Quantum Chemical Embedding Methods
— Lecture 1 —

Johannes Neugebauer

L

|
— e WESTFALISCHE
WILHELMS-UNIVERSITAT
MUNSTER

Workshop on Theoretical Chemistry, Mariapfarr, 20-23.02.2018



Structure of This Lecture

@ Lecture 1: Subsystems in Quantum Chemistry

@ subsystems in wave-function- and DFT- based
Quantum Chemistry
@ basics of subsystem density-functional theory

@ Lecture 2: “Exact” Density-Based Embedding

e potential reconstruction
@ projection-based embedding
e external orthogonality and the Huzinaga equation

@ Lecture 3: Embedded Wavefunctions, Density Matrices, etc.

e wave function-in-DFT embedding: ground states
e wave function-in-DFT embedding: excited states
e density-matrix embedding theory and bootstrap embedding



|. Introduction



Setting the Stage

General problem: Solving the Schrédinger Equation
HV = EV
... for areally big system

Necessary steps:

(1) construct the Hamiltonian

(for this specific system)

(2) find the wavefunction that solves the SE

(or at least the best possible approximation to it)



The Molecular Hamiltonian
Total Hamiltonian:
I:Itot = Tnuc + Tel + Vnuc,nuc + Vel,el + ‘A/nuc,el

Kinetic-energy operators:
N
-y Vi o= S Vi
7 2m1 2
Potential-energy operators

N
el el = Z - ‘A/nuc,nuc = Z]éijj Anuc el = Z Z 4

i<j 1<J

note: ryj = [r; — rj| = | — 7|, and Ry = |R; — Ry| = |} — R;|,and R;; = |R; — r;| = |K; — K]

r = electronic coordinates, R = nuclear coordinates, Z = nuclear charges



Units and Notation

Atomic units:

Q
Il

1 a.u. of charge
1 a.u. of mass

me =
h = 1 a.u. of action
4mep = 1 a.u. of permittivity

Bra-Ket Notation:

(Wi = (il =¥}

(i) = (wlw) = / T dr
/

(ilHl) = (Wil HY;) =



Electronic Hamiltonians

@ assume “clamped nuclei” (nuclei fixed at R; Ty, = 0)

[tItot — I:Iel = Tel + Vnuc,el + Vel,el + Vnuc,nuc
——

constant
@ solve electronic SE

I:IeI\IJel,i(n R) = Eel,i(R) \Ijel,i(n R)

(Nuclear coordinates do not appear as an actual argument in W, ;, but the solution of the electronic SE depends on
the choice of R)

@ from now on, we will only consider

I:I =1q + Vnuc,el + Vel,el



Why Embedding?

@ many interesting (physico-)chemical processes take place in complex
environments

@ environments modulate active-system properties
@ but: main characteristics are similar to isolated active systems

@ brute-force approach: calculate the entire system!



Why Embedding?

@ standard QC methods feature unfavorable scaling behavior
@ e.g.: N° (DFT), N° (MP2), N7 (CCSD(T))

@ huge amount of CPU time would be spent on the small (but maybe
important!) “modulating effect” of the environment

@ sometimes the environment does not change anything ...



Interacting Subsystems: Some initial thoughts

monomer A <> monomer B

@ isolated monomers can be described by individual Hamiltonians:
HyU, = E 04
HpVy = Ep¥y

@ assuming zero interaction, the total wavefunction can be factorized,

(Hao+ Hp)Vy - Vg = (Es+Ep)Us-Up

@ true dimer Hamiltonian including interaction:

Hurpy = Ho+Hp+Hiop



Interacting Subsystems: Some initial thoughts

monomer A —> monomer B

@ if interaction is weak: use perturbation theory

EW = (W, Wp|Hyosp| ¥y Wp)

@ form of the interaction Hamiltonian:

Ny np Np ny na  np

N Z; Z; 1
Ao = =20 T —w] ~ 2=+l * =

I€A i€B IE€EB icA i€A jEB



Interacting Subsystems: Some initial thoughts

monomer A —> monomer B

@ if interaction is weak: use perturbation theory
EW = (U, Ug|Hae,5|UaTp)

@ form of the interaction Hamiltonian:

Ny np Np ny na  np

. Zy Z !
Aron = =D T~ LR —r] T ]

I€A i€B IE€EB icA i€A jEB

@ conceptual problem: electrons are indistinguishable particles!



Interacting Subsystems: Some initial thoughts

@ wave function for N independent subsystems:
\I/tOt(I‘IHI'QI, . ,I‘nN) = \Ill(rll .. ) . \I/z(l'lz .. ) P \IJN(I‘IN .. .I‘nN)

@ non-interacting subsystems: product ansatz



Interacting Subsystems: Some initial thoughts

@ wave function for N independent subsystems:

\I/tOt(I‘IHI'QI, . ,I‘nN) = \Ill(rll .. ) . \I/z(l'lz .. ) P \IJN(I‘IN

@ non-interacting subsystems: product ansatz

@ weak interaction: perturbation theory

R



Interacting Subsystems: Some initial thoughts

@ wave function for N independent subsystems:

\I/mt(l'll,l'zl,. .. ,I‘nN) = A‘I’I(rll .. ) . ‘1’2(1‘12 .. ) e \IJN(I‘IN .

@ non-interacting subsystems: product ansatz
@ weak interaction: perturbation theory

@ antisymmetrisation necessary



Interacting Subsystems: Some initial thoughts

@ wave function for N independent subsystems:

WO ey, Ty Tay) = ZC{K,}A‘I’KI (CSTIS N 7" | ST IUUIP /N | STR

{Ki}

@ non-interacting subsystems: product ansatz
@ weak interaction: perturbation theory
@ antisymmetrisation necessary

@ maybe: configuration interaction

1)



Interacting Subsystems: Some initial thoughts

@ wave function for N independent subsystems:

WO ey, Ty Tay) = ZC{K,}A‘I’KI (CSTIS N 7" | ST IUUIP /N | STR

{Ki}

@ non-interacting subsystems: product ansatz
@ weak interaction: perturbation theory

@ antisymmetrisation necessary

@ maybe: configuration interaction

@ conceptually simpler: subsystem density-functional theory

N
ptol(r) = Z pl(l‘)
I=1



Il. Subsystem DFT and
Frozen-Density Embedding



Subsystem DFT

@ total density:
p(r) =Y 16" (r)?
i
@ partition into subsystem contributions:
p(r) = pi(r)
1
@ write each p; in terms of subsystem orbitals

pi(e) =3 16i ()

@ assume all ¢;, are known (but not ¢;"™)



Subsystem DFT

@ reminder: KS energy expression

Elp] = T{oi}] + Vexlp] +J[p] + Exc[p]

@ if p is given as sum of subsystem densities:

Vext[,O] = Vext[pl +p2+ .. ]
Jpl = Jpr+p2+..]
E,. [p] = Ey [Pl +p2+ .. ]

@ problem for calculations of KS energy: T,[{¢;"""}]

1

G. Senatore, K. R. Subbaswamy, Phys. Rev. B 34 (1986), 5754; P. Cortona, Phys. Rev. B 44 (1991), 8454.



Subsystem DFT

@ write T, formally exactly as

To[{]"™}] ZT Hou )+ | Tsl{e;™"}] ZT {i}]

or

{7} {00 31 = D Tl + 701 ™) {{en, )]
1

@ introduce density-dependent approximation,

TR (o1 ~ T ps}) = Tilpl = Y Tloi]

I

G. Senatore, K. R. Subbaswamy, Phys. Rev. B 34 (1986), 5754; P. Cortona, Phys. Rev. B 44 (1991), 8454.



One-Particle Equations in Subsystem DFT

@ energy functional:

E[{ps}] = Eexlp] +J0p] + Exclol + Y Tl{ei}] + T [{ps}],

@ choose no. of electrons per subsystem (N;)
@ construct Lagrangian

Liter)) = Bl + S ( [ Eronte) - N,)

and minimize w.r.t. all pg
= Euler-Lagrange equations:

oTs[{#i }] n ST [{pr}]
dpk (r) dpk(r)

0 = vext(r) + veou [p] (r) + vee[p] (r) + + bk



Frozen-Density Embedding

@ assume all subsystem densities are v,-representable
= subsystem orbitals can be obtained from

1
(=572 + V8. (0 ) 4 = i,
= if we choose

su _ 5Ts[p] 5TS[IO ]
veir o, pi](x) = veirlp] (r) + Sp(r) 5/)1(1'1) :

the systems of non-interacting particles fulfill

8l pi(e) + 5 4y — o

= these are the sought-for densities

T.A. Wesolowski, A. Warshel, J. Phys. Chem. 97 (1993), 8050.



Embedding Potential

@ define complementary density to p;(r)

A = 3 o) = ple) i)

T4

@ one-particle equations become

1
<—2V2 + Vesr[p1](T) + Vembl o1, £y compl. ]) bi, = €, 9,

(Kohn—Sham equations with constrained electron density, KSCED)

@ embedding potential

Vemb [pla piompl ) = Z véxt(r) + Z VCoul [PJ] (l')
JJH#I JJEI

A {Vrelp(r) — vaclpr] (1) } + 0T [p]

6T[pi]

ép(r)

T.A. Wesolowski, A. Warshel, J. Phys. Chem. 97 (1993), 8050.

- opi(r)



Solution of the KSCED equations

@ define subsystems (R4, Z4, A € 1, and N;)

@ provide density guess for each subsystem; most common:
solve KS equations for all isolated subsystems

© loop over all subsystems:

calculate embedding potential due to all other subsystems
e solve KSCED equations for currently active subsystem 1

e update density p,

e if density change in system I is negligible: stop

e otherwise: next cycle in loop

Note: step 2 is crucial for the definition of the subsystems



lll. Kinetic Energy
in different DFT variants



Kinetic Energy in DFT
Kohn—Sham DFT:

T — T,[{i}] ;5 actually: {Spnfip (ZW%I - V2/2I¢i>>

Orbital-free DFT:
T — T[p] (density-dependent approximation)
Subsystem DFT:

T— Y T[{¢:iH + T [{ps}]  (density-dependent approx. for 77** only)
1

Cluster expansion:

T—>ZT [{6:i}] —|—ZAT”+ Z ATHK 4

1<J I<J<K

with AT§’= T{6i ™} = Tl{¢i}] - Til[{¢;}] ete.



Non-additive kinetic-energy functionals

Common decomposable approximations:
@ general structure: T [{p;}, p| = Tslp] — >, Tslpi]
@ Thomas—Fermi approximation

Tylp] = Trelp] = Cr / P (r)dr

L.A. Thomas, Proc. Camb. Phil. Soc. 23 (1927) 542; E. Fermi, Z. Physik 48 (1928) 73.
exact for homogeneous electron gas (“LDA” for kinetic energy)

@ von Weizsacker approximation

2
1ol ~ Tl = g [ 5 ar

C.F. von Weizsacker, Z. Physik 96 (1935) 431.
exact for one-orbital systems



Kinetic-Energy Functionals: An Example

@ assume one-orbital system, p(r) = n - |p(r)|?

=1 = -n [oVo(rar
— 2 [(vot)(va)ar

_ ;/(vm) (Vo)) dr

1 1 1
- . / (2 mv,o(r)) (2 p(r)Vp(r)> dr
1 NR,
B 8/ p(r) ‘

= von Weizsacker functional Tyw|p], exact for one-orbital systems




Non-additive kinetic-energy functionals

@ systematic gradient expansion of kinetic energy:

Ts[p] =~ T1e(p] + ATvw|p]

with A = 1/9
@ empirically: A = 1/5 gives better results
@ GGA-type kinetic-energy functionals:

T,[p] ~ Cr / p*/3(r)F(s)dr

[Vp(r)]

(reduced density gradient) and kp = [37r2p(r)]]/3
2p(r)kp

with  s(r) =




Non-additive kinetic-energy functionals

@ conjointness hypothesis: choose F(s) as in GGA-X functionals
H. Lee, C. Lee, R.G. Parr, Phys. Rev. A 44 (1991), 768.

@ original LLP functional: conjoint to B88 exchange

@ popular example: “PW91k” with F(s) conjoint to PW91-X

(reparametrized by Lembarki and Chermette)

1 + 0.093907s arcsinh(76.32s) + (0.26608 - 0.0809615e*'°°sz) §
1 + 0.093907s arcsinh(76.32s) + 0.57767 - 10—4s*

Fpwoix =

A. Lembarki, H. Chermette, Phys. Rev. A 50 (1994), 5328.

@ Huang—Carter functionals contain non-local contributions
J. Xia, C. Huang, I. Shin, E.A. Carter, J. Chem. Phys. 136 (2012), 084102.



IV. Technical Aspects



Technical Aspects
Additional matrix elements needed:

wmmmzfﬁmemmw

@ Coulomb part of vemy(r) is linear in the density:

1.
vCoul(r) _ / piOmP (r/>dr/

emb |I‘ I I'/‘

= is calculated only once in every subsystem calculation
@ XC and non-add. kinetic energy contributions are non-linear in p

@ example: Thomas—Fermi non-add. kinetic-energy potential:

) =36 { [0+ s 0] - o

= re-calculated in every SCF cycle



Monomer vs. Supermolecular Expansion
of subsystem densities

@ main computational advantage with monomer basis sets:

= E Ciyvy Xvyy ¢i2 = E Ciyvy Xy
141 vy

0cCCy 0ocey 2

=3 zc,ly,xw +3 [S e
@ properties may converge faster with supermolecular basis:

¢i1/z = E :Cil/ZVIXVl + E CHYAZY ¢2)
141 1%%)

occy occy 2

Z ZCI]V]XI/] + chlV")XVz + Z ZCHV]XV] + chzthVz

@ sometimes helpful: monomer + buffer region basis




Electron Densities from FDE: F—H—-F~

F1 H F2

o Bcp1 W BCP2 g

@ strong, symmetric hydrogen bonds
@ p1: H=F2, p,: F1~ = asymmetric fragments, strong polarization

K. Kiewisch, G. Eickerling, M. Reiher, J. Neugebauer, J. Chem. Phys. 128 (2008), 044114.



Electron Densities from FDE: F—H—-F~

-1 0 1
sum-of-fragments

3

-2 -1 0 1 2 3
FDE, monomer basis

-2
1
0.5
0
-0.5
-1
-2

FDE, supermolecular basis

-1 0 1

K. Kiewisch, G. Eickerling, M. Reiher, J. Neugebauer, J. Chem.

|
!

3

-2 -1 0 1 2 3
supermolecular calculation

Phys. 128 (2008), 044114,



lan L

negative Laplaci

F—H—F-

o

0
o

L frag

K. Kiewisch, G. Eickerling, M. Reiher, J. Neugebauer, J. Chem. Phys. 128 (2008), 044114.



Linearizing the Non-Additive Parts

Non-additive kinetic energy:
@ example: 2 subsystems, Thomas—Fermi (LDA)

T E ) pp] = CF/ [(,OA(I’) + pp(r))*? - Pfx/3 (r) — Pgﬂ(r)} dr

@ linear approximation for 77 based on reference density pao

(e.g., from isolated system A)

mnas na 6T:1ad )
lnon] ~ Tonopnl + [ OB (o) < pra(e) o

P=PA0

= functional derivative of T"*[p,, pp] in linearization approximation:

5T [p, ps] 6T p, pg]

ép(r)

M. Dulak, T.A. Wesolowski, J. Chem. Theory Comput. 2 (2006), 1538.

~
~

P=pA



Linearizing the Non-Additive Parts
kinetic-energy potential:

@ TF case:
313, ps]
TF _ K} )
Visnad [pAa pB] (l’) - 5p(r) s
5
= S [ [toat0) 4 putr) = )] ar

= needs to be updated whenever p, changes (every SCF cycle)
@ with linearization approximation for 7"

5T p, p
Walonpulle) = BT 0.l
P=PA0
5
= 3CF/[(pA,o(r)+pB(r))2/3—pA,o(r)2/3 dr

= independent of p4, can be pre-calculated before SCF

M. Dulak, T.A. Wesolowski, J. Chem. Theory Comput. 2 (2006), 1538.



Effects of the Linearization Approximation for 70

Relative Errors:
@ shifts in orbital energies: typically O(1072)
@ shifts in dipole moments: typically < 0.06
@ non-additive kinetic energies: typically < 0.001
°

exception:
Charge-transfer complexes with large density rearrangement,
e.g., for NH; - - - CIF:

6A1/Ap| = 287.6/983.1 = 29.3%

M. Dulak, T.A. Wesolowski, J. Chem. Theory Comput. 2 (2006), 1538.
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