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Structure of This Lecture

@ Lecture 1: Subsystems in Quantum Chemistry

@ subsystems in wave-function- and DFT- based
Quantum Chemistry
@ basics of subsystem density-functional theory

@ Lecture 2: “Exact” Density-Based Embedding

e potential reconstruction
e projection-based embedding
e external orthogonality and the Huzinaga equation

@ Lecture 3: Embedded Wavefunctions, Density Matrices, etc.

e wave function-in-DFT embedding: ground states
e wave function-in-DFT embedding: excited states
e density-matrix embedding theory and bootstrap embedding



|. Wavefunction-in-DFT Embedding



Background: sDFT vs. DFT/DFT

@ sDFT energy bifunctional for given vey::

Es " [pa, ps] = Tilpa] + Tilps] + Jlpa + ps] + Exclpa + ps] + Veu[pa + ps] + T [pa, ps]

@ note: KS energy functional for external potential vX, is

ext

ER k] = Tlpx] +Jlpx] + Exclpx] + Véulpx],

@ hence,

Exlasps] = E [pal + ES, [o5] + Jinloa, ps] + Viulpa] + Veuloa]

+Exe [pa ps] + T2 [pa, ps]
= E‘]’(?i [pA] + Evkgi [pB} + ESZE);T [pA7 pB},
where
OFDFT OFDFT
EQCE loasps] = ED M [oa+ ps] — EQTP [pa] — EG T [p]



Background: sDFT vs. DFT/DFT

@ this energy expression has the typical additive hybrid-method form,

hybrid method1 method2 method3
Ely = Ei + Ep +E Gp

for the special case method1 = method2
@ it can also be brought into the form

sDFT

Vext

loasps] = EXP[pa + pp] + (ESS [pa] = EQP [pa]) +

(ES los] ~ EF" (03]
typical for subtractive hybrid-method approaches
@ in the limit of exact functionals, all approaches give identical results

@ but: sDFT can in fact be used in “hybrid-method fashion”



Subsystem DFT as a DFT/DFT Hybrid Method

Typical examples:

@ orbital-dependent XC functionals for intra-subsystem contributions,
e.g.,

Ehybrid

_ pB3LYP |, pB3LYP , pBLYP
arp = Ea + Ep +E

A<—B

@ meta-GGA for active system (4), GGA description for environment (B),
and LDA for interaction, e.g.
hybri
EA}i)Bd _ E}PSS + EEBE 4 EII&P—%
Note:

For orbital-dependent functionals like (double) hybrids we have to use different approximations
for intra- and inter-subsystem contributions, since E4., 3 needs to be evaluated with OFDFT



Subsystem DFT as a DFT/DFT Hybrid Method

Free variables to be optimized?
@ for an energy functional
Epasps] = Egoa+ pp) + (B [oa] — EQTP [pa]) +
(S [p8) — EJ " [os))
it seems natural to optimize p4(r) and pp(r)
@ more often, subtractive hybrid methods have a form like this:

KSDFT/OFDFT OFDFT KS OFDFT
E\ g = Eiip +(Ey —E; )

= can be considered a functional of p(r) = pa(r) + ps(r) and p,

ESPTO oy, p] = BT[]+ (ERS [oa] — EX M pa))

@ in the latter case, pp(r) is obtained as the difference p(r) — pa(r)

= can be negative in certain regions, which can cause severe problems!



WF/DFT as a Hybrid Method

Hybrid WF/DFT energy expression:

BT < BT 4 B £,

(A+B)

or
WE/DFT _ /-DFT WF _ -DFT
Eulp =Eup +(Ex —EQ)

(embedding potential can be identified as functional derivative BE?;LB) /8pa(r) [for pp fixed])

N. Govind, Y.A. Wang, A.J.R. da Silva, E.A. Carter, Chem. Phys. Lett. 295 (1998), 129.

Questions:
@ separate calculations or self-consistent energy minimization?
@ if self-consistent: what are the free variables?

@ which approximations enter in practice?
(e.g. DFT part: KS or OF?)



WF/DFT: Energy Functional

@ WF/DFT energy functional:

EVFIPFT W, pg] = (WalHa|Wa)+ER™ [ps]+EQLL )[04, 05]

(pa: density obtained from W)

@ minimization w.r.t. ¥, yields (p; fixed):

~ nA ~
Hy Uy = (HA + ) Vanlea, PB](W) Wy =Es Va

i=1

where
Vamb 045 p8] (1) = V(1) + veou[p8] (1) + vic[p] (1) = vic[pal (1) + v[*[pa, 5] (r)

= same form as in sDFT!



WF/DFT: Energy Functional

@ WF/DFT energy functional:
EVFIPFT [, pg] = (WalHA|WA)+ER™ (5] +EQLL )[04, 5]

@ minimization w.r.t. pg yields (¥, fixed):

1
<_2v2 + veff[pB](r) + vfmb [pBa PA]) ¢l'3 = 655¢i3’

(density pp is obtained as 3~ | |, (r)|?)
@ full optimization: iterative freeze-and-thaw between WF and DFT part

= expensive!



WF/DFT in Practice

Simple Standard Recipie:

perform simple FDE or full sDFT optimization of p4(r) [and pg(r)]

store final embedding potential v/

covering system A

A, final
evaluate (x.|vin

(r) point-wise on integration grid

(r)|x.) numerically
add this to one-electron part of f,,,, in HF calculation on system A
ignore ps-dependence of v4 , in SCF

make sure to remove this contribution from one-electron part in energy
evaluation

get embedded orbitals and corresponding MO integrals

@ use those in correlated WF treatment on system A



“Exact” WF/DFT Embedding?

Background:

@ if DFT is good for densities, but not accurate enough for energies:
derive highly accurate density-based embedding potential and transfer
to WF part

@ typical target application: transition-metal complexes

o difficult electronic situation at metal center
o still: DFT accurate enough for ligand system

Embedding potential by reconstruction:
@ create “exact” embedding potential in sSDFT calculation

@ store final embedding potential v (r) point-wise on integration
grid covering system A

@ proceed as before

@ problem: convergence of reconstruction step bad for larger systems



“Exact” WF/DFT Embedding?

Embedding through projection:

I o 4 I o

determine projection operator P = > icp |®is) (@i from DFT calculation

(as discussed before)

again, this can be added to one-electron part in WF step
F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller Ill, J. Chem. Theory Comput. 8 (2012), 2564.

problem: accurate projector requires supermolecular basis
fewer occupied orbitals in WF step, but all virtual orbitals of (A + B)
problem for scaling behavior of correlated WF methods (eq., ccspm: 2., -,

another problem: DFT overdelocalization error may affect projector

can be solved by using HF for orbitals, DFT for energies of system B
R.C.R. Pennifold, S.J. Bennie, T.F. Miller lll, F.R. Manby, J. Chem. Phys. 146, 084113.



Basis Set Truncation in Projection-WF/DFT

Try to reduce no. of virtual orbitals:
@ define region of border atoms

@ divide system-B orbitals into {¢{sa} and {ghorder}

ip
(based on population on border atoms)

@ only include {¢?°™} in projector

@ truncate basis for WF step to include only AOs in system A and at
border atoms

= orthogonality with system B not fully enforced
T.A. Barnes, J.D. Goodpaster, F.R. Manby, T.F. Miller Ill, J. Chem. Phys. 139 (2013), 024103.

Alternative without “border atoms”:
@ truncate basis set based on population in system A

@ specifically: include only basis functions with Mulliken net populations
I = Dgasaa > 107

(D2, = density matrix of system A)

S.J. Bennie, M. Stella, T.F. Miller Ill, F.R. Manby, J. Chem. Phys. 143 (2015), 024105.



Basis Set Truncation in Projection-WF/DFT

Correction for neglected orbitals in projector:
") deflne denSlty pdlslant( ) — ZzEB d1stam| dlslant(r)|2
@ add density-based correction:

TS[P
p<r> p= pAJ,-pd" 6p(r) P=PA

(%)
(%)
o3
)

nad [P ’pdlstanl](r) _

(=7]

R.C.R. Pennifold, S.J. Bennie, T.F. Miller Ill, F.R. Manby, J. Chem. Phys. 146, 084113.



WF/DFT as a Special Kind of sDFT

Consider Multi-Configurational DFT:

@ el.—el.interaction is separated into long- and short-range parts using

i B erf(ry2) . erfc(ryz)
2 2 r2
@ short-range part is treated, e.g., by LDA

@ long-range part is treated through WF for interacting particles



WF/DFT as a Special Kind of sDFT
Relation to WF/DFT embedding:

@ can be considered as DFT method with representation of p, through a
multi-determinant wave function ta. wesolowski, Phys. Rev. A77 (2008), 012504,

@ energy functional:

EYFIPETOP pp] = (UNPIT + Vee[UNP) + VA [pa] + Tilps] + (o]
+Exc[ps) + Vaulosl + Vaulps] + Vilpal
+Jinc[pas pB] + T [pa, pp] + ER[pa, ps),

@ full minimization w.r.t. ¥¥® and pp will lead to true ground-state energy
(in the limit of exact functionals)

@ but: only if search space for U}P includes exact wave function

@ otherwise,

min <\IJE‘4D|T+ Vee|\pg/m> # T[pa] + Veelpa]

MD
\I/A —>PA

which needs to be corrected by an additional density functional



Perturbation-Theory Perspective on WF/DFT
@ if only changes in system A properties due to environment are of
interest, consider perturbation,

Na
HA — HA + Z emb
i=1
@ perturbation theory tells us

Ny

Z i}?mb(ri)

i=1

AED ~ <\ng>

\Ifff’)> :

@ connection to hybrid-method viewpoint (assume p; fixed):

na
EVF/PFT[G, pp] = (Wa|Hy + Z Veistat ()| Wa) + Exc[pa + pg| — Exc[pal

i=1
+Ts|pa + pg] — Ts[pa] + const.

with const. = £55 [pg] + Vi, [o5] — Exclps] — Ty[ps]
ext



Perturbation-Theory Perspective on WF/DFT

= if we want to write this as
EVFIPFTIG, pp] = (U4|Hy +Z A o (r)|[¥a) + const’
we also have to replace

Exclpa + pB] — Exclpal + Tslpa + ps] — Ts[pa)

by

/ V19 0. 5] (£)pa (F)d + / V0] (1), pilpa(K)dr,

which is an additional approximation!



Excitation Energies in WF/DFT

General expression for excitation energies:

WE/DFT
(14+2)e

WF/DFT

AE = E —E\ e

Case A: no differential polarization, p, unchanged
AE = (VW) + ESS[oo] + EQRET 166 o))
— (EVF198] + ESS[pa] + EQET (65, 2]
= V) + EXRE 5, o)

—E ] = EGy) o 2]



Excitation Energies in WF/DFT

Expression for pure electrostatic embedding:

AES = (EVT[w§] — EYTw])
FViue 2[05] = Ve 2[0F] + I1p5, 2] — i, p2],
= (EYT[w§] - EYT )

+<\m S s ()

nggtﬁnl ri)
. 2 (1
) = et + [ 2 ar

with




Excitation Energies in WF/DFT

Approximate expression based on “embedding operators”:

AEz(iggrox = EWF \Ile \IJ |Zvembl rl |\Ile>

— EVF[US] — (08| Zvemb,l (r)|of),
i
= E\T[0{] - EYT 0]
+Viue 2[,0?] — Viue 2[/)?7] + J[pia 102] - J[p‘i,, PZ]

+ / VL ool () [5(7) — p5(7)] dF
" / S () [05(7) — ()] dF



Excitation Energies in WF/DFT

True excitation energy expression for case A

AEW = EVFIwS] - EVFw]
+Vaue2[p1] = Vaue2[p}] + I ot p2] — J[pf, p2]
+ER 0, p2] — Ex[pf, o
+T8p5, o] — T2, o)

= approximation made with embedding operators:

[ Aok )+ 108, )} [650) — ()
B8, po) — Bt o) + T o] — T2 ]

similar to linearization approximation

M. Dulak, T.A. Wesolowski, J. Chem. Theory Comput. 2 (2006), 1538.



Differential Polarization in WF/DFT

Case B: p; polarized in state-specific manner

AE® = EVF[wib] — EVFw)
E;(S [ppol] - E%(S [p2] + Vnuc 1[ ] - nuc 1[,02]
Vhue 2[/)11)0] e] — Viue Z[P‘ﬂ + J[Pp0] ‘5 PEOI] J[P] , 2]
ER o, o8] — Eof, o)
]

1, 1
Tnad [p[l)o 67 pgo ]

+ o+ o+ +

775, pa



Differential Polarization in WF/DFT

Use of embedding operators in state-specific embedding

AEz(lgp))rox _ EY\/F[\ijl)ole \IIpOle|ngr(ﬁbel (r;) ‘\Ilp°1e>
_EYVF[\I’?) - \Ilﬂzvemb,l (r:)[F)
i

= BT - BT[]
+Vnuc 2 [pfl)()l e] - Vnuc 2[/7‘?] + J[prl)()l e7 10301] J[p‘%’? p2]
1, 1 1, 1 lLe n 1
+/ LR, o8 7) 4 v, (| A (P

- / 98, 2] (7) + v [of, po)(7)] ()7

C. Daday, C. Kénig, O. Valsson, J. Neugebauer, C. Filippi, J. Chem. Theory Comput. 9 (2013), 2355.



Differential Polarization in WF/DFT

... implies the following error:

(already disregarding differential kinetic-energy and XC terms in £)'F)
KSr pol KS pol -
E2 [pz ] - E2 [PZ] + Vnuc,l [P2 ] - Vnuc,l [PZ] ~0

Error in Coulomb terms:

/ {VCoul[p2 + APZ/Z](7) + Vhue,1 (?) + Vnuc,Z(?)} Apz(?)d? ~0

with Ap, (¥) = ngl(?) — pa(7)
= Use correction:

SE®) . = XS - EKS[po) + / Vet (F) Apa(7)dF



Differential Polarization in WF/DFT

Improved excitations from state-specific embedding:

emb l

AE(B) ~ E}VF[\IJII)OI N \IJPOI e| Z pol,e |‘11p01 e>

VP8 — (0015 e 1)1 9)+ 2L

simple

Remaining error: (simiarto case A)

B 1, 1
SER), = ERIp, o) — BRI, o]
1, 1
TR 57 = T3 o, ol

1, 1 1, 1 Le /- 1=
= [ [ BN+ v, 0] A e

~ [ Dl () U 2 (] 7



ll. Density-Matrix
Embedding Theory



Decomposing Total-System States

Consider active system A and bath B:

@ states of combined system can be expanded as,

Wacn) = ZZCU|A )1Bj) ZIA (ZCU|B>

A
Mstates nslales

= > |A)B)  with [B) = cylB))
i j
@ |B;) are not necessarily orthogonal; use

A
Mstates

orlh Z Ciit ‘B such that < Ol‘th|Bor[h> _ 5”



Decomposing Total-System States

@ for simplicity, we write |by) := |By™) for these bath states,

= even if ng > nu, exact embedding of A is possible considering only ny4
bath states

@ but: constructing these states requires knowledge of full |¥,4.,5)

@ idea of DMET:

e construct {|b;)} from simple approximation |®) to |V, 5)

e use these bath states to embedd high-quality approx. for {|A;)}

e try to match one-particle density matrices between low- and
high-level approximations

G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.



DMET in Practice

(1) perform HF calculation on full system (A + B)
= yields N,.. occupied orbitals {¢;}
(2) perform orbital rotation among {¢;}; specifically:
e calculate
Sy =Y (6ilp) (pléy)
PEA

(overlap matrix of orbitals projected onto the L, "sites” |p) of fragment A)
e eigenvectors of S define a rotation matrix; there are No.. — L4
eigenvectors with zero eigenvalue
= environment orbitals {4} without overlap with A
= the remaining L, “entangled” orbitals {#"'} do have overlap with A

b)

(3) project {¢g"} onto environment “sites” = yields L, “bath orbitals”

{Ib)} = {Z |r><rl¢?m>}

reB

G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.



DMET in Practice

= the many-body wavefunction is expressed as a CAS-Cl wavefunction
with (half-filled) active space of {|p)} (L sites of fragment A) and {|b)}
(La bath orbitals)

(4) project total Hamiltonian A into active space, HA , = PHP, and find

e

high-accuracy approx. to HA ¥, = E, ¥, (e.g., FCI)
(5) adjust one-particle density matrix D to match that of U, as close as
possible on fragment A. Do that for all fragments and iterate.

Note: This adjustment minimizes

A=Y [h@lafa|®)—) Walafa,| Wa) |

A rs€A

by changing the Fock operator f — f + 3", jia with the correlation potentials
fia = 3 ,sea HAGLG, in the calculation of the mean-field wavefunction | )
(i.e., A is minimized w.r.t. all p2)

G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.



DMET in Practice

@ total DMET energy = sum of fragment energies,

E= ZEA = Z Z Dp.rhps + % Z dp.s‘fugpstu
A

A PEA,s DEA,stu
(one- and two-particle density matrices D and d here include contributions from the pure environment orbitals)

@ non-integer number of electrons per fragment; total number of
electrons is recovered

@ important conceptual question: Can the density matrix of the high-level
wave function be represented through the chosen low-level wave
function?

@ for HF-in-HF-embedding, the results are exact

G. Knizia, G.K.-L. Chan, J. Chem. Theory Comput. 9 (2013), 1428.



Bootstrap Embedding

@ concept similar to DMET, but different matching condition

@ use overlapping fragments

@ match one-particle density matrix of the edge of one fragment to the
center of a partially overlapping fragment

M. Welborn, T. Tsuchimochi, T. Van Voorhis, J. Chem. Phys. 145 (2016), 074102.
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