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Structure of This Lecture

@ Lecture 1: Subsystems in Quantum Chemistry

@ subsystems in wave-function- and DFT- based
Quantum Chemistry
@ basics of subsystem density-functional theory

@ Lecture 2: “Exact” Density-Based Embedding

e potential reconstruction
@ projection-based embedding
e external orthogonality and the Huzinaga equation

@ Lecture 3: Embedded Wavefunctions, Density Matrices, etc.

e wave function-in-DFT embedding: ground states
e wave function-in-DFT embedding: excited states
e density-matrix embedding theory and bootstrap embedding



|. Reconstructed Embedding
Potentials



Applicability of Approximate Subsystem DFT

combined carbonyl ligands:
subsystem 2

@ van der Waals complexes, hydrogen bonds: good results
K. Kiewisch, G. Eickerling, M. Reiher, JN, J. Chem. Phys. 128 (2008), 044114.

@ coordination bonds: borderline cases
S. Fux, K. Kiewisch, C.R. Jacob, JN, M. Reiher, Chem. Phys. Lett. 461 (2008), 353.

@ covalent bonds: qualitatively wrong with standard approximations
S. Fux, C.R. Jacob, JN, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101.

@ main problem: non-additive kinetic-energy potentials



Subsystem DFT for Donor—Acceptor Bonds
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@ example: ammonia borane, BHs—NH3, po(r) ~ paf%/QmP(r)

S. Fux, C.R. Jacob, J. Neugebauer, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101.



Subsystem DFT for Covalent Bonds
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@ example: ethane as “CH; —CH; ", pi(r) & pioy

S. Fux, C.R. Jacob, J. Neugebauer, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101.
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Covalent Bonds through Exact Embedding Potentials
Approximations for vnag break down for covalent bonds

system 1

system 2

@ What do we know about the exact v"4(r) ?

@ Can we reconstruct the exact embedding potential for
subsystems A, B that reproduces pio(r) = pa(r) + pp(r)?
@ “exact” here excludes

e errors introduced by finite basis sets

e errors introduced in the calculation of py (usually through E,.)

e numerical errors in the construction of the potential, e.g., due to
finite grid size



Functional Derivative of 70

@ problems arise due to

(here: system K = active system)

ST [{pr}]  — OTlp] = 0Tslpi]
opx(r)  Spx(r) z,:épx(ﬂ
with p(r) = 3=, pi(r)
@ first term:
5Ts [P] _ 6TS [p] 6p(r/) dl‘/
5px(r) op(r) " Spx(r)
_ 6Ty[p S — Pdr = T[]
= [ Sy o e =50

@ second term:




Functional Derivative of 70

= we need to calculate

0Tl 0Tlpe)  OTs[pk]

nad r) = = -
vi“lpk, protl (T) Spx (1) dpot(r)  dpk(r)

@ or, in other words, we need to find

6T [p]
op(r)

for two different densities (p = pior and p = pk)




Euler—Lagrange Equation: Kohn—Sham Formalism
@ Euler-Lagrange Equation:

_ OT[p
" So(r)

+ Veff [ptarget] (l’)
P= Prarget

= “Kinetic-energy potential:”

=K Vet [Prarget] (T)

Vt[pta:get] (l‘) = 5p(r)
P=Prarget

@ 4 is just a constant shift in the potential wil be ignored here)

= If we know the potential v*T[puee](r) that results in a set of orbitals
{#:"*"Y such that

Z |¢;arget(r)|2 = plarget(r),

then we also have access t0 v;[piarge) (T)

S. Liu, PW. Ayers, Phys. Rev. A70 (2004), 022501.



“Exact” Non-additive Kinetic Potentials

= we can obtain the exact v"* as

Vltmd (P4, prot] (¥) = Veff[PA](r) - Veff[Ptot] (r)+Au

(two subsystems assumed for simplicity; v‘t‘*‘d is given for subsystem A)

Two (to three) scenarios for vt [ pureed] (r):
1) puareet(r) has been obtained from Kohn—Sham-like equations

1a) just save veﬁ”[ptarge[](r) on a grid at the end of the SCF
1b) recalculate v [pue () from orbitals and orbital energies

(to be discussed)

2) pureet(r) has been obtained in a different way
= v [ preed] (1) NE€ds to be reconstructed



“Exact” Non-additive Kinetic Potentials

In “exact” embedding, usually one effective potential for v/ needs to be
reconstructed

@ case A:
approximations for p4 and pp are obtained from KS-like equations

= we know v*T[p,](r) and v*T[pg](r)
= we don’t know v, ] (r) for pt := pa + ps

@ case B:
a target for the embedded density p,4 is constructed from a KS density
ot and a predefined pp (e.g., from orbital localization)

= we know v¢T[p,] (r);
the potential v*"[p;](r) is actually not needed

= we don’t know veﬁ[pfrgel](r) for pfrget ‘= Prot — PA



Potential Reconstruction

Densities in search of Hamiltonians:
@ we need to find v¢T[p,](r) that yields p4
= “inverse Kohn—Sham problem”
= has been solved several times in the context of v, development:

e Wang and Parr prys. Rev. A47 (1993), R1591.

@ van Leeuwen and Baerends rrys. Rev. 449 (1994), 2421.
@ Zhao, Morrison and Parr prys. rev. 450 (1994), 2138,

@ Wu and Yang u. crem. phys. 118 (2003), 2498,



Wang—Parr Reconstruction

@ goal: reconstruct potential v, that yields a given p
@ KS-equation
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Y. Wang, R. Parr, Phys. Rev. A 47 (1993), R1591.



Wang—Parr Reconstruction

@ solve for vg

In practice:
@ start by guessing a ¥
@ solve KS equation, get orbitals ¢; and orbital energies ¢;
@ construct new v, from resulting orbitals; iterate until convergence

Y. Wang, R. Parr, Phys. Rev. A 47 (1993), R1591.



van Leeuwen—Baerends Reconstruction

@ KS-equation

cot) = [~ )] o

ziqu;‘( [—M Zo

w0t = o) [ ] ¢i<r>+gei¢z‘<r>¢ )
i = S o [T am +aswan)

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.
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van Leeuwen—Baerends Reconstruction

@ iterative scheme, iteration (k + 1),

0w = e [T + 406w

AT
o

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.



Zhao—Morrison—Parr Reconstruction

Idea:

@ define AW as density difference between current (iteration k)
and target density,

AR (E) = pt(r) — (1)

@ construct a density-difference self-repulsion potential,

. AWK (r)
vénzb(r) = _/ |l‘ — I‘" dr’

@ add this potential to the usual effective potential in order to
minimize the density difference

Zhao, Morrison, Parr, Phys. Rev. A 50 (1994), 2138.



Embedding Potentials from the Wu—-Yang Scheme

@ background: Kohn—Sham determinant has minimum kinetic energy
among all determinants integrating to p*&

= minimize
n

T, = Z<¢i| —V?/2|¢3)

i

subject to constraint

pr) = |gi(r)2 = peei(r)

i

@ use method of Lagrange multipliers = optimize

mmun=n+/wnwn—wwuwr

Wu and Yang, J. Chem. Phys. 118 (2003), 2498.



Embedding Potentials from the Wu—-Yang Scheme

@ practical solution: expand v in initial guess and correction,

= VO JF thgt

(g:(r) = auxiliary functions)

@ first and second derivatives of W, w.r.t. b, are known analytically, e.g.

ow, /5wx o)
b, ) sv(r) ob,

- / [p(F) — P (1) g, ()dr

@ then: Newton—Raphson optimization of expansion coefficients b,

Wu and Yang, J. Chem. Phys. 118 (2003), 2498.



King—Handy Approach for Kinetic-Energy Potential

@ can be used if v has not been stored for target density, but {¢;}, {e;}
are available

@ as shown before (LB reconstruction; real orbitals assumed):

1
Prot (1’)

2
wlpl®) 5 [0 0+ anef )

@ therefore, we get,

6TS [ptarget] target
Sy PO+
_ 1 VZ 5
a ptarget(r) Z |:_¢i(r)2¢i — €9 (I’):| +u

R.A. King and N.C. Handy, Phys. Chem. Chem. Phys. 2 (2000), 5049.



Kinetic-Energy Potential from a Single KS Orbital

@ note that
2
(-5 400 0 a0

@ from this it follows that

-3 (58

except at nodes of ¢;(r)

= in principle, v(r) can be reconstructed from a single KS orbital

M. Levy and P. Ayers, Phys. Rev. A79 (2009), 064504.



Two Strategies for Exact Embedding

Top-down strategy:
@ do supersystem KS calculation = py(r), vy[pior] (r) = vi[pod (T)

@ define suitable environment density pp(r), e.g., through localization

super loc U. super
E lk¢

and partitioning {¢?uper,]00} - {d)?uper,locA} U {¢?uper,locB}
= pa(r) = Xicp |67 ()2

© calculate target density as ;" (r) = pi(r) — p5(r)

@ reconstruct potential v,[p} "] (r) to get v,[p; =] (r)

@ use this to get v!(r) — vemp(r)

Q re-calculate pa(r) using this vem(r); compare to p'i™ (r)

S. Fux, C.R. Jacob, JN, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101.



Two Strategies for Exact Embedding

Bottom-up strategy:

@ do isolated system KS calculations = pf\k:‘)) (r), o= (r)

(k = iteration counter)
Q@ calculate o) = o (r) + pP(r)
© reconstruct potential vs[pt(ft)](r) — v,[pfft)](r)
© reconstruct (or re-use from KS-like steps) potentials
vilpl gl (1) = wilpl gl (0)
@ use these potentials to get vemy(r) for systems A and B
@ use embedding potentials to calculate new subsystem orbitals and
densities p“ ™ (r), p%Y (r)
@ go back to step 2 and iterate until convergence

J.D. Goodpaster, N. Ananth, F.R. Manby, T.F. Miller Ill, J. Chem. Phys. 133 (2010), 084103.



Il. Exact Embedding Through
Projection



74 for Orthogonal Subsystem Orbitals

@ assume two-partitioning (A + B); determine supersystem KS orbitals

@ define
na na+ng
par) =D [¢(m)F  and  pe(r) = Y |G = penv(r)
j=1 k=ns+1
@ Kkinetic energy:
Tl = Y (o™ -V2/2] )
i=1
na na+ng
= 2=Vl 3 (e -vR2ler)
j=1 k=na+1

= TA+ 78

= T =0, no non-additive kinetic-energy approximation needed!



74 for Orthogonal Subsystem Orbitals

even in case of orthogonal ¢{** and exact p,, ps, in general

na na+ng
R SEL SR SRC AR TS
Jj=1 k=ns+1
. A . _ 2 . . 2 . _ 2 )
& Wf%’lgm Z <¢1A ‘ v /2| ¢1A> - {¢$12p3 Z <¢13 ‘ v /2‘ ¢ZB>

i i

reason: not both subsets of {¢\*'} are, in general, ground-state of some
effective potential

for such v*8-representable pairs of densities (closed shell), we have
73 pa, pg] > 0.

T.A. Wesolowski, J. Phys. A: Math. Gen. 36 (2003), 10607.

but: subsets of {¢!*'} can be obtained from projected KS problem
without vrad



Externally Orthogonal Subsystem Orbitals

In sDFT, orbitals of different subsystems are not necessarily orthogonal:

(Dilpj) = 05, but (¢;]¢;,) canbe #0

How can we determine orthogonal embedded subsystem orbitals?
Three (related) strategies:

@ projection-based embedding
F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller Ill, J. Chem. Theory Comput. 8 (2012), 2564.

@ external orthogonality through extra Lagrangian multipliers
Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A118 (2014), 9182.

@ Huzinaga equation (transferred to KS-DFT)
S. Huzinaga and A.A. Cantu, J. Chem. Phys. 55 (1971), 5543.



Exact Embedding through Projection

Basic Idea:
@ 1st step: KS-DFT calculation on (A + B)
@ 2nd step: localization of KS orbitals = {¢?}, {45}
@ then: construct Fock operator for electrons in subsystem A,

A V2 — — 7 7 2
A= —— VA (F) + VB (F) + veoulpa + pl(F) + vie[pa + pB](F) + uP?

with projection operator P5,
PP =" 16887
i€eB

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller Ill, J. Chem. Theory Comput. 8 (2012), 2564.



Exact Embedding through Projection

o effective Kohn—Sham—Fock matrix:

P = o+ + (ael) + - 0ol DD ehicpilxo) (xolxe)

i€EB op
super
= +M§ S)\o'

(NP = hxy + Ixw + (XxIvxelXxw) = supermolecular KS-Fock-matrix element, S, = (xx |xo) = overlap

matrix element, DY | = 3=, g ¢ ¢, = density matrix element [system B only])
e effect of PP shifts orbital energies of ¢% to €8 + u
e for lim,_,.: eigenfunctions of f* are orthogonal to {4}
= no v"4(7¥) needed!
@ problem: numerically instable for large u

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller Ill, J. Chem. Theory Comput. 8 (2012), 2564.



Exact Embedding through Projection
Calculate limit . — oo by perturbation theory:
@ define unperturbed operator

fo=f+uP
and
fi = Jim P
@ consider perturbed operator

_ M _ lim?
fo = f+1—CP :>f1—gllg}f<
fo = fAuP+CP+CP+..)

= fo+n(CP+CP+..)

@ 1st order energy correction for limit ¢ — 1:  E; = >, (¢ |uP|o?)

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller lll, J. Chem. Theory Comput. 8 (2012), 2564.



Externally Orthogonal Subsystem Orbitals

Enforce external orthogonality through extra constraints

@ consider sDFT energy as functional of two orbital sets,
EFT = EOFT[{68} {4F)]
@ introduce orthonormality constraints through Lagrangian multipliers,

EPT 5 LT = BT NN N () — 05) — D XN il dis) — DA (Bl

I=A,B i€l i€A i€B
Jjel JEB JEA

@ optimization w.r.t. ¢ yields (for ¢? fixed),

(-5 +80I0) ot = ot + S aPette

JEB
@ multiply with (¢?|; make use of external orthogonality already,

Gl EPYY

Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A118 (2014), 9182.



Externally Orthogonal Subsystem Orbitals

@ from this it follows that,

Ity = €lof)y + > 1oP) (eFIF67)
JjEB
¢<1Z¢f><¢f)f“¢?> = (1= P) 5S¢ty = gt
jEB
J?/

@ note: /’ is not Hermitian
@ under external orthogonality: (1 — PB)|¢%) = |¢)
= (1= P°) 7% (1 PF) |gf) = e o7)
fu/

note: /' is Hermitian!

Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 118 (2014), 9182.



Huzinaga Equation

@ original derivation: in the context of Hartree—Fock
@ similar to the one by Khait and Hoffmann

@ differs only in the way the Fock operator in
(1= P2 7SIy = (755 = 7S fof) = €l

is made Hermitian
@ under external orthogonality: (—fXSPB)|¢) = |¢?)

= (7S = PSS SR o = o)

S. Huzinaga and A.A. Cantu, J. Chem. Phys. 55 (1971), 5543.



Non-Additive Kinetic-Energy Functionals/Potentials

Is external orthogonality required for SDFT to be exact?

Niot

Prot(r Z‘QSKS ZLZW | +Z‘¢ A(r) + pp(r).

iA:1 lB 1

J.P. Unsleber, JN, C.R. Jacob, Phys. Chem. Chem. Phys. 18 (2016), 21001.



Is External Orthogonality Required for exact SDFT?

@ following Khait and Hoffmann, we define

{d)liAB}i:l,mor = {¢g}iA:1,nA U {¢ll'f;}iB:1~,nB
and create a set of explicitly orthonormalized subsystem orbitals,

Mot

dm =3 (577)

=1

o), with Sy = (6P|
y

@ sum of subsystem densities:

Mot Mot

) + ps(r Z |07 = D () S ¢y (x)

ij=1



Is External Orthogonality Required for exact SDFT?

@ expand orthonormalized subsystem orbitals in KS orbitals
(Z)‘)rth Z U ¢KS
pi

@ this leads to

Mot

pa(r) + ps(r Z GO(E) Sy $4°(r) Wit Sy = UpSyUy
Pq=1 =1

@ requirement for SDFT to be exact:

Mot

par(r) = D 050 (x) Z Sy K5 (1) 055 (1) = pa(r) + py(r)

i,j=1 p.q=1



Is External Orthogonality Required for exact SDFT?

Mot

Z 51’1'@11‘(5(1') Z Spq O/lfs (r)

ij=I p,q=1
@ one might think that this requires
S,j:5,j fOI’ i,j=1,...,nmt

(and zero otherwise)

.. and, as a consequence, externally orthogonal subsystem orbitals



Is External Orthogonality Required for exact SDFT?

Mot

Z 51)‘@11‘(5 (I‘) Z Spq O,; (r)

ij=I p,q=1

@ one might think that this requires
S,j:5,j fOI’ i,jzl,...,f’ltot

(and zero otherwise)

.. and, as a consequence, externally orthogonal subsystem orbitals

@ this implies linearly independent orbital products {¢X5¢KS}, 1 o



Is External Orthogonality Required for exact SDFT?

Mot

Z 5’1011(8(1') Z ‘SI’(/ /1 ( )

ij=I p,q=1

@ one might think that this requires
S,j:5,j for l.,jzl,...,f’ltot
(and zero otherwise)
.. and, as a consequence, externally orthogonal subsystem orbitals
@ this implies linearly independent orbital products {¢y>¢5>}, 41,00

@ but: orbital products for complete basis in one-electron Hilbert space
are linearly dependent
A. Gorling, A. HeBelmann, M. Jones, M. Levy, J. Chem. Phys. 128 (2008), 104104.

@ even for incomplete basis sets, (near-)linear dependencies may occur



No Need for External Orthogonality in SDFT
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Cut plane through N—H- - - N; (a) SumFrag/ATZP, (b) SDFT/PW91k/ATZP, (c) SDFT/RecPot/ATZP, (d) SDFT/RecPot/ET-pVQZ

J.P. Unsleber, JN, C.R. Jacob, Phys. Chem. Chem. Phys. 18 (2016), 21001.



No Need for External Orthogonality in SDFT
Overlap matrix S of SDFT/RecPot/ET-pVQZ subsystem orbitals
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J.P. Unsleber, JN, C.R. Jacob, Phys. Chem. Chem. Phys. 18 (2016), 21001.
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