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QM/continuum models: 
from solvated systems to more complex 

environments
(II)

Benedetta Mennucci



QM/continuum: a step by step strategy

4) The coupling 
with a QM 
description

3) The numerical 
solution: 

The introduction of 
a surface mesh and 
the discretization of 
the ASC density in 
point charges (qASC)

2) The 
electrostatic 

problem: 
the Apparent 

Surface Charge 
approach

ρM

ε

σASC
1) The definition of 

the boundary: 
the molecular cavity 
made of interlocking 
spheres centered on 

atoms

ε

V̂R =
i
∑ qi

ASCV̂ (!si )

  
Ĥeff Ψ = ĤQM + ĤQM /clas

elec( )Ψ = EΨ



Solvent effects on molecular 
properties & spectroscopies



Quantum-Mechanical issue:

the QM model should be able to describe the effects of solvent 
on the solute charge density and on its response to perturbations

Physical issue: 
the solvation model should include all the main physical 
interactions determining the solvent-induced change on the 
property/spectroscopic signal

Solvent effects on molecular properties & 
spectroscopies: which modeling



The energy is expanded in a Taylor series in the perturbation strength λ

The nth-order property is the nth-order derivative of the energy

Properties as derivatives of the energy

For example, 
by considering four types of 

perturbations: external electric (F) 
or magnetic field (B), nuclear 

magnetic moment (nuclear spin, I) 
and a change in the nuclear 

geometry (R)

First derivatives

Second derivatives

Mixed Second derivatives

F. Jensen, Introduction to Computational Chemistry, Wiley

E λ( ) = E 0( )+ ∂E
∂λ

λ + 1
2
∂2E
∂λ 2

λ 2 + 1
3!
∂3E
∂λ 3

λ 3 +…



First derivatives for variational methods: 
some notations

Gαβ
λ[ ] = Dλσ

λσ
∑ χαχσ g χβχλ − χαχσ g χλχβ⎡⎣ ⎤⎦

(λ )

No need to calculate the derivative of the 
density matrix

Wαβ = 2 cα icβ iε i
i
∑

In terms of the 
density matrix D:

Expanding on an atomic basis set



For a solvated system
Direct differentiation 
of the free energy of 
the solvated system

∂G
∂λ

= ∂
∂λ

Ψ Ĥ 0 Ψ + 1
2

Ψ V̂ R Ψ⎡
⎣⎢

⎤
⎦⎥

= tr Dh(λ )( )+ 12 tr DG
[λ ](D)( )− tr S(λ )W( )+VNNλ + 1

2
tr DVR

[λ ](D)( )

As a result the corresponding response properties will be 
changed by the presence of the environment

tr DVR
[λ ](D)( ) = qk

[λ ](D)Vk (D)+ qk (D)Vk
[λ ](D)⎡⎣ ⎤⎦

k
∑

Within the ASC formulation of the continuum solvation model

V̂R =
k
∑ qk

ASCV̂ (!sk )



Differentiation of the reaction term = derivatives of ASCs

More costly than in gas-phase and 
sometimes more difficult to converge

Derivatives of position and 
area of surface elements

tr DVR
[λ ](D)( ) = qk

[λ ](D)Vk (D) + qk (D)Vk
[λ ](D)⎡⎣ ⎤⎦

k
∑

Geometry optimization of a solvated system: 
the cavity specificity

Derivatives of the geometrical 
parameters which define the charges

T(ε )qASC = −RVQM
As the geometry changes, 
the cavity also changes.



A continuous surface charge (CSC) formalism has been developed to improve 
geometry optimizations within ASC. 

The basic idea is to rewrite the surface charge  in terms of an expansion of surface 
elements basis functions which are typically spherical Gaussian functions

q are the ASC charges. 

wi are the integration weights for the surface of the unit sphere and RA is the radius 

of the sphere chosen for atom A. 
FiA is a switching function that varies smoothly from 0 to 1 so to assure that ai varies 
smoothly from the full value down to zero when the ith element falls inside an nearby 

sphere.

integral equation for the unknown ASC density !!s" into an
algebraic linear system whose unknown are now some ASC
charges qi associated with the surface elements.

III. CONTINUOUS SURFACE CHARGE FORMALISM

In this section we lay out the basic principles we fol-
lowed in the development and implementation of what we
call CSC formalism for the PCM family of solvation models.
We aim to a clear separation between the solvation model
and the solute-surface interface. Both the formalism and the
implementation we want to collect together—whenever
possible—what is typical of a given member of the PCM
family of models and is independent on how the cavity sur-
face is defined and discretized. On the other hand, we want
to identify and collect what depends on the particular defini-
tion and discretization scheme used for the solute-solvent
interface and is the same whichever PCM model is used. In
our implementation,41 we followed the design principle just
outlined, and we are now able to add independently new
models and new cavity definitions. Thus, all that is possible
to compute with any PCM model is immediately available
with any new cavity discretization algorithm and, vice versa,
adding a new model or extending an existing one to compute
the solvent effect on a new molecular property, is completely
independent on how the discretized cavity surface is gener-
ated.

To achieve this separation between model and interface,
we introduce an abstract definition of the discretized surface
by defining ng surface elements each one characterized by
six quantities: !i" the representative point si!", i.e., a loca-
tion in space representative of the ith surface element, !ii" the
portion ai of the total surface area associate with each ele-
ments, i.e., the weight of each element in the numerical in-
tegration over ", !iii" the outward normal direction n̂i to the
cavity surface at the location of each surface element, !iv" a
self-potential factor f i whose precise meaning will become
clear later, but which is involved in the description of the
singularity in the representation of the Ŝ operator, !v" a cor-
responding self-field factor gi which is involved in the evalu-
ation of the singularity in both the D̂! and D̂ operators, !vi"
one !or more" parameters #i which characterizes a surface
charge basis function $ i!r ;si ,#i" located on the ith element.

Furthermore, we assume the ASC density !!r" to be a
function not only defined for r!" but rather defined over all
space and expanded in terms of basis functions located at the
surface elements according to

!!r" = #
i

qi

ai
$ i!r;si,#i" . !4"

The above ansatz for the description of the ASC density,
together with the abstract definition of the discretized " in-
troduced earlier, are the two cornerstones of our approach.
We note that an expression like Eq. !4" was already implicit
in the work of YK, although its formal power is better ap-
preciated by considering the similarities between the descrip-
tion of the ASC density !!r" and the solute electronic density
%!r". Indeed, when a QM method like HF or DFT is used to
describe the solute, the electronic density is variationally

minimized by expanding it in terms of a basis set $&i% and
optimizing the expansion coefficients, i.e., the molecular or-
bital coefficients or, equivalently, the one particle density
matrix. Likewise, solving the PCM electrostatic problem,
i.e., solving Poisson’s equation subject to cavity boundary
conditions, is certainly equivalent to variationally minimize
the total energy of the system with respect to all
parameters,42,43 which means to choose the best representa-
tion on !!r" in the $$ i% basis set by optimizing the ASC
charges qi, consistently with the description of the solute-
solvent interface " which provides the quantities si, ai, and
#i.

A. The York–Karplus dicretization scheme

In the scheme proposed by YK,35 the cavity surface is
defined in terms of interlocking spheres centered at the
atomic position and moving with the atoms where they are
located. In this sense the surface can be viewed both as a van
der Waals !vdW" surface or a solvent accessible surface
!SAS", if the radius of the solvent probe is added to the radii
chosen for the atoms. In addition to Lebedev grids, our
implementation of the YK scheme allows for two more op-
tions for the discretization of the sphere surface, i.e., spheri-
cal product grids or the faces !eventually recursively subdi-
vided" of a regular polyhedron inscribed in the sphere. This
greater flexibility allows to better comply with the choice of
a constant density of points per unit of surface which pro-
vides a uniform discretization across all values of sphere
radii. The portion of surface area assigned to the element at si
is defined as

ai = wiRA
2FiA, !5"

where wi are the integration weights for the surface of the
unit sphere and RA is the radius of the sphere chosen for
atom A. The quantity FiA ensures that ai varies smoothly
from the full value of each weight wiRA

2 down to zero when
the ith element falls inside any nearby sphere B. In other
words, FiA is a switching function that varies smoothly be-
tween 0 and 1 and depends on all the nearby spheres,

FiA = &
B!NL!A"

fB!riA,B" , !6"

where fB is a sphere-sphere switching function with values
between 0 and 1, and riA,B is a dimensionless argument that
also varies from 0 to 1 and represents the degree of penetra-
tion of the ith element, belonging to sphere A, into the
switching region of sphere B. By NL!A" we indicate the
neighbor list for sphere A which contains all the atoms B for
which fB is not zero.

The definition of the outward normal direction n̂i to the
surface at the location si of each surface element is not in-
cluded in the original YK scheme since it is not required by
the COSMO model.20 We adopted the obvious definition

n̂i =
si − RA

RA
, !7"

where RA is the radius of the sphere on whose surface the ith
element is located and RA are the Cartesian coordinates of

114110-3 Continuous surface charge PCM J. Chem. Phys. 132, 114110 !2010"

integral equation for the unknown ASC density !!s" into an
algebraic linear system whose unknown are now some ASC
charges qi associated with the surface elements.

III. CONTINUOUS SURFACE CHARGE FORMALISM

In this section we lay out the basic principles we fol-
lowed in the development and implementation of what we
call CSC formalism for the PCM family of solvation models.
We aim to a clear separation between the solvation model
and the solute-surface interface. Both the formalism and the
implementation we want to collect together—whenever
possible—what is typical of a given member of the PCM
family of models and is independent on how the cavity sur-
face is defined and discretized. On the other hand, we want
to identify and collect what depends on the particular defini-
tion and discretization scheme used for the solute-solvent
interface and is the same whichever PCM model is used. In
our implementation,41 we followed the design principle just
outlined, and we are now able to add independently new
models and new cavity definitions. Thus, all that is possible
to compute with any PCM model is immediately available
with any new cavity discretization algorithm and, vice versa,
adding a new model or extending an existing one to compute
the solvent effect on a new molecular property, is completely
independent on how the discretized cavity surface is gener-
ated.

To achieve this separation between model and interface,
we introduce an abstract definition of the discretized surface
by defining ng surface elements each one characterized by
six quantities: !i" the representative point si!", i.e., a loca-
tion in space representative of the ith surface element, !ii" the
portion ai of the total surface area associate with each ele-
ments, i.e., the weight of each element in the numerical in-
tegration over ", !iii" the outward normal direction n̂i to the
cavity surface at the location of each surface element, !iv" a
self-potential factor f i whose precise meaning will become
clear later, but which is involved in the description of the
singularity in the representation of the Ŝ operator, !v" a cor-
responding self-field factor gi which is involved in the evalu-
ation of the singularity in both the D̂! and D̂ operators, !vi"
one !or more" parameters #i which characterizes a surface
charge basis function $ i!r ;si ,#i" located on the ith element.

Furthermore, we assume the ASC density !!r" to be a
function not only defined for r!" but rather defined over all
space and expanded in terms of basis functions located at the
surface elements according to

!!r" = #
i

qi

ai
$ i!r;si,#i" . !4"

The above ansatz for the description of the ASC density,
together with the abstract definition of the discretized " in-
troduced earlier, are the two cornerstones of our approach.
We note that an expression like Eq. !4" was already implicit
in the work of YK, although its formal power is better ap-
preciated by considering the similarities between the descrip-
tion of the ASC density !!r" and the solute electronic density
%!r". Indeed, when a QM method like HF or DFT is used to
describe the solute, the electronic density is variationally

minimized by expanding it in terms of a basis set $&i% and
optimizing the expansion coefficients, i.e., the molecular or-
bital coefficients or, equivalently, the one particle density
matrix. Likewise, solving the PCM electrostatic problem,
i.e., solving Poisson’s equation subject to cavity boundary
conditions, is certainly equivalent to variationally minimize
the total energy of the system with respect to all
parameters,42,43 which means to choose the best representa-
tion on !!r" in the $$ i% basis set by optimizing the ASC
charges qi, consistently with the description of the solute-
solvent interface " which provides the quantities si, ai, and
#i.

A. The York–Karplus dicretization scheme

In the scheme proposed by YK,35 the cavity surface is
defined in terms of interlocking spheres centered at the
atomic position and moving with the atoms where they are
located. In this sense the surface can be viewed both as a van
der Waals !vdW" surface or a solvent accessible surface
!SAS", if the radius of the solvent probe is added to the radii
chosen for the atoms. In addition to Lebedev grids, our
implementation of the YK scheme allows for two more op-
tions for the discretization of the sphere surface, i.e., spheri-
cal product grids or the faces !eventually recursively subdi-
vided" of a regular polyhedron inscribed in the sphere. This
greater flexibility allows to better comply with the choice of
a constant density of points per unit of surface which pro-
vides a uniform discretization across all values of sphere
radii. The portion of surface area assigned to the element at si
is defined as

ai = wiRA
2FiA, !5"

where wi are the integration weights for the surface of the
unit sphere and RA is the radius of the sphere chosen for
atom A. The quantity FiA ensures that ai varies smoothly
from the full value of each weight wiRA

2 down to zero when
the ith element falls inside any nearby sphere B. In other
words, FiA is a switching function that varies smoothly be-
tween 0 and 1 and depends on all the nearby spheres,

FiA = &
B!NL!A"

fB!riA,B" , !6"

where fB is a sphere-sphere switching function with values
between 0 and 1, and riA,B is a dimensionless argument that
also varies from 0 to 1 and represents the degree of penetra-
tion of the ith element, belonging to sphere A, into the
switching region of sphere B. By NL!A" we indicate the
neighbor list for sphere A which contains all the atoms B for
which fB is not zero.

The definition of the outward normal direction n̂i to the
surface at the location si of each surface element is not in-
cluded in the original YK scheme since it is not required by
the COSMO model.20 We adopted the obvious definition

n̂i =
si − RA

RA
, !7"

where RA is the radius of the sphere on whose surface the ith
element is located and RA are the Cartesian coordinates of

114110-3 Continuous surface charge PCM J. Chem. Phys. 132, 114110 !2010"

Scalmani G, Frisch MJ. J. Chem. Phys. 2010, 132:114110

D. York and M. Karplus, J. Phys. Chem. A 103, 11060 (1999). 

Geometry optimization of a solvated system: 
the cavity specificity



Properties which require second 
(or higher order) derivatives

How can we obtain the derivatives of 
the density matrix?



We expand each matrix (F, C, S, ε) in terms of the strength of the perturbation 
(e.g. F = F(0) + λF(1) + … ) ad we collect terms of the same order:

Coupled Perturbed Hartree-Fock

First-order Coupled Perturbed Hartree-Fock (CPHF)

Orthonormality condition:

  F
(1)C(0) + F(0)C(1) = S(1)C(0)ε (0) + S(0)C(1)ε (0) + S(0)C(0)ε (1)

First-order 
terms

  
D(1) = 2 C(1) C(0)⎡⎣ ⎤⎦

†
+ C(0) C(1)⎡⎣ ⎤⎦

†{ }



Coupled perturbed equations for a continuum model 

As a result the density matrix (and the corresponding response 
properties)  will be changed by the presence of environment

Effective Fock :

ASC model: XR = qk
ASC (D)Vk

k
∑

   !F = Fvac + XR

    
!F(1) = h(1) +G(1) (D(0) )+G(0) (D(1) )+ XR(1) (D(0) )+ XR(0) (D(1) )

For a solvated system



Direct effects: 

solvent induced changes in the solute electronic charge 

Indirect effects: 

solvent induced changes in the solute geometry and/or 
in the relative energies of different conformers

Molecular properties in solution: 
a schematization of solvent effects



32

Boltzmann Populations (%)

φ
ψ

1

Conformational analysis

In gas-phase
B3LYP/6-311++G(d,p)

1 99

2 1

3 -

C. Cappelli and B. Mennucci J. Phys. Chem. B  2008, 112, 3441

Conformer 1 dominates in 
gas-phase due to the 
presence of a stabilizing  
intra-molecular H-bond.

In gas-phase

N-Methyl Acetylproline Amide (NAP): 
a simple model for peptides



PCM cavities

3
2

1

φ
ψ

In gas-phase
B3LYP/6-311++G(d,p)

In water 
(PCM)

1 99 4

2 1 28

3 - 68

Boltzmann Populations (%)
In water the two other 

conformers become 
important: they present a 

better interaction with the 
solvent (polar groups are 

more exposed to the 
solvent)

Conformational analysis
N-Methyl Acetylproline Amide (NAP): 

a simple model for peptides



In water

Infrared spectra of single conformers: 
direct effects

Conf 3

Both position and intensity of peaks 
change passing from gas-phase to water

In gas-phase

Conf 1

Conf 2

IR

B3LYP/6-311++G(d,p)
Amide IAmide II



Exp taken from: Oh, K.-I.; Han, J.; Lee, K.-K.; Hahn, S.; 
Han, H.; Cho, M. J. Phys. Chem. B 2006, 110, 13335–
13365. 

Averaged Infrared spectra: 
direct vs indirect effects

EXP

B3LYP/6-311++G(d,p)

Only by combining direct and indirect (conformational) 
effects we can recover the full picture



Bulk 
versus 
specific 
effectsDirect effects: 

solvent induced changes in the solute electronic 
charge 

Indirect effects: 

solvent induced changes in the solute geometry 
and/or in the relative energies of different 
conformers

Molecular properties in solution: 
a schematization of solvent effects



Some questions need to be addressed:

! Does solvation at the solute surface differ from the bulk?

! Are there local rigid structures of solvent at the solute surface?

Specific versus bulk solvation

Supermolecule 
= 

solute surrounded by some explicit solvent molecules

If the answers are YES



The Supermolecule

How many explicit solvent molecules are needed?
From the 
chemical analysis 
of the system

Radial distribution 
functions for the O-H 
pairs

From MD 
simulations

---- CO-H 

---- NH-O



Which configuration?

From QM geometry optimization: the most stable configuration

From MD simulations:

Proper description for strongly interacting solute-solvent 
systems giving rise to stable clusters (example: strong    
H-bonded clusters)

More general than the QM optimization.

Better for weaker solute-solvent interactions described by a 
more dynamic situation.

The Supermolecule



Clusters from MD simulations
Advantage 

Proper description of weaker solute-solvent specific interactions 
which cannot be represented by a single configuration obtained 

from a QM geometry optimization

Disadvantage
Calculations of the property of interest have to be repeated for many 

different clusters so to obtain statistically meaningful average value

NMR of pyrimidine in water



" Enlarging the dimension of the supermolecule: 

O
H

H

O H

H

O
H

H
H

O
H

H
O

H

H
O

H

H
O
H

H
O

H

H O H

HO
H H

O
H

H O
H

H
O
H

H
O

H
H

O
H

H
O
H

H
O

H

H
O
H

H
O
H

H
O

H

H
O

H

H O H

H
O

H

H
O
H

Problems:

1. By increasing the dimensions, the accuracy of the QM level has to be 
reduced (or a QM/MM model has to be introduced)

2. The issue of the statistical representativity becomes more problematic

Long range effects
How can we include long-range effects?



" Adding an “external” continuum:

the solvated 
supermolecule 

The two problems disappear:

1. The dimensions do not increase, we do not need to reduce the accuracy of the 
QM level, or to shift to an hybrid QM/MM method

2. The statistical representativity is automatically satisfied by using the continuum 
description in terms of the solvent bulk properties.

Long range effects
How can we include long-range effects?



B3LYP(GIAO)/6-31+G(d,p)

In water the calculated values are 
smaller than what observed:          

a part of the solvent effect is missing

In water: 

QM optimized 
supermolecule

A continuum-only approach

Specific effects are now correctly 
accounted for but only with inclusion of 
bulk effects (solvated supermolecule) the 

solvent effect is fully reproduced

A simple but clear example: 15N nuclear shieldings of 
diazines in solution

Specific vs. Long range effects

Mennucci, B. J. Am. Chem. Soc. 2002, 124, 1506



Solvent effects are difficult to define: 
they act differently on different quantities

! Solvation free energies are generally “globally” sensitive: 

they are properly described by a continuum model even when 
specific effects are present

! Molecular response properties are generally “locally” sensitive: 

they often require to move from a pure continuum to a mixed 
discrete/continuum model

Solvent effects on molecular properties: 
“global” versus “local” sensitivity



Beyond ground state



S1

Solvation coordinate

S0

Solvent 
reorganization 

energy

Solute in its ground State 
equilibrated with the 

environment (equilibrium)

Solute in its excited 
state equilibrated with 

the environment

Orientational 
relaxation

Dynamic response 
(nonequilibrium)

Only the solvent dynamic (electronic) 
response readjusts: the inertial part is 

frozen in the initial configuration

Electronic transitions in 
solvated molecules

In a 
polar 
solvent

Dynamic response 
(nonequilibrium)



Nonequilibrium & solvation dynamics

Solvation Coordinate

S1

S0

t

In a polar solvent

t

em abs

Frequency 

The experimental evidence: 
time-dependent Stokes shift



Solvation dynamics & polarization

Time

i

f

Solute Perturbation

Step change

Solvation
Response 
(polar solvent)

Time

Initial 
solvation

Final 
solvation

Solvent Polarization

Time-dependent 
dielectric response

Convolution

   

!
P(t) = χ(t − t ')

!
E(t ') dt '

−∞

t

∫    
P
!"

(ω ) =
ε(ω ) −1

4π
E
!"

(ω )

Frequency-dependent 
permittivity

i

f



Fast 
(electronic) 
response Relaxation 

(orientations)

Dielectric relaxation response of an ideal, noninteracting population of dipoles 
to an alternating external electric field:

Polarisation decays exponentially with one relaxation time τD

The resulting permittivity

ε(ω ) = ε(∞)+ ε(0)− ε(∞)
1+ iωτ D

Solvation dynamics: the Debye model



Solvent polarization

Orientation (dipole) polarization: 

If the solvent molecules have a permanent dipole 
moment, the electric field tends to orient such dipoles.

Deformation (induced) polarization

Nuclei & electrons in the solvent molecules are 
displaced under the influence of external electric field.

Electronic/dynamic 
(deformation) 
polarization

Pdyn(ε(∞))

Orientational/inertial 
polarization (only for 
polar solvents)

P(ε )− Pdyn(ε(∞))

An effective 
modelization P

!"
≈ P
!"
ele/dyn + P

!"
or /in



EXC

GS 4

5+6

qGS
eq = qGS

in + qGS
dyn

1

qEXC (t = 0) = qEXC
neq

= qGS
in + qEXC

dyn

Apparent surface 
charges for the vertical 

excited state

Solvent polarization: 
the ASC formulation

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

0 1 2 3 4 5 6 

6. Geometry 
relaxation 

3. Geometry relaxation 

4. Emission 

1. Excitation 

Time (ps) 

  Gexc (t)
En

er
gy

 (e
V

) 
2. Solvent relaxation 

5. Solvent relaxation 

1. Vertical 
excitation

2. Solvent relaxation@EXC

3. Solute structure 
relaxation

4. Emission
5. Solvent relaxation

6. Solute 
structure 

relaxation

time

2+3

qEXC (t→∞) = qEXC
eq



Equilibrium vs Nonequilibrium
Acrolein: solvatochromic shifts (acetonitrile-cyclohexane)

n-π* π- π*

Exp +0.23 -0.21

neq +0.21 -0.22

eq -0.03 -0.56
PCM EOM-CC/6-31+G(d)

La Lb

Exp -0.01 -0.06

neq +0.02 -0.07

eq 0 -0.44

Indole: solvatochromic shifts (water-cyclohexane)

Two nearly degenerate electronic 
states (La, Lb) with perpendicular 
transition moments

Inversion of the order in the 
electronic states (La < Lb) in 
water with equilibrium

PCM EOM-CC/6-31+G(d)



• State Specific (SS):
• The wavefunction of the excited state is explicitly 
calculated together with the energy
• CASSCF, CI, ….

• Linear Response (LR)
• Excitation energies as poles of a linear response 
function of the molecule, no need of the excited 
state wavefunction
• TDDFT, EOM-CC , ...

Electronic excitations: 
which QM approach?

For isolated systems the two approaches are “equivalent” 
(in the limit of exact states).

Is that still valid for solvated systems?

Ground

Excited

ΔEex

Re α(E)

EΔEex



The State-Specific (SS) formulation

Ground state EGS ;PGS qASC (ε;PGS )

A nonequilibrium scheme is used

The inertial response 
remains frozen in the GS

The dynamic response 
relaxes in the EXC

qin
ASC (PGS )+ qdyn

ASC (ε∞;Pexc )Excited state Eexc;Pexc
Energy & density 
are obtained self-
consistently with 
the environment 

response for both 
ground & excited 

states



   
(ia | jb)+ ia fxc jb( ) = d

!
r ' d

!
r∫∫ φi

*(!r )φa (!r ) 1
!r − !r '

+
δ 2Exc

δρ(!r )δρ(!r ')
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
φ j

*(!r ')φb(!r ')

In this equation, the matrix fpq is a one-electron
operator and describes the details of the applied
perturbation. Furthermore, the two-electron part of
the Kohn-Sham Hamiltonian reacts on the changes
in the density matrix, on which it explicitly depends.
The changes in the KS Hamiltonian due to the
change of the density are given to first order as

such that the first-order change in the KS Hamilto-
nian is altogether given as

Turning to the time-dependent change of the
density matrix induced by the perturbation of the KS
Hamiltonian, this is to first order given as

where dpq represent perturbation densities. Inserting
eqs 80-83 into eq 79 and collecting the terms that
are multiplied by e-iωt yield the following expression

The terms multiplied by eiωt lead to the complex
conjugate of the above equation. The idempotency
condition (eq 73) gives an expression for the first-
order change of the density matrix of the form

which restricts the form of the matrix dpq in eq 84
such that occupied-occupied and virtual-virtual
blocks dii and daa are zero, and only the occupied-
virtual and virtual-occupied blocks, dia and dai,
respectively, contribute and are taken into account.
Remembering the diagonal nature of the unperturbed
KS Hamiltonian and density matrixes, one obtains
the following pair of equations:

where we have set xai ) dai and yai ) dia to follow
conventional nomenclature. In the zero-frequency
limit (fai ) fia ) 0), that is, under the assumption that

the electronic transitions occur for an infinitesimal
perturbation, and making use of the fact that in the
basis of the canonical orbitals Fpp

(0) ) ϵp and Pii
(0) ) 1

(eqs 75 and 76), one obtains a non-Hermitian eigen-
value equation, the TDDFT equation,

the structure of which is equivalent to the TDHF eq
26 introduced in section 2.2. Here, the elements of
the matrices A and B are given as

where the two-electron integrals are again given in
Mulliken notation. In comparison with the TDHF eq
26, the definitions of the matrix elements differ only
in their last terms. While in TDHF the last terms
correspond to the response of the nonlocal HF ex-
change potential, which yields a Coulomb-like term,
they correspond in TDDFT to the response of the
chosen xc potential, which replaces the HF exchange
potential in KS-DFT. In the ALDA approximation
(see section 3.1.3), the response of the xc potential
corresponds to the second functional derivative of the
exchange-correlation energy, which is also called the
xc kernel, and is given as

Explicit expressions for the xc kernel are given, for
example, in ref 76.

An alternative elegant route to the derivation of
the linear response expressions for TDDFT (eq 88)
via the energy-dependent density-density response
function "(r,r′,ω) of the interacting system, which
contains all physical information about how the exact
density F(r,ω) changes upon small changes in the
external potential vext(r,ω), has been presented by
Marques and Gross.44 The quantities are energy-
dependent since they correspond to the Fourier
transforms of the corresponding time-dependent ones.
The change in the density can equally well be
calculated using the response of the noninteracting
Kohn-Sham system, "KS(r,r′,ω) and is given as

From eq 91 a formally exact expression for the exact
density response function of the interacting system
can be derived that reads

Knowing that the exact density response function
possesses poles at the exact excitation energies of the
system,44 one can starting from eq 92 through a series
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[A B
B* A* ][XY ]) ω[1 0

0 -1 ][XY ] (88)

Aia,jb ) δijδab(ϵa - ϵi) + (ia|jb) + (ia|fxc|jb)

Bia,jb ) (ia|bj) + (ia|fxc|bj) (89)

(ia|fxc|jb) )

∫ d3r d3r′ φi
/(r)φa(r)

δ2Exc

δF(r)δF(r′)
φb
/(r′)φj(r′) (90)

δF(r,ω) ) ∫ d3r′ "KS(r,r′,ω)δvS(r′,ω) (91)

"(r,r′,ω) ) "KS(r,r′,ω) + ∫ d3 r′′ ∫d3 r′′′ "(r,r′′,ω)

[ 1
|r′′ - r′′′| + fxc(r′′,r′′′,ω)]"KS(r′′′,r′,ω) (92)
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The linear response formulation 
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The response of the 
solvent to the excitation 

is obtained using a 
“transition density”

The solvated TDDFT

The LR approach is not equivalent to SS 
(when the embedding is polarizable)
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New excitation energy in the presence of a 
relaxed solvent

ASC charges for the excited state

qexc
ASC = qGS

ASC + qASC (PΔ )

Excited state density
   Pexc = PGS + PΔ

Can we recover a state-specific response 
within a TDDFT scheme?

We start from an “unrelaxed” excitation energy obtained with the solvent 
polarization frozen in the ground state

Iteration until 
convergency

VEM

Marenich, A. V.; Cramer, C. J.; 
Truhlar, D. G.; Guido, C. A.; 

Mennucci, B.; Scalmani, G.; Frisch, 
M. J. Chem. Sci. 2011, 2 , 2143

First-order 
correction: 

cLR
Caricato, M.; Mennucci, B.; Tomasi, J.; 

Ingrosso, F.; Cammi, R.; Corni, S.; Scalmani, 
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An analysis based on the 
difference between the 

variation of the dipole from 
GS to Exc and the 

corresponding transition 
dipole 

Linear Response vs. State-Specific solvation
Cammi, R.; Corni, S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2005, 122, 104513

LR effects are dominant for 
very bright excitations 

(without important charge 
redistributions)

SS effects are dominant 
for excitations involving 

an important charge 
redistribution

Lunkenheimer, B.; Köhn, A. J. Chem. Theory Comput. 2013, 9, 977
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Linear Response vs. State-Specific solvation

of chromophores and solvents has been chosen as a signifi-
cant sample over a range of electronic excitation of different
nature and in different environments.

The geometry of the molecules has been optimized for
each solvent by using the B3LYP hybrid functional. For the
geometry optimizations a 6-31G!d,p" basis set has been used
while for the calculation of properties a Dunning double !
basis set with additional d!0.2" function for C,N,O, has been
used !the number in parentheses is the exponents of the extra
function". The sphere radii used to build the molecular cavity
were 1.9 for CHn !n=1,2,3", 1.7 for other C, 1.52 for O, 1.6
for N, and 1.2 for H when bonded to N, all multiplied by a
cavity size factor of 1.2. The LR-CIS calculations of the
transition energies !"ELR##0i" and dipole !$0i", and have
been done with GAUSSIAN03,53 while for the SS-CIS calcula-
tion of the excitation energies !"ESS#"G0i

neq" and dipole
moment of excited states !$ii" has been performed using a
local version of GAMESS.54 The cavity tesselation parameters
have been chosen to give the same tesselation with both
programs. The zeroth-order energy "E0 !which is equal for
LR and SS in the CIS framework" has been found by switch-
ing off the explicit reaction field contribution in the CIS
equations solved by GAUSSIAN03.

B. Comparison of the LR and SS excitation energies

We have collected the excitation energies calculated for
the three molecules and the two solvents under study in
Table I.

Graphical representation of the results in acetonitrile are
also given in Figs. 1–4. In each figure, the gas-phase excita-
tion energy "Egas, the zeroth-order excitation energy "E0
!that, at the CIS level, is the same for LR and SS", and the
LR and SS, excitation energies !"ELR and "ESS, respec-
tively" are reported.

The analysis of the results will be done at two levels: in
Sec. III B 1, we shall show that these results confirm the
theoretical predictions that we have made in the preceding
section on the basis of the perturbative approach. To do this,
we shall refer to the simplified model presented in the Ap-
pendix, which has the advantage of exploiting quantities
such as transition dipole moment or difference of dipole ex-
pectation values that are routinely calculated in most
quantum-chemistry packages, and we shall show that by

comparing the magnitude of the calculated 2$$! 0i$ with $$! ii
−$! 00$ !the molecular quantities that determine the explicit
solvent contributions in the first-order spherical model", one
can predict the relative order of the LR and SS excitation
energies. Then, in Sec. III B 2, we shall focus on the magni-
tude of the computed differences between the LR and the SS
approaches, to verify if the discrepancies predicted by the
theory are only a formal problem !i.e., the numerical differ-
ences are always negligible" or if they have an impact on the
calculations. As we shall see, the two ways of including sol-
vent effects give different numerical results, but such differ-
ences are not large if relative shifts between different sol-
vents are of interest.

1. Correlation of the excitation energy
with the molecular dipoles

What we would like to discuss now is the relation be-
tween the relative order of the LR and SS excitation energies
in Figs. 1–4 and the dipole moments !differences of dipoles
and transition dipoles" of the various excitations considered.
On the basis of the simplified version of our theory, pre-
sented in the Appendix, the state-specific and linear-response
excitation energies of a dipolar solute in a spherical cavity,
should be related, at the first order, by the following simple
relation:

TABLE I. Excitation energies and dipole moments for the three different molecules and the two solvents under
study. Energies !"ELR## j, "ESS#"G0j

neq" are given in eV and dipole moments in debye.

Acetonitrile Dioxane

A MCP PNA A MCP PNA

n→%* %→%* %→%* %→%* n→%* %→%* %→%* %→%*

"$0i 4.169 2.296 7.051 7.847 4.188 2.157 7.279 a

$0i 0.000 5.412 1.754 7.440 0.000 5.690 1.777 6.393

"Egas 4.357 6.965 5.642 5.014 4.357 6.965 5.642 5.014
"E0 4.650 6.830 5.890 4.607 4.467 6.914 5.754 4.835
"ELR 4.646 6.601 5.845 4.457 4.462 6.631 5.697 4.666
"ESS 4.568 6.798 5.701 4.510 4.373 6.877 5.506 4.696
a"$0i could not be determined because of difficulties in converging.

FIG. 1. Excitation energies for the acroleine n→%* transition in
acetonitrile.
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study was that in several cases the use of a RSH XCF together with a SS treatment is needed

to achieve a physically-sound description of the transition. Therefore, in the following, we

focus first on the results obtained with an RSH functional, LC-!PBE, before considering

other XCFs.

3.1 Excited state polarization response energies

Let us first discuss the formation of the excited state of a solvated molecule as a two-step

process: i) the molecule in its GS and in equilibrium with the solvent is vertically excited to

the i-th state in the presence of a frozen solvent polarization (let’s indicate !(0)

0i the resulting

change in energy); this approximation is also known as the Ground State Frozen Polarization

(GSFP) reaction field;33 ii) the response of the solvent is switched on and its polarization

rearranges to equilibrate with the ES charge density of the solute. We will call the resulting

correction to !(0)

0i which accounts for this contribution polarization response energy RX , with

X=LR or SS. Within this theoretical framework, the change in energy associated with the

ground-to-excited state transition in the LR or the SS schemes can be written as:

!LR

0i = !(0)

0i +RLR(X0i), (1)

!SS

0i = !(0)

0i +RSS(P�

0i ), (2)

and,

RLR(X0i) = hi(0)|V̂|0ih0|Q̂|i(0)i, (3)

RSS(P�

0i ) =
1

2
[hi|V̂|ii � h0|V̂|0i][hi|Q̂|ii � h0|Q̂|0i], (4)

where, for a generic excited state i, X0i represents the transition density whereas P�

0i is

the change in the density with respect to the ground state (in VEM-UD, this does not

8
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response

Frozen 
Solvent



EXPERIMENTALLY: 

In nonpolar solvents 
relaxation occurs by twisting 
about C=C (γ) bond. 

Polar solvents hinder this 
twist but allow a new 
deactivation pathway that leads 
to a dark intermediate β 
twisted ICT state from which 
the nonradiative relaxation 
occurs.

Apolar solventPolar solvent

Excited-State Decay Pathways of Molecular Rotors

Suhina, T.; Amirjalayer, S.; Mennucci, B.; Woutersen, S.; Hilbers, M.; Bonn, D.; Brouwer, A. M. J. Phys. Chem. Lett. 2016, 7, 4285
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Excited-State Decay Pathways of Molecular Rotors
The PCM results

The polar DMSO hinders the γ twist in favor of the 
deactivation pathway through the β twisting

BUT

only allowing the excited state polarization to relax (+SS) 
we can get the right picture
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