Quantum Chemical Embedding Methods - Lecture 2 -

Johannes Neugebauer

Workshop on Theoretical Chemistry, Mariapfarr, 20-23.02.2018

Structure of This Lecture

- Lecture 1: Subsystems in Quantum Chemistry
- subsystems in wave-function- and DFT- based Quantum Chemistry
- basics of subsystem density-functional theory
- Lecture 2: "Exact" Density-Based Embedding
- potential reconstruction
- projection-based embedding
- external orthogonality and the Huzinaga equation
- Lecture 3: Embedded Wavefunctions, Density Matrices, etc.
- wave function-in-DFT embedding: ground states
- wave function-in-DFT embedding: excited states
- density-matrix embedding theory and bootstrap embedding

I. Reconstructed Embedding Potentials

Applicability of Approximate Subsystem DFT

- van der Waals complexes, hydrogen bonds: good results
K. Kiewisch, G. Eickerling, M. Reiher, JN, J. Chem. Phys. 128 (2008), 044114.
- coordination bonds: borderline cases
S. Fux, K. Kiewisch, C.R. Jacob, JN, M. Reiher, Chem. Phys. Lett. 461 (2008), 353.
- covalent bonds: qualitatively wrong with standard approximations
S. Fux, C.R. Jacob, JN, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101.
- main problem: non-additive kinetic-energy potentials

Subsystem DFT for Donor-Acceptor Bonds

- example: ammonia borane, $\mathrm{BH}_{3}-\mathrm{NH}_{3}, \rho_{\text {tot }}(\mathbf{r}) \approx \rho_{\text {tot }}^{\mathrm{BP86} / \mathrm{QZ4P}}(\mathbf{r})$
S. Fux, C.R. Jacob, J. Neugebauer, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101.

Subsystem DFT for Covalent Bonds

- example: ethane as " $\mathrm{CH}_{3}^{+}-\mathrm{CH}_{3}^{-"}, \rho_{\mathrm{tot}}(\mathbf{r}) \approx \rho_{\mathrm{tot}}^{\mathrm{BP86} / \mathrm{QZ4P}}(\mathbf{r})$
S. Fux, C.R. Jacob, J. Neugebauer, L. Visscher, M. Reiher, J. Chem. Phys. 132 (2010), 164101.

Covalent Bonds through Exact Embedding Potentials

 Approximations for $v_{\text {tsnad }}$ break down for covalent bonds

- What do we know about the exact $v_{t}^{\mathrm{nad}}(\mathbf{r})$?
- Can we reconstruct the exact embedding potential for subsystems A, B that reproduces $\rho_{\text {tot }}(\mathbf{r})=\rho_{A}(\mathbf{r})+\rho_{B}(\mathbf{r})$?
- "exact" here excludes
- errors introduced by finite basis sets
- errors introduced in the calculation of $\rho_{\text {tot }}$ (usually through $E_{x c}$)
- numerical errors in the construction of the potential, e.g., due to finite grid size

Functional Derivative of T_{s}^{nad}

- problems arise due to
(here: system $K=$ active system)

$$
\frac{\delta T_{s}^{\mathrm{nad}}\left[\left\{\rho_{I}\right\}\right]}{\delta \rho_{K}(\mathbf{r})}=\frac{\delta T_{s}[\rho]}{\delta \rho_{K}(\mathbf{r})}-\sum_{I} \frac{\delta T_{s}\left[\rho_{I}\right]}{\delta \rho_{K}(\mathbf{r})}
$$

with $\rho(\mathbf{r})=\sum_{I} \rho_{I}(\mathbf{r})$

- first term:

$$
\begin{aligned}
\frac{\delta T_{s}[\rho]}{\delta \rho_{K}(\mathbf{r})} & =\int \frac{\delta T_{s}[\rho]}{\delta \rho\left(\mathbf{r}^{\prime}\right)} \cdot \frac{\delta \rho\left(\mathbf{r}^{\prime}\right)}{\delta \rho_{K}(\mathbf{r})} \mathrm{d} \mathbf{r}^{\prime} \\
& =\int \frac{\delta T_{s}[\rho]}{\delta \rho\left(\mathbf{r}^{\prime}\right)} \cdot \delta\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \mathrm{d} \mathbf{r}^{\prime}=\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}
\end{aligned}
$$

- second term:

$$
\sum_{I} \frac{\delta T_{s}\left[\rho_{I}\right]}{\delta \rho_{K}(\mathbf{r})}=\sum_{I} \frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})} \cdot \delta_{K I}=\frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})}
$$

Functional Derivative of T_{s}^{nad}

\Rightarrow we need to calculate

$$
v_{t}^{\mathrm{nad}}\left[\rho_{K}, \rho_{\mathrm{tot}}\right](\mathbf{r})=\frac{\delta T_{s}^{\mathrm{nad}}\left[\left\{\rho_{I}\right\}\right]}{\delta \rho_{K}(\mathbf{r})}=\frac{\delta T_{s}\left[\rho_{\mathrm{tot}}\right]}{\delta \rho_{\mathrm{tot}}(\mathbf{r})}-\frac{\delta T_{s}\left[\rho_{K}\right]}{\delta \rho_{K}(\mathbf{r})}
$$

- or, in other words, we need to find

$$
\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}
$$

for two different densities ($\rho=\rho_{\text {tot }}$ and $\rho=\rho_{K}$)

Euler-Lagrange Equation: Kohn-Sham Formalism

- Euler-Lagrange Equation:

$$
\mu=\left.\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{\text {target }}}+v^{\mathrm{eff}}\left[\rho_{\text {target }}\right](\mathbf{r})
$$

\Rightarrow "Kinetic-energy potential:"

$$
v_{t}\left[\rho_{\text {target }}\right](\mathbf{r})=\left.\frac{\delta T_{s}[\rho]}{\delta \rho(\mathbf{r})}\right|_{\rho=\rho_{\text {target }}}=\mu-v^{\text {eff }}\left[\rho_{\text {target }}\right](\mathbf{r})
$$

- μ is just a constant shift in the potential (will be ignored here)
\Rightarrow If we know the potential $v^{\text {eff }}\left[\rho_{\text {target }}\right](\mathbf{r})$ that results in a set of orbitals $\left\{\phi_{i}^{\text {target }}\right\}$ such that

$$
\sum_{i}\left|\phi_{i}^{\text {target }}(\mathbf{r})\right|^{2}=\rho_{\text {target }}(\mathbf{r}),
$$

then we also have access to $v_{t}\left[\rho_{\text {target }}\right](\mathbf{r})$

"Exact" Non-additive Kinetic Potentials

\Rightarrow we can obtain the exact v_{t}^{nad} as

$$
v_{t}^{\text {nad }}\left[\rho_{A}, \rho_{\mathrm{tot}}\right](\mathbf{r})=v^{\mathrm{eff}}\left[\rho_{A}\right](\mathbf{r})-v^{\text {eff }}\left[\rho_{\mathrm{tot}}\right](\mathbf{r})+\Delta \mu
$$

(two subsystems assumed for simplicity; $v_{t}^{\text {nad }}$ is given for subsystem A)
Two (to three) scenarios for $\nu^{\text {eff }}\left[\rho_{\text {target }}\right](\mathbf{r})$:

1) $\rho_{\text {target }}(\mathbf{r})$ has been obtained from Kohn-Sham-like equations

1a) just save $v^{\text {eff }}\left[\rho_{\text {target }}\right](\mathbf{r})$ on a grid at the end of the SCF
1b) recalculate $v^{\text {eff }}\left[\rho_{\text {target }}\right]$ (\mathbf{r}) from orbitals and orbital energies (to be discussed)
2) $\rho_{\text {target }}(\mathbf{r})$ has been obtained in a different way $\Rightarrow \nu^{\text {efff }}\left[\rho_{\text {target }}\right](\mathbf{r})$ needs to be reconstructed

"Exact" Non-additive Kinetic Potentials

In "exact" embedding, usually one effective potential for $v_{t}^{\text {nad }}$ needs to be reconstructed

- case A:
approximations for ρ_{A} and ρ_{B} are obtained from KS-like equations
\Rightarrow we know $v^{\text {eff }}\left[\rho_{A}\right](\mathbf{r})$ and $v^{\text {eff }}\left[\rho_{B}\right](\mathbf{r})$
\Rightarrow we don't know $v^{\text {eff }}\left[\rho_{\text {tot }}\right](\mathbf{r})$ for $\rho_{\text {tot }}:=\rho_{A}+\rho_{B}$
- case B:
a target for the embedded density ρ_{A} is constructed from a KS density $\rho_{\text {tot }}$ and a predefined ρ_{B} (e.g., from orbital localization)
\Rightarrow we know $v^{\text {eff }}\left[\rho_{\text {tot }}\right](\mathbf{r})$;
the potential $v^{\text {eff }}\left[\rho_{B}\right](\mathbf{r})$ is actually not needed
\Rightarrow we don't know $v^{\text {eff }}\left[\rho_{A}^{\text {target }}\right](\mathbf{r})$ for $\rho_{A}^{\text {target }}:=\rho_{\text {tot }}-\rho_{A}$

Potential Reconstruction

Densities in search of Hamiltonians:

- we need to find $v^{\text {eff }}\left[\rho_{A}\right](\mathbf{r})$ that yields ρ_{A}
\Rightarrow "inverse Kohn-Sham problem"
\Rightarrow has been solved several times in the context of v_{xc} development:
- Wang and Parr Phys. Rev. A 47 (1993), R1591.
- van Leeuwen and Baerends Phys. Rev. A 49 (1994), 2421.
- Zhao, Morrison and Parr Phys. Rev. A 50 (1994), 2138.
- Wu and Yang נ. Chem. Phys. 118 (2003), 2498.

Wang-Parr Reconstruction

- goal: reconstruct potential v_{s} that yields a given ρ
- KS-equation

$$
\begin{aligned}
\epsilon_{i} \phi_{i}(\mathbf{r}) & =\left[-\frac{\nabla^{2}}{2}+v_{s}(\mathbf{r})\right] \phi_{i}(\mathbf{r}) \\
\phi_{i}(\mathbf{r}) & =\frac{1}{\epsilon_{i}}\left[-\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+v_{s}(\mathbf{r}) \frac{1}{\epsilon_{i}} \phi_{i}(\mathbf{r}) \\
\sum_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) & =\sum_{i} \frac{1}{\epsilon_{i}} \phi_{i}^{*}(\mathbf{r})\left[-\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+v_{s}(\mathbf{r}) \sum_{i} \frac{1}{\epsilon_{i}} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) \\
\rho(\mathbf{r}) & =\sum_{i} \frac{1}{\epsilon_{i}} \phi_{i}^{*}(\mathbf{r})\left[-\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+v_{s}(\mathbf{r}) \sum_{i} \frac{1}{\epsilon_{i}} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})
\end{aligned}
$$

Wang-Parr Reconstruction

- solve for v_{s}

$$
v_{s}(\mathbf{r})=\frac{\rho(\mathbf{r})-\sum_{i} \frac{1}{\epsilon_{i}} \phi_{i}^{*}(\mathbf{r})\left[-\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})}{\sum_{i} \frac{1}{\epsilon_{i}} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})}
$$

In practice:

- start by guessing a v_{s}^{0}
- solve KS equation, get orbitals ϕ_{i} and orbital energies ϵ_{i}
- construct new v_{s} from resulting orbitals; iterate until convergence
Y. Wang, R. Parr, Phys. Rev. A 47 (1993), R1591.

van Leeuwen-Baerends Reconstruction

- KS-equation

$$
\begin{aligned}
\epsilon_{i} \phi_{i}(\mathbf{r}) & =\left[-\frac{\nabla^{2}}{2}+v_{s}(\mathbf{r})\right] \phi_{i}(\mathbf{r}) \\
\sum_{i} \epsilon_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) & =\sum_{i} \phi_{i}^{*}(\mathbf{r})\left[-\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+v_{s}(\mathbf{r}) \sum_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) \\
v_{s}(\mathbf{r}) \rho(\mathbf{r}) & =\sum_{i} \phi_{i}^{*}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+\sum_{i} \epsilon_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r}) \\
v_{s}(\mathbf{r}) & =\frac{1}{\rho(\mathbf{r})} \sum_{i}\left\{\phi_{i}^{*}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right] \phi_{i}(\mathbf{r})+\epsilon_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})\right\}
\end{aligned}
$$

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.

van Leeuwen-Baerends Reconstruction

- iterative scheme, iteration $(k+1)$,

$$
\begin{aligned}
v_{s}^{(k+1)}(\mathbf{r}) & =\frac{1}{\rho(\mathbf{r})} \sum_{i}\left\{\phi_{i}^{(k) *}(\mathbf{r})\left[\frac{\nabla^{2}}{2}\right] \phi_{i}^{(k)}(\mathbf{r})+\epsilon_{i}^{(k)} \phi_{i}^{(k) *}(\mathbf{r}) \phi_{i}^{(k)}(\mathbf{r})\right\} \\
& =\frac{\rho^{k}(\mathbf{r})}{\rho(\mathbf{r})} \cdot v_{s}^{(k)}
\end{aligned}
$$

R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49 (1994), 2421.

Zhao-Morrison-Parr Reconstruction

Idea:

- define $\Delta^{(k)}$ as density difference between current (iteration k) and target density,

$$
\Delta^{(k)}(\mathbf{r})=\rho^{\text {target }}(\mathbf{r})-\rho^{(k)}(\mathbf{r})
$$

- construct a density-difference self-repulsion potential,

$$
v_{\mathrm{emb}}^{(k)}(\mathbf{r})=-\int \frac{\Delta^{(k)}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d} \mathbf{r}^{\prime}
$$

- add this potential to the usual effective potential in order to minimize the density difference

Embedding Potentials from the Wu-Yang Scheme

- background: Kohn-Sham determinant has minimum kinetic energy among all determinants integrating to $\rho^{\text {target }}$
\Rightarrow minimize

$$
T_{s}=\sum_{i}^{n}\left\langle\phi_{i}\right|-\nabla^{2} / 2\left|\phi_{i}\right\rangle
$$

subject to constraint

$$
\rho(\mathbf{r}):=\sum_{i}\left|\phi_{i}(\mathbf{r})\right|^{2} \stackrel{!}{=} \rho^{\text {target }}(\mathbf{r})
$$

- use method of Lagrange multipliers \Rightarrow optimize

$$
W_{s}\left[v_{s}(\mathbf{r})\right]=T_{s}+\int v(\mathbf{r})\left[\rho(\mathbf{r})-\rho^{\operatorname{target}}(\mathbf{r})\right] \mathrm{d} \mathbf{r}
$$

Embedding Potentials from the Wu-Yang Scheme

- practical solution: expand v in initial guess and correction,

$$
v(\mathbf{r})=v_{0}(\mathbf{r})+\sum_{t} b_{t} g_{t}(\mathbf{r})
$$

$\left(g_{t}(\mathbf{r})=\right.$ auxiliary functions $)$

- first and second derivatives of W_{s} w.r.t. b_{t} are known analytically, e.g.

$$
\begin{aligned}
\frac{\partial W_{s}}{\partial b_{t}} & =\int \frac{\delta W_{s}}{\delta v(\mathbf{r})} \cdot \frac{\partial v(\mathbf{r})}{\partial b_{t}} \mathrm{~d} \mathbf{r} \\
& =\int\left[\rho(\mathbf{r})-\rho^{\text {target }}(\mathbf{r})\right] g_{t}(\mathbf{r}) \mathrm{d} \mathbf{r}
\end{aligned}
$$

- then: Newton-Raphson optimization of expansion coefficients b_{t}

King-Handy Approach for Kinetic-Energy Potential

- can be used if $v^{\text {eff }}$ has not been stored for target density, but $\left\{\phi_{i}\right\},\left\{\epsilon_{i}\right\}$ are available
- as shown before (LB reconstruction; real orbitals assumed):

$$
v_{s}\left[\rho_{\mathrm{tot}}\right](\mathbf{r})=\frac{1}{\rho_{\mathrm{tot}}(\mathbf{r})} \sum_{i}\left[\phi_{i_{A B}}(\mathbf{r}) \frac{\nabla^{2}}{2} \phi_{i_{A B}}+\epsilon_{i_{A B}} \phi_{i_{A B}}^{2}(\mathbf{r})\right]
$$

- therefore, we get,

$$
\begin{aligned}
\frac{\delta T_{s}\left[\rho^{\text {target }}\right]}{\delta \rho^{\text {target }}(\mathbf{r})} & =-v_{s}\left[\rho^{\text {target }}\right](\mathbf{r})+\mu \\
& =\frac{1}{\rho_{\text {target }}(\mathbf{r})} \sum_{i}\left[-\phi_{i}(\mathbf{r}) \frac{\nabla^{2}}{2} \phi_{i}-\epsilon_{i} \phi_{i}^{2}(\mathbf{r})\right]+\mu
\end{aligned}
$$

Kinetic-Energy Potential from a Single KS Orbital

- note that

$$
\left(-\frac{\nabla^{2}}{2}+v_{s}(\mathbf{r})\right) \phi_{i}(\mathbf{r})=\epsilon_{i} \phi_{i}(\mathbf{r})
$$

- from this it follows that

$$
v_{s}(\mathbf{r})=\frac{1}{2}\left(\frac{\nabla^{2} \phi_{i}(\mathbf{r})}{\phi_{i}(\mathbf{r})}\right)+\epsilon_{i}
$$

except at nodes of $\phi_{i}(\mathbf{r})$
\Rightarrow in principle, $v_{s}(\mathbf{r})$ can be reconstructed from a single KS orbital

Two Strategies for Exact Embedding

Top-down strategy:
(1) do supersystem KS calculation $\Rightarrow \rho_{\mathrm{tot}}(\mathbf{r}), v_{s}\left[\rho_{\text {tot }}\right](\mathbf{r}) \rightarrow v_{t}\left[\rho_{\text {tot }}\right](\mathbf{r})$
(2) define suitable environment density $\rho_{B}(\mathbf{r})$, e.g., through localization

$$
\phi_{i}^{\text {super,loc }}=\sum_{k}^{n} U_{i k} \phi_{k}^{\text {super }}
$$

and partitioning $\left\{\phi_{i}^{\text {super,loc }}\right\} \rightarrow\left\{\phi_{i}^{\text {super,locA }}\right\} \cup\left\{\phi_{i}^{\text {super,locB }}\right\}$
$\Rightarrow \rho_{B}(\mathbf{r})=\sum_{i \in B}\left|\phi_{i}^{\text {super,locB }}(\mathbf{r})\right|^{2}$
(3) calculate target density as $\rho_{A}^{\text {target }}(\mathbf{r})=\rho_{\text {tot }}(\mathbf{r})-\rho_{B}(\mathbf{r})$
(4) reconstruct potential $v_{s}\left[\rho_{A}^{\text {target }}\right](\mathbf{r})$ to get $v_{t}\left[\rho_{A}^{\text {target }}\right](\mathbf{r})$
(5) use this to get $v_{t}^{\text {nad }}(\mathbf{r}) \rightarrow v_{\text {emb }}(\mathbf{r})$
(6) re-calculate $\rho_{A}(\mathbf{r})$ using this $v_{\mathrm{emb}}(\mathbf{r})$; compare to $\rho_{A}^{\text {target }}(\mathbf{r})$

Two Strategies for Exact Embedding

Bottom-up strategy:
(1) do isolated system KS calculations $\Rightarrow \rho_{A}^{(k=0)}(\mathbf{r}), \rho_{B}^{(k=0)}(\mathbf{r})$
($k=$ iteration counter)
(2) calculate $\rho_{\mathrm{tot}}^{(k)}=\rho_{A}^{(k)}(\mathbf{r})+\rho_{B}^{(k)}(\mathbf{r})$
(3) reconstruct potential $v_{s}\left[\rho_{\mathrm{tot}}^{(k)}\right](\mathbf{r}) \rightarrow v_{t}\left[\rho_{\mathrm{tot}}^{(k)}\right](\mathbf{r})$
(4) reconstruct (or re-use from KS-like steps) potentials $v_{s}\left[\rho_{A / B}^{(k)}\right](\mathbf{r}) \rightarrow v_{t}\left[\rho_{A / B}^{(k)}\right](\mathbf{r})$
(5) use these potentials to get $v_{\text {emb }}(\mathbf{r})$ for systems A and B
(6) use embedding potentials to calculate new subsystem orbitals and densities $\rho_{A}^{(k+1)}(\mathbf{r}), \rho_{B}^{(k+1)}(\mathbf{r})$
(7) go back to step 2 and iterate until convergence
J.D. Goodpaster, N. Ananth, F.R. Manby, T.F. Miller III, J. Chem. Phys. 133 (2010), 084103.

II. Exact Embedding Through Projection

$T_{s}^{\text {nad }}$ for Orthogonal Subsystem Orbitals

- assume two-partitioning $(A+B)$; determine supersystem KS orbitals
- define

$$
\rho_{A}(\mathbf{r})=\sum_{j=1}^{n_{A}}\left|\phi_{j}^{\text {tot }}(\mathbf{r})\right|^{2} \quad \text { and } \quad \rho_{B}(\mathbf{r})=\sum_{k=n_{A}+1}^{n_{A}+n_{B}}\left|\phi_{k}^{\text {tot }}(\mathbf{r})\right|^{2}=\rho_{\mathrm{env}}(\mathbf{r})
$$

- kinetic energy:

$$
\begin{aligned}
T_{s}\left[\left\{\phi_{i}\right\}\right] & =\sum_{i=1}^{n}\left\langle\phi_{i}^{\mathrm{tot}}\right|-\nabla^{2} / 2\left|\phi_{i}^{\mathrm{tot}}\right\rangle \\
& =\sum_{j=1}^{n_{A}}\left\langle\phi_{j}^{\mathrm{tot}}\right|-\nabla^{2} / 2\left|\phi_{j}^{\mathrm{tot}}\right\rangle+\sum_{k=n_{A}+1}^{n_{A}+n_{B}}\left\langle\phi_{k}^{\mathrm{tot}}\right|-\nabla^{2} / 2\left|\phi_{k}^{\mathrm{tot}}\right\rangle \\
& =T_{s}^{A}+T_{s}^{B}
\end{aligned}
$$

$\Rightarrow T_{s}^{\mathrm{nad}}=0$, no non-additive kinetic-energy approximation needed!

$T_{s}^{\text {nad }}$ for Orthogonal Subsystem Orbitals

- even in case of orthogonal $\phi_{i}^{\text {tot }}$ and exact ρ_{A}, ρ_{B}, in general

$$
\begin{aligned}
& \sum_{j=1}^{n_{A}}\left\langle\phi_{j}^{\text {tot }}\right|-\nabla^{2} / 2\left|\phi_{j}^{\text {tot }}\right\rangle+\sum_{k=n_{A}+1}^{n_{A}+n_{B}}\left\langle\phi_{k}^{\text {tot }}\right|-\nabla^{2} / 2\left|\phi_{k}^{\text {tot }}\right\rangle \\
& \quad \geq \min _{\left\{\phi_{i_{A}}\right\} \rightarrow \rho_{A}} \sum_{i}^{n_{A}}\left\langle\phi_{i_{A}}\right|-\nabla^{2} / 2\left|\phi_{i_{A}}\right\rangle+\min _{\left\{\phi_{i_{B}}\right\} \rightarrow \rho_{B}} \sum_{i}^{n_{B}}\left\langle\phi_{i_{B}}\right|-\nabla^{2} / 2\left|\phi_{i_{B}}\right\rangle
\end{aligned}
$$

- reason: not both subsets of $\left\{\phi_{i}^{\text {tot }}\right\}$ are, in general, ground-state of some effective potential
- for such $v^{A B}$-representable pairs of densities (closed shell), we have

$$
T_{s}^{\mathrm{nad}}\left[\rho_{A}, \rho_{B}\right] \geq 0
$$

T.A. Wesolowski, J. Phys. A: Math. Gen. 36 (2003), 10607.

- but: subsets of $\left\{\phi_{i}^{\text {tot }}\right\}$ can be obtained from projected KS problem without $v_{t}^{\text {nad }}$

Externally Orthogonal Subsystem Orbitals

In sDFT, orbitals of different subsystems are not necessarily orthogonal:

$$
\left\langle\phi_{i_{l}} \mid \phi_{j_{l}}\right\rangle=\delta_{i j}, \quad \text { but } \quad\left\langle\phi_{i_{l}} \mid \phi_{j_{J}}\right\rangle \quad \text { can be } \quad \neq 0
$$

How can we determine orthogonal embedded subsystem orbitals?
Three (related) strategies:

- projection-based embedding
F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller III, J. Chem. Theory Comput. 8 (2012), 2564.
- external orthogonality through extra Lagrangian multipliers
Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 118 (2014), 9182.
- Huzinaga equation (transferred to KS-DFT)
S. Huzinaga and A.A. Cantu, J. Chem. Phys. 55 (1971), 5543.

Exact Embedding through Projection

Basic Idea:

- 1st step: KS-DFT calculation on $(A+B)$
- 2nd step: localization of KS orbitals $\Rightarrow\left\{\phi_{i}^{A}\right\},\left\{\phi_{i}^{B}\right\}$
- then: construct Fock operator for electrons in subsystem A,
$\hat{f}^{A}=-\frac{\nabla^{2}}{2}+v_{\text {nuc }}^{A}(\vec{r})+v_{\text {nuc }}^{B}(\vec{r})+v_{\operatorname{Coul}}\left[\rho_{A}+\rho_{B}\right](\vec{r})+v_{\mathrm{xc}}\left[\rho_{A}+\rho_{B}\right](\vec{r})+\mu \hat{P}^{B}$
with projection operator \hat{P}^{B},

$$
\hat{P}^{B}=\sum_{i \in B}\left|\phi_{i}^{B}\right\rangle\left\langle\phi_{i}^{B}\right|
$$

F.R. Manby, M. Stella, J.D. Goodpaster, T.F. Miller III, J. Chem. Theory Comput. 8 (2012), 2564.

Exact Embedding through Projection

- effective Kohn-Sham-Fock matrix:

$$
\begin{aligned}
f_{\lambda \nu} & =h_{\lambda \nu}+J_{\lambda \nu}+\left\langle\chi_{\lambda}\right| v_{\mathrm{xc}}\left|\chi_{\nu}\right\rangle+\mu \cdot\left\langle\chi_{\lambda}\right| \sum_{i \in B} \sum_{\sigma \rho} c_{\sigma i}^{*} c_{\rho i}\left|\chi_{\sigma}\right\rangle\left\langle\chi_{\rho} \mid \chi_{\nu}\right\rangle \\
& =f_{\lambda \nu}^{\text {super }}+\mu \sum_{\sigma \rho} S_{\lambda \sigma} D_{\sigma \rho}^{B} S_{\rho \nu}
\end{aligned}
$$

$$
\left.\int_{\lambda \nu}^{\text {super }}=h_{\lambda \nu}+J_{\lambda \nu}+\left\langle\chi_{\lambda}\right||v x c| \chi_{\nu}\right\rangle=\text { supermolecular KS-Fock-matrix element, } S_{\lambda \sigma}=\left\langle\chi_{\lambda} \mid \chi_{\sigma}\right\rangle=\text { overlap }
$$

$$
\text { matrix element, } D_{\sigma \rho}^{B}=\sum_{i \in B} c_{\sigma i}^{*} i_{\rho} \rho_{i}=\text { density matrix element [system } B \text { only]) }
$$

- effect of $\mu \hat{P}^{B}$: shifts orbital energies of ϕ_{i}^{B} to $\epsilon_{i}^{B}+\mu$
- for $\lim _{\mu \rightarrow \infty}$: eigenfunctions of \hat{f}^{A} are orthogonal to $\left\{\phi_{i}^{B}\right\}$
\Rightarrow no $v_{t}^{\mathrm{nad}}(\vec{r})$ needed!
- problem: numerically instable for large μ

Exact Embedding through Projection

Calculate limit $\mu \rightarrow \infty$ by perturbation theory:

- define unperturbed operator

$$
\hat{f}_{0}=\hat{f}+\mu \hat{P}
$$

and

$$
\hat{f}_{1}=\lim _{\nu \rightarrow \infty}(\hat{f}+\nu \hat{P})
$$

- consider perturbed operator

$$
\begin{aligned}
\hat{f}_{\zeta} & =\hat{f}+\frac{\mu}{1-\zeta} \hat{P} \quad \Rightarrow f_{1}=\lim _{\zeta \rightarrow 1} \hat{f}_{\zeta} \\
\hat{f}_{\zeta} & =\hat{f}+\mu\left(\hat{P}+\zeta \hat{P}+\zeta^{2} \hat{P}+\ldots\right) \\
& =\hat{f_{0}}+\mu\left(\zeta \hat{P}+\zeta^{2} \hat{P}+\ldots\right)
\end{aligned}
$$

- 1st order energy correction for limit $\zeta \rightarrow 1: \quad E_{1}=\sum_{i}\left\langle\phi_{i}^{A}\right| \mu \hat{P}\left|\phi_{i}^{A}\right\rangle$

Externally Orthogonal Subsystem Orbitals

Enforce external orthogonality through extra constraints

- consider sDFT energy as functional of two orbital sets,

$$
E^{\mathrm{SDFT}}=E^{\mathrm{SDFT}}\left[\left\{\phi_{i}^{A}\right\},\left\{\phi_{i}^{B}\right\}\right]
$$

- introduce orthonormality constraints through Lagrangian multipliers,

$$
E^{\mathrm{sFT}} \rightarrow L^{\mathrm{sDFT}}=E^{\mathrm{sFFT}}-\sum_{I=A, B} \sum_{\substack{i \in I \\ j \in I}} \lambda_{i j}^{I}\left(\left\langle\phi_{i l} \mid \phi_{j l}\right\rangle-\delta_{i j}\right)-\sum_{\substack{i \in A \\ j \in B}} \lambda_{i j}^{A B}\left\langle\phi_{i_{A}} \mid \phi_{j_{B}}\right\rangle-\sum_{\substack{i \in B \\ j \in A}} \lambda_{i j}^{B A}\left\langle\phi_{i_{B}} \mid \phi_{j_{A}}\right\rangle
$$

- optimization w.r.t. ϕ_{i}^{A} yields (for ϕ_{i}^{B} fixed),

$$
\left(-\frac{\nabla^{2}}{2}+v_{\mathrm{eff}}^{\mathrm{KS}}[\rho](\mathbf{r})\right) \phi_{i}^{A}(\mathbf{r})=\epsilon_{i}^{A} \phi_{i}^{A}(\mathbf{r})+\sum_{j \in B} \lambda_{i j}^{A B} \phi_{j}^{B}(\mathbf{r})
$$

- multiply with $\left\langle\phi_{k}^{B}\right|$; make use of external orthogonality already,

$$
\left\langle\phi_{k}^{B}\right| \hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle=\lambda_{i k}^{A B}
$$

Externally Orthogonal Subsystem Orbitals

- from this it follows that,

$$
\begin{aligned}
\hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle & =\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle+\sum_{j \in B}\left|\phi_{j}^{B}\right\rangle\left\langle\phi_{j}^{B}\right| \hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle \\
\Rightarrow \underbrace{\left(1-\sum_{j \in B}\left|\phi_{j}^{B}\right\rangle\left\langle\phi_{j}^{B}\right|\right) \hat{f}^{\mathrm{KS}}}\left|\phi_{i}^{A}\right\rangle & =\left(1-\hat{P}^{B}\right) \hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle=\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle
\end{aligned}
$$

- note: \hat{f}^{\prime} is not Hermitian
- under external orthogonality: $\left(1-\hat{P}^{B}\right)\left|\phi_{i}^{A}\right\rangle=\left|\phi_{i}^{A}\right\rangle$

$$
\Rightarrow \underbrace{\left(1-\hat{P}^{B}\right) \hat{f}^{\mathrm{KS}}\left(1-\hat{P}^{B}\right)}_{\hat{f}^{\prime \prime}}\left|\phi_{i}^{A}\right\rangle=\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle
$$

note: $\hat{f}^{\prime \prime}$ is Hermitian!
Y.G. Khait, M.R. Hoffmann, Ann. Rep. Comput. Chem. 8 (2012), 53-70;
P.K. Tamukong, Y.G. Khait, M.R. Hoffmann, J. Phys. Chem. A 118 (2014), 9182.

Huzinaga Equation

- original derivation: in the context of Hartree-Fock
- similar to the one by Khait and Hoffmann
- differs only in the way the Fock operator in

$$
\left(1-\hat{P}^{B}\right) \hat{f}^{\mathrm{KS}}\left|\phi_{i}^{A}\right\rangle=\left(\hat{f}^{\mathrm{KS}}-\hat{P}^{B} \hat{f}^{\mathrm{KS}}\right)\left|\phi_{i}^{A}\right\rangle=\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle
$$

is made Hermitian

- under external orthogonality: $\left(-\hat{f}^{\mathrm{KS}} \hat{P}^{B}\right)\left|\phi_{i}^{A}\right\rangle=\left|\phi_{i}^{A}\right\rangle$

$$
\Rightarrow\left(\hat{f}^{\mathrm{KS}}-\hat{P}^{B} \hat{f}^{\mathrm{KS}}-\hat{f}^{\mathrm{KS}} \hat{P}^{B}\right)\left|\phi_{i}^{A}\right\rangle=\epsilon_{i}^{A}\left|\phi_{i}^{A}\right\rangle
$$

Non-Additive Kinetic-Energy Functionals/Potentials

Is external orthogonality required for SDFT to be exact?

$$
\rho_{\mathrm{tot}}(\mathbf{r})=\sum_{i=1}^{n_{\mathrm{tot}}}\left|\phi_{i}^{\mathrm{KS}}(\mathbf{r})\right|^{2} \stackrel{?}{=} \sum_{i_{A}=1}^{n_{A}}\left|\phi_{i_{A}}^{A}(\mathbf{r})\right|^{2}+\sum_{i_{B}=1}^{n_{B}}\left|\phi_{i_{B}}^{B}(\mathbf{r})\right|^{2}=\rho_{A}(\mathbf{r})+\rho_{B}(\mathbf{r})
$$

J.P. Unsleber, JN, C.R. Jacob, Phys. Chem. Chem. Phys. 18 (2016), 21001.

Is External Orthogonality Required for exact SDFT?

- following Khait and Hoffmann, we define

$$
\left\{\phi_{i}^{A B}\right\}_{i=1, n_{\mathrm{tot}}}=\left\{\phi_{i_{A}}^{A}\right\}_{i_{A}=1, n_{A}} \cup\left\{\phi_{i_{B}}^{B}\right\}_{i_{B}=1, n_{B}}
$$

and create a set of explicitly orthonormalized subsystem orbitals,

$$
\tilde{\phi}_{i}^{\text {orth }}(\mathbf{r})=\sum_{j=1}^{n_{\text {tot }}}\left(\tilde{\boldsymbol{S}}^{-1 / 2}\right)_{i j} \phi_{j}^{A B}(\mathbf{r}), \quad \text { with } \quad \tilde{S}_{i j}=\left\langle\phi_{i}^{A B} \mid \phi_{j}^{A B}\right\rangle
$$

- sum of subsystem densities:

$$
\rho_{A}(\mathbf{r})+\rho_{B}(\mathbf{r})=\sum_{i=1}^{n_{\text {oot }}}\left|\phi_{i}^{A B}(\mathbf{r})\right|^{2}=\sum_{i, j=1}^{n_{\text {ot }}} \tilde{\phi}_{i}^{\text {orth }}(\mathbf{r}) \tilde{S}_{i j} \tilde{\phi}_{j}^{\text {orth }}(\mathbf{r})
$$

Is External Orthogonality Required for exact SDFT?

- expand orthonormalized subsystem orbitals in KS orbitals

$$
\tilde{\phi}_{i}^{\text {orth }}(\mathbf{r})=\sum_{p=1}^{\infty} U_{p i} \phi_{p}^{\mathrm{KS}}(\mathbf{r})
$$

- this leads to

$$
\rho_{A}(\mathbf{r})+\rho_{B}(\mathbf{r})=\sum_{p, q=1}^{\infty} \phi_{p}^{\mathrm{KS}}(\mathbf{r}) S_{p q} \phi_{q}^{\mathrm{KS}}(\mathbf{r}) \quad \text { with } \quad S_{p q}=\sum_{i, j=1}^{n_{\text {tot }}} U_{p i} \tilde{S}_{i j} U_{q j}
$$

- requirement for SDFT to be exact:

$$
\rho_{\mathrm{tot}}(\mathbf{r})=\sum_{i, j=1}^{n_{\mathrm{tot}}} \delta_{i j} \phi_{i}^{\mathrm{KS}}(\mathbf{r}) \phi_{j}^{\mathrm{KS}}(\mathbf{r}) \stackrel{!}{=} \sum_{p, q=1}^{\infty} S_{p q} \phi_{p}^{\mathrm{KS}}(\mathbf{r}) \phi_{q}^{\mathrm{KS}}(\mathbf{r})=\rho_{A}(\mathbf{r})+\rho_{B}(\mathbf{r})
$$

Is External Orthogonality Required for exact SDFT?

$$
\sum_{i, j=1}^{n_{\mathrm{tot}}} \delta_{i j} \phi_{i}^{\mathrm{KS}}(\mathbf{r}) \phi_{j}^{\mathrm{KS}}(\mathbf{r}) \stackrel{!}{=} \sum_{p, q=1}^{\infty} S_{p q} \phi_{p}^{\mathrm{KS}}(\mathbf{r}) \phi_{q}^{\mathrm{KS}}(\mathbf{r})
$$

- one might think that this requires

$$
S_{i j}=\delta_{i j} \quad \text { for } \quad i, j=1, \ldots, n_{\text {tot }}
$$

(and zero otherwise)
... and, as a consequence, externally orthogonal subsystem orbitals

Is External Orthogonality Required for exact SDFT?

$$
\sum_{i, j=1}^{n_{\mathrm{tot}}} \delta_{i j} \phi_{i}^{\mathrm{KS}}(\mathbf{r}) \phi_{j}^{\mathrm{KS}}(\mathbf{r}) \stackrel{!}{=} \sum_{p, q=1}^{\infty} S_{p q} \phi_{p}^{\mathrm{KS}}(\mathbf{r}) \phi_{q}^{\mathrm{KS}}(\mathbf{r})
$$

- one might think that this requires

$$
S_{i j}=\delta_{i j} \quad \text { for } \quad i, j=1, \ldots, n_{\text {tot }}
$$

(and zero otherwise)
... and, as a consequence, externally orthogonal subsystem orbitals

- this implies linearly independent orbital products $\left\{\phi_{p}^{\mathrm{KS}} \phi_{q}^{\mathrm{KS}}\right\}_{p, q=1, \infty}$

Is External Orthogonality Required for exact SDFT?

$$
\sum_{i, j=1}^{n_{\mathrm{tot}}} \delta_{i j} \phi_{i}^{\mathrm{KS}}(\mathbf{r}) \phi_{j}^{\mathrm{KS}}(\mathbf{r}) \stackrel{!}{=} \sum_{p, q=1}^{\infty} S_{p q} \phi_{p}^{\mathrm{KS}}(\mathbf{r}) \phi_{q}^{\mathrm{KS}}(\mathbf{r})
$$

- one might think that this requires

$$
S_{i j}=\delta_{i j} \quad \text { for } \quad i, j=1, \ldots, n_{\mathrm{tot}}
$$

(and zero otherwise)
... and, as a consequence, externally orthogonal subsystem orbitals

- this implies linearly independent orbital products $\left\{\phi_{p}^{\mathrm{KS}} \phi_{q}^{\mathrm{KS}}\right\}_{p, q=1, \infty}$
- but: orbital products for complete basis in one-electron Hilbert space are linearly dependent
A. Görling, A. Heßelmann, M. Jones, M. Levy, J. Chem. Phys. 128 (2008), 104104.
- even for incomplete basis sets, (near-)linear dependencies may occur

No Need for External Orthogonality in SDFT

Cut plane through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$; (a) SumFrag/ATZP, (b) SDFT/PW91k/ATZP, (c) SDFT/RecPot/ATZP, (d) SDFT/RecPot/ET-pVQZ
J.P. Unsleber, JN, C.R. Jacob, Phys. Chem. Chem. Phys. 18 (2016), 21001.

No Need for External Orthogonality in SDFT

Overlap matrix \tilde{S} of SDFT/RecPot/ET-pVQZ subsystem orbitals

