONIOM
optimized geometry is only 1.3 kcal/mol higher than that at the
benchmark-optimized structure. Since optimized reactants are
also higher by the same value, the B3LYP/6-31G activation
energy obtained at the ONIOM3 optimized geometry is exactly
the same (19.8 kcal/mol) as that at the benchmark-optimized
geometry. The present results show that the ONIOM 3(B3LYP:
HF:MM3) is capable of properly handling the steric effect of
the “nonactive” part and the electronic effect of the “semiactive”
carbonyl group.
For comparison, the geometry optimization at the cheapest

IMOMM (B3LYP:MM3:MM3) method appears to almost
completely miss the strong asymmetry of the transition state,
leading to a nearly symmetric transition state with the forming
C-C distances of 2.282 and 2.239 Å vs the benchmark values
of 2.587 and 2.049 Å, respectively. The potential energy surface
near the transition state is rather flat, and the energy of this
IMOMM optimized structure is 3.3 kcal/mol higher than the
benchmark, leading to a B3LYP/6-31G//IMOMM barrier of 21.8
kcal/mol or 2 kcal/mol higher than the benchmark. This
IMOMM scheme fails to account for the electronic effects of
the carbonyl group, especially at the transition state.
B. Single Point Energy Calculations for Acrolein +

Isoprene Diels-Alder Reaction. As mentioned above, the
energy barriers in Diels-Alder reactions are difficult to evaluate
quantitatively for any system involving more than six non-H
atoms, since very high correlation levels, such as CCSD(T),
are required, and this is very computer time intensive. However,
using the IMOMO scheme,3,4 one can mimic very high levels
of calculation by treating only a small model very accurately
and assuming the reliability of a modest correlation level, such
as MP2, in describing the real r model difference. In this
section, we will perform and compare the results of single point
energy calculations with many different ONIOM integration

Figure 2. Small model, intermediate model, and real system for the
Diels-Alder reactions between acrolein and 2-alkyl-1,3-butadiene. The
optimized transition state bond distances (in Å) for the forming bonds
are shown for the reaction of acrolein with isoprene and 2-tert-butyl-
1,3-butadiene (to the right of /) at the nonintegrated (B3LYP:B3LYP:
B3LYP) level in bold, those at the ONIOM3(B3LYP:HF:MM3) in
normal, and those at the IMOMM(B3LYP:MM3:MM3) level in italic.
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schemes for the activation energy of the acrolein + isoprene
reaction, all at the ONIOM3(B3LYP:HF:MM3) optimized
geometries.
As shown in Table 1, compared with the B3LYP/6-31G(d)

benchmark barrier height of 19.2 kcal/mol, the pure HF value
is more than two times too large. So is the pure MM3 value,
if we dare to consider that MM3 can handle the early transition
state assuming the maximum MM conjugation discussed above.
A two-layered B3LYP:MM3:MM3 approach results in an
activation energy of 21.9 kcal/mol, which is a drastic improve-
ment over the pure HF method, accounting for the importance
of electron correlation effects in describing the reacting region
of the system but still too large by 2.7 kcal/mol relative to the
full B3LYP benchmark. Four schemes, B3LYP:HF:MM3,
B3LYP:HF:HF, B3LYP:B3LYP:MM3, and B3LYP:B3LYP:HF,
all give barrier heights to within 1.4 kcal/mol of the benchmark
value. This indicates clearly that at least the HF level is required
to describe the electronic effect of the carbonyl group and the
MM3 force field method is enough to describe the effect of the
methyl substituent. The differences in the activation energy
among these four schemes and the benchmark show that an error
of 0.8 kcal/mol is introduced by going from HF to MM3 for
the low level and an error of 0.5 kcal/mol by going from B3LYP
to HF for the medium level. The error introduced when the
medium level goes from HF to MM3 is much larger, 4 kcal/
mol, and is not acceptable. Considering the computational effort
required and the accuracy achieved, one can easily recognize,
especially for much larger real systems than those studied here
in this test, that the ONIOM3(B3LYP:HF:MM3) accomplishes
a nearly quantitative agreement with the B3LYP benchmark,
with a very small additional cost over that for the medium level
calculation for the intermediate model.
As mentioned in the Introduction, the pure MP2 calculation

gives a barrier too low by 6 kcal/mol, as also seen in Table 1.
The integration of various levels of ab initioMOmethods allows
reliable evaluation of the activation barrier. The highest level
one may practically use, the two-layered CCSD(T):MP2:MP2
scheme, gives the activation energy within the error limit of
the experiment. The three-layered integrated MO method,
CCSD(T):MP2:HF, and the ONIOM3 (CCSD(T):MP2:MM3)
introduce a deviation of 0.3 and 0.6 kcal/mol, respectively, but
are still within a chemical accuracy from the best CCSD(T):
MP2:MP2 method. Again as expected, the IMOMM scheme
CCSD(T):MM3:MM3 is a total failure because of the missing

electronic effect for the carbonyl group. As to the computational
effort, if ONIOM3(CCSD(T):MP2:MM3) took 19 h of worksta-
tion time, CCSD(T):CCSD(T):MP2 would have taken 3 days
and the pure CCSD(T) about 40 days even for this modest 12
non-H atom system. For larger systems, the time difference
would be much larger.
C. Acrolein + 2-tert-Butyl-1,3-butadiene System. Using

an MM method for the low level in the ONIOM3 scheme, one
can perform geometry optimization and energy calculation at
virtually no additional cost for any large “nonactive” third layer.
To examine the effect of increased steric repulsion in and by
the third layer substituents, we have replaced the 2-methyl of
isoprene by 2-tert-butyl and tested the ONIOM schemes for
the Diels-Alder reaction between acrolein and 2-tert-butyl-1,3-
butadiene. As shown in Figure 2, the transition state here is
slightly less asymmetric than that for 2-methyl. The MM3 used
as the medium level is again totally inadequate.
By use of ONIOM3 geometries, single point calculations were

carried out for the activation energy at various integration levels,
as shown in Table 1. The performance of various schemes is
similar to that for the acrolein/isoprene system. One requires
CCSD(T) or B3LYP as the high level, MP2 or HF as the
intermediate level, and MM3 as acceptable for the low level in
the present dividing scheme.
The difference in the barrier heights between the 2-tert-butyl

and 2-methyl systems at the best CCSD(T):MP2:MP2 level is
2.7 kcal/mol. In all other acceptable levels of calculation, one
finds that this difference is reproduced within (0.5 kcal/mol.
Though there is no experimental value of activation energy for
the acrolein/2-tert-butyl-1,3-butadiene reaction, activation ener-
gies for these two dienes reacting with a different olefin, maleic
anhydride, are known to be 12.2 and 6.5 kcal/mol for the
2-methyl and 2-tert-butyl, respectively. Our prediction for the
reactions of acrolein is consistent with this experiment.16
Why is the barrier for the 2-tert-butyl system lower than for

the 2-methyl system? It should be noted at first that the cis-
isomer is more stable than the trans-isomer for the reactant,
2-tert-butyl-1,3-butadiene, and is used as the reference for the
activation energy. For 2-methyl-1,3-butadiene the trans-isomer
is more stable and is used as the reference, since the barrier for
trans f cis isomerization, 7.3 kcal/mol, is smaller than the
reaction barrier. Since the difference can be described by the
MM3 method, it must be steric in origin. If one compares the
activation barrier from the cis-isomer where the steric energy
is expected to be smaller, the activation barrier is 16.2 kcal/
mol (at CCSD(T):MP2:MP2 level) for 2-methyl-1,3-butadiene
and 16.9 kcal/mol for 2-tert-butyl-1,3-butadiene. This is to say
that the steric energy at the transition state relative to the cis-
reactant is only 0.7 kcal/mol larger for 2-tert-butyl-1,3-butadiene
than for 2-methyl-1,3-butadiene and is not much different. Thus,
the reason the barrier is lower for 2-tert-butyl-1,3-butadiene is
that the reaction for this system is initiated from the intrinsically
less stable cis-isomer, since the trans-isomer of the reactant has
a large steric energy of 4.8 kcal/mol and is not the most stable
isomer of the two anymore.
D. Ethylene + s-Trans trans,trans-1,4-Di-tert-butyl-1,3-

butadiene System. As a final example of Diels-Alder systems,
the reaction of ethylene with s-trans trans,trans-1,4-di-tert-butyl-
1,3-butadiene was compared with benchmark predictions at the
MP4(SDQ) level. Geometry optimizations were performed at
the B3LYP/6-31G level. We partitioned this system into a small
model of ethylene + butadiene, an intermediate model of
ethylene+ 2,4-hexadiene (s-trans trans,trans-1,4-di-methyl-1,3-
butadiene), and the real system. Table 2 gives the activation
energies for various ONIOM schemes with MP4(SDQ) always

TABLE 1: Activation Barrier (in kcal/mol) for the
Diels-Alder Reaction of Acrolein + Isoprene (2-Methyl) and
2-tert-Butyl-1,3-butadiene (2-tert-Butyl) Calculated with
Various ONIOM Schemesa,b

high:med:low 2-methyl 2-tert-butyl
B3LYP:B3LYP:B3LYP 19.2 16.4
B3LYP:B3LYP:HF 19.1 17.1
B3LYP:B3LYP:MM3 18.3 15.4
B3LYP:HF:HF 18.6 16.6
B3LYP:HF:MM3 17.8 15.0
B3LYP:MM3:MM3 21.9 18.6
HF:HF:HF 41.1 39.7
MM3:MM3:MM3 42.1 39.9
CCSD(T):MP2:MP2 19.6 16.9
CCSD(T):MP2:HF 19.9 18.9
CCSD(T):MP2:MM3 19.0 17.2
CCSD(T):MM3:MM3 24.7 22.6
MP2:MP2:MP2 12.7 10.1
a Acrolein + trans-dienes were assumed as the reactants. For 2-tert-

butyl-1,3-butadiene, the s-cis-isomer is actually more stable than the
s-trans-isomer by 1.4 kcal/mol at the CCSD(T):MP2 level. b The
geometries optimized at the ONIOM3 (B3LYP:HF:MM3) level are
used. The 6-31G(d) basis set is used in all MO calculations.

19360 J. Phys. Chem., Vol. 100, No. 50, 1996 Svensson et al.
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• ONIOM is typically aimed at
organometallic cases:

J. Phys. Chem. 1996, 100, 19357-19363.

MM3 result is 1.1 kcal/mol better than the two-layered B3LYP:
MM3:MM3; the electronic effect of the alkyl group is consid-
ered to contribute to this improvement.
For the insertion product, the steric repulsion between P(t-

Bu)3 ligands is much larger than in the transition state. The
use of the HF method as the low level clearly underestimates
the steric repulsion by several kcal/mol. The MM3 method as
the low level overestimates the steric repulsion and gives the
product about 3.5 kcal/mol too low.
It is noted that the relative computational costs for the most

cost effective two-layered B3LPY:MM3:MM3 method (without
consideration of the alkyl electronic effect) and the three-layered
B3LYP:HF:MM3 method (with the alkyl electronic effect
included) are 80 and 24 times, respectively, smaller than that
for the pure B3LYP calculation. The last calculation itself is
usually considered to be very cost effective but would take 1
day on a workstation for the energy only; with the ONIOM or
IMOMM scheme, one can perform nearly as reliable a calcula-
tion within 1 h or less.
As mentioned above, the correlation effect is very important

for the energetics for the oxidative addition. Therefore, to
calculate a reliable value for the activation barrier and the energy
of formation, one has to adopt the highest level of electron
correlation using such a method as CCST(T), which would be
prohibitive for the present 83 atom H2 + Pt(P(t-Bu)3)2 reaction
even on the fastest computers. We have performed an
ONIOM3(CCSD(T)/TZP:MP2/DZP:MM3) calculation on a
workstation, which we expect to predict the energetics of
reaction within a few kcal/mol. The predicted activation barrier
is 14.2 kcal/mol, which is lower than those for pure B3LYP
and ONIOM3(B3LYP:HF:MM3) calculations by 4.1 and 3.3
kcal/mol, respectively. The major difference comes from the
difference between CCSD(T) and B3LYP results for the small
model system. The predicted endoergicity of reaction is 4.1
kcal/mol, which is 6.4 and 2.0 kcal/mol smaller than the pure
B3LYP and ONIOM3(B3LYP:HF:MM3) results. Since CCSD-
(T) correlation energy with finite basis sets is usually an
underestimate, the barrier and the endoergicity could be a few

kcal/mol smaller. This single point ONIOM3(CCSD(T):MP2:
MM3) calculation costs only 40% of the pure B3LYP calcula-
tion.

V. Conclusions

ONIOM is a multilayered approach integrating various levels
of MO and MM methods in optimizing transition state and
equilibrium geometries and in performing single point energy
calculations. Its three-layer version ONIOM3 divides a system
into an active, a semiactive, and a nonactive part and considers
a small model, an intermediate model, and the real system. The
small model would be typically treated with a very high level
of correlation such as CCSD(T), the intermediate model with a
modest accuracy MO level such as MP2 and HF, and the real
system with low accuracy and inexpensive method such as MM
force fields. The motivation behind ONIOM is the cost
effectiveness, with the high-level method the most important
part and handled very accurately, and at the same time the
electronic effects of the semiactive and the steric and electro-
static effects of the nonactive part would taken into account at
a very small cost.
In the example of the Diels-Alder reaction of acrolein +

substituted butadiene it has been shown that the two-layered
IMOMM method using ethylene + butadiene fails because the
electronic effect of the carbonyl group is not taken into account.
On the other hand, one would not like to spend a large amount
of computer time to include the steric effects of bulky substit-
uents. Inserting a third layer at the modest MP2 or HF level
into the IMOMM approach gives a better description of the
electronic effects and can reproduce the results of a very high-
level calculation with an error of a few kcal/mol.
With this method, it would become possible to make

predictions of the activation energy or the bond dissociation
energy of a very large system within a chemical accuracy of a
few kcal/mol. Using the ONIOM3(CCSD(T):MP2:MM3)
method, we have predicted the activation barrier and the energy
of reaction for the 83 atom H2 + Pt(P(t-Bu)3)2. The costs of
the ONIOM3(B3LPY:HF:MM3) and the ONIOM3(CCSD(T):
MP2:MM3) calculations for this system are about 4% and 40%,
respectively, of the pure B3LYP calculation.
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ONIOM: Link Atoms
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• The energy for the sub-system A is not well defined when 
there is a covalent bond crossing the boundary. Instead, in 
such cases, A is augmented by an appropriate number of 
link atoms (typically H atoms).

J. Phys. Chem. 1996, 100, 19357-19363.

Here an H atom is added
to convert CH2OH into CH3OH

High-level region



ONIOM: Link Atoms and Gradients
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How do gradients work?

L C

@V

@X
=

@V A

high

@X
+ (

@V AB

low

@X
+

�@V A

low

@X
)

Feliu Maseras and Keiji Morokuma, J. Comp. 
Chem. 1995, 16, 1170-1179

Vhigh implicitly depends on the coordinates XC of 
atom ‘replaced’ by link atom L, as XL itself depends 
on XC (e.g. L is positioned along the same bond axis)
so that:

=)
@V A

high

@XC
=

@V A
high

@XL
⇥ @XL

@XC

XL �XQ = ↵⇥ {XC �XQ}



ONIOM: Mechanical Embedding
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When the low level in ONIOM is a forcefield method, the only 
impact the environment has on the subsystem is to distort it 
according to the coupling terms implicit in the correction term:

Especially where the forcefield contains
no point charges (ball and spring model
typical for hydrocarbons), this is a
purely “mechanical” effect.

V = V A

high

+ (V AB

low

� V A

low

)



QM/MM and Electronic Embedding
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For some systems, electrostatic interactions between the QM and 
MM regions can be quite strong – and the MM environment may be 
expected to polarize the QM region somewhat. For these systems, 
it is desirable to allow the QM wavefunction to relax with respect 
to the MM point charges. This leads to typical QM/MM electronic 
embedding methods.

V = V A
QM + V B

MM + V A-B
QM-MM

r
q

qq

q

q

q

q

q

q

q

q

q



Electronic Embedding in Detail
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In practice the energy expression is rather:

r
q

qq

q

q

q

q

q

q

q

q

q

V = V AB
QM’ + V AB

MM’

V AB
QM’ is the QM energy of A in the presence of the point charges

(n electrons, N nuclei,
NMM MM point charges)

V AB
MM’ is more straightforward:

it contains the MM energy
of MM atoms + MM-like
interactions between MM and QM atoms

Ĥelec =
�1

2

nX

i=1
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i=1

NX

A=1

�ZA

riA
+

nX

i=1

nX

j>i

1
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+

nX

i=1
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Electronic Polarization
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Point charges indeed lead to similar polarization compared to all-
QM calculations:

Analysis of polarization in QM/MM modelling of biologically relevant hydrogen bonds, Senthilkumar, 
Mujika, Ranaghan, Manby,  Mulholland and Harvey, J. Roy. Soc. Interface, 2008, 5, S207 – S216



nX

i=1

NMMX

K=1

�qK
riK

7!
nX

i=1

NMMX

K=1

(�qK ⇥ f(riK))

Charge Leakage
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Regions of high electron density in the QM region could in 
principle ‘leak out’ onto positive point charges due to lack of Pauli 
repulsion by these charges. Not a big problem for modest-sized 
Gaussian basis sets, but significant with plane waves.

Solution: replace 1/r term with a
shielded interaction.

See e.g.  A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical–
molecular-mechanical calculations, P. K. Biswas and V. Gogonea, J. Chem. Phys. 2005, 123, 164114.



Covalent bonds and the QM-MM boundary
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In QM/MM calculations, covalent bonds between the QM and MM 
boundary can be treated in several different ways:
• Link atoms, as in mechanical embedding

Note that the electrostatic treatment of MM atoms near the MM boundary 
can be varied, and this can have a big effect on results

• Pseudo-atoms: instead of an H atom to replace the bonded MM 
atom, use some kind of 1-electron atom with a pseudopotential 
designed to yield the correct bond length and electronic 
structure. (See discussion in Xiao and Zhang, J. Chem. Phys. 2007, 127, 124102)

• Frozen orbitals: constrain one hybrid atomic orbital of the QM 
atom to have exactly the same shape it has in a reference 
compound, with two electrons – behaves a bit like a lone pair 
(see e.g. Murphy, Philipp and Friesner, J. Comp. Chem. 2000, 21, 1442.)



QM/MM Gradients
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There are four types of gradient elements in QM/MM with 
electronic embedding:

@VQM

@XQM

@VQM

@XMM

@VMM

@XQM

@VMM

@XMM

Like standard QM gradient
except for modified w.f.

Not routinely computed by QM
codes; but for SCF methods,
just equal to –qK × EQM

Standard MM-like terms, for
interactions (e.g. vdW) with the
QM atoms

Standard MM



Exploring QM/MM Potential Energy Surfaces
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• Large systems place high demands on the Hamiltonian
• QM/MM as well as (near-)linear scaling methods can now 

routinely cope with (very) large systems
• Nowadays, a larger challenge of big systems is the complexity of 

their potential energy surfaces
• Can be explored using geometry optimization and reaction path 

methods
• Or by simulation with QM/MM
• Free energies from Umbrella Sampling/Metadynamics and other 

related approaches
• Combining MM and QM/MM or QMlow/MM and QMhigh/MM



QM/MM Geometry Optimization: Microiterations
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Time-consuming for large systems (N atoms). Even efficient algo-
rithms tend to take ~N steps until acceptable convergence.
Even if each energy and gradient evaluation for the whole QM/MM 
system is cheap (roughly the cost of the QM energy + gradient for 
the QM region), this makes optimization expensive.
Hence microiterations: carry out many cycles of optimization of MM 
atom positions for each calculation of QM energy/gradient. Possible 
because QM and MM degrees of freedom are almost uncoupled:
@VMM

@XMM

Does not depend on
the QM system

Quite small; depends only weakly on
the QM wavefunction – can be appro-
ximated by electrostatics.

@VQM

@XMM

See e.g.  A Mixed Quantum Mechanics/Molecular Mechanics (QM/MM) Method for Large-Scale Modeling of 
Chemistry in Protein Environments, Murphy, Philipp and Friesner, J. Comp. Chem. 2000, 21, 1442.



Energy Minimization Reaches Local Minima
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• Starting from a given structure,
one reaches a local minimum 
(typically the ‘closest’ one)

• A system with N atoms typically
has a potential energy surface with ~exp(αN) local minima – a 
large number!!

• There are also large numbers of saddle points
• One typically cannot find the global minimum, or the lowest 

energy saddlepoint – unlike for systems with ~10s of atoms
• This is not a difficulty limited to QM/MM – it is rather a 

property of large systems (MM, semiempirical, large QM)

CA CB
CC

CD



Characterizing Minima
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• For molecular systems, optimization is typically followed by 
calculating frequencies.

• These require the Hessian, i.e. the terms:

@V 2
QM

@Xi@Xj

@V 2
MM

@Xi@Xj
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2
MM

@xi@Xj
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2
MM

@xi@xj
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2
QM
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2
QM
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Full and partial Hessian
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• The full Hessian may be unavailable, or too large to store or 
diagonalize (e.g. 10,000 atoms => 30,000 x 30,000)

• Also, typically in QM/MM, some atoms may be frozen during 
optimization => typically one does not have a minimum

• Gradient norm not arbitrarily close to zero, so ‘frequencies’ for 
rotational modes may not be that close to zero.

• It can be useful to diagonalize a block sub-Hessian (see Efficient 
Calculation of QM/MM Frequencies with the Mobile Block Hessian, Ghysels 
et al., JCTC 2011, 7, 496-514.)

• Provided that eigenvectors for vibrational modes of interest (e.g. 
the reaction coordinate) are well within the block of atoms for 
which the Hessian is generated, then should be OK.



Reaction path study
• In molecular systems, a typical app-

roach is to locate relevant minima
for reactants, intermediates,
products, then TSs separating them

• This can be done also with QM/MM: algorithms for TS searching 
can be used more or less as such for QM/MM systems (using 
e.g. a partial block Hessian to guide the search)

• Two difficulties: many coordinates,
and hard to guarantee that the 
located minimum and TS are
connected

• The variance in energies of local minima / TSs
typically exceeds the target relative energy.

TSA
TSB TSC TSD

CA CB
CC

CD



Reaction paths: Adiabatic mapping
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• In order to obtain meaningful rel-
ative energies along e.g. a reaction
path, one can use techniques such
as adiabatic mapping

• Key coordinate (here ‘q2’) chosen
• Minima found for set of values of

this coordinate q2,i (enforced e.g. by
adding harmonic term k(q2-q2,i)2.

• This method works well when the
reaction path remains highly parallel to q2 along the whole 
reaction – but in practice reaction path curvature is a major issue



Nudged Elastic Bands
Improved tangent estimate in the nudged elas-
tic band method for finding minimum energy
paths and saddle points, Henkelmann and 
Jónsson, J. Chem. Phys. 2000, 113, 9978-9985

For each image, one follows a modified
gradient, the sum of a harmonic spring
force in the direction tangent to reac-
tion path, and the true gradient orthogonal to the tangent. This 
tangent direction is given by:

minima had dropped and the spacing between them in-
creased enough to satisfy the stability condition, Eq. !6".
Then the images at the minima were slowly pulled into place
by the spring force. In this way, chains with up to #80
images were able to !slowly" converge. For more images, the
minimization would not converge and some images were
always left in a jumble at the minima.

In order to further test the stability condition, the restor-
ing force perpendicular to the path was doubled by setting
Ay!2. The stability condition predicts that a band with twice
the number of images, 24, will remain stable. Calculations
showed that the band becomes unstable at 21 images. The
good agreement between the simple prediction of Eq. !6" and
these simulations suggest that this is the correct origin of the
kinks. The modified NEB method with the new tangent, pre-
sented in the next section, converges well for both small and
large numbers of images.

IV. THE NEW IMPLEMENTATION OF NEB

By using a different definition of the local tangent at
image i, the kinks can be eliminated. Instead of using both
the adjacent images, i"1 and i#1, only the image with
higher energy and the image i are used in the estimate. The
new tangent, which replaces Eq. !2", is

!i!! !i
" if Vi"1$Vi$Vi#1

!i
# if Vi"1%Vi%Vi#1

, !8"

where

!i
"!Ri"1#Ri , and !i

#!Ri#Ri#1 , !9"

and Vi is the energy of image i, V(Ri). If both of the adja-
cent images are either lower in energy, or both are higher in
energy than image i, the tangent is taken to be a weighted
average of the vectors to the two neighboring images. The
weight is determined from the energy. The weighted average
only plays a role at extrema along the MEP and it serves to
smoothly switch between the two possible tangents !i

" and
!i

# . Otherwise, there is an abrupt change in the tangent as
one image becomes higher in energy than another and this
can lead to convergence problems. If image i is at a mini-
mum Vi"1$Vi%Vi#1 or at a maximum Vi"1%Vi$Vi#1 ,
the tangent estimate becomes

!i!! !i
"$Vi

max"!i
#$Vi

min if Vi"1$Vi#1

!i
"$Vi

min"!i
#$Vi

max if Vi"1%Vi#1
, !10"

where

$Vi
max!max! "Vi"1#Vi", "Vi#1#Vi""

and !11"

$Vi
min!min! "Vi"1#Vi", "Vi#1#Vi"".

Finally, the tangent vector needs to be normalized. With this
modified tangent, the elastic band is well behaved and con-
verges rigorously to the MEP if sufficient number of images
are included in the band.

Another small change from the original implementation
of the NEB is to evaluate the spring force as

Fi
s" #!k! "Ri"1#Ri"#"Ri#Ri#1""!̂i !12"

instead of Eq. !5". This ensures equal spacing of the images
!when the same spring constant, k, is used for the springs"
even in regions of high curvature where the angle between
Ri#Ri#1 and Ri"1#Ri is large.

When this modified NEB method is applied to the sys-
tem of Fig. 1 the band is well behaved as shown in Fig. 4.
The energy and force of the NEB images is shown in Fig. 5
along with the exact MEP obtained by moving along the
gradient from the saddle point. The thin line though the
points is an interpolation which involves both the energy and
the force along the elastic band. The details of the interpola-
tion procedure is discussed in the Appendix.

The motivation for this modified tangent came from a
stable method for finding the MEP from a given saddle point.
A good way to do this is to displace the system by some
increment from the saddle point and then minimize the en-
ergy while keeping the distance between the system and the
saddle point configuration fixed. This gives one more point
along the MEP, say M 1 . Then, the system is displaced again
by some increment and minimized keeping the distance to
the point M 1 fixed, etc. The important fact is that the MEP
can be found by following force lines down the potential
from the saddle point, but never up from a minimum. If a
force line is followed up from a minimum, it will most likely
not go close to the saddle point. This motivated the choice
for the local tangent to be determined by the higher energy
neighboring image in the NEB method.

A. Exchange diffusion process in Si crystal
A particularly severe problem with kinks had been no-

ticed in calculations of self diffusion in a Si crystal. For
example, one possible mechanism is the exchange of two
atoms on adjacent lattice sites.20 Both calculations using
DFT and empirical potentials could not converge the force
because of kinks. In calculations using 16 images and the
Tersoff potential,19 the force fluctuations remained at a level

FIG. 4. With the modified tangent, Eqs. !8"–!12", the nudged elastic band
method does not develop kinks and converges smoothly to the minimum
energy path !solid line".
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Lecture 1 Conclusions
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• The QM/MM method provides an attractive and efficient method 
to compute energies and wavefunctions for large systems

• Many tests suggest that QM/MM is reasonably accurate for 
describing many physical effects at the QM:MM boundary

• The gradient (and higher derivatives) of the energy are well defined, 
so geometry optimization is possible

• Not because we use a QM/MM hamiltonian, but simply due to the 
large size of the typical systems studied, geometry optimization has 
some new difficulties compared to smaller (‘QM’) systems

• Global vs. Local minima
• Connectivity of reaction paths: need adiabatic mapping or NEB


