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2 S Which environment?

Solvated systems:

a (supra)molecular system within an environment
which is “almost” homogeneous & isotropic

Embedded systems:

a (supra)molecular system within an
environment which is heterogeneous &
anisotropic

Composite systems:

a (supra)molecular system within an the
environment containing surfaces/nanoparticles




3 Which environment effects?

A simple example: solvent & chemical reactions
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3 Which environment effects?

A (simplified) classification
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Direct effects:

environment-induced changes in the electronic charge distribution

Indirect effects:

environment induced changes in the molecular geometry
and/or in the relative energies of conformers

N m

""""""""""""" In particular cases |[r==mmmmmmmmmmmmmm ey

Specific effects:

“first solvation shell” effects

Dynamic effects:

environment relaxation effects
...and many others
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SF 1he multiscale strategy

Is 1t reasonable to

Is it possible to neglect quantum
localize the effects between
"process of the two

interest™

subsystems?

YES

A, =H, +

Which classical
embedding!

YES
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From atomistic to continuum descriptions
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(2 The continuum approach

Which ingredients!?

€ The definition of boundary between the two subsystems
€ The definition of the interactions: electrostatic & nonelectrostatic

€ The inclusion of mutual polarization between the two subsystems



2 The boundary

Simple models Q Q NOT ENOUGH!

Sphere
Ellipsoid

We need molecular models

1. van der Waals Surface (VWS):

is constructed from the overlapping vdW
spheres of the atoms

But if we want to account for the
dimension of the solvent:

2. Solvent Accessible Surface (SAS):

is the surface traced by the center of the probe
probe sphere (the solvent).

Solvent Accessible Surface

3

3. Solvent excluded Surface (SES or

Connolly):

is traced by the inward-facing part of the probe

sphere as it rolls on the vdWV surface.
Solvent Excluded Surface
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1 he coupling work

work necessary to “build up” the solute M

in the solvent S

We introduce a partition in terms of different interactions

W(M/ S) — Gcav T Gelec T GVdW

N

/]

Cavitation term:
work required to
create the cavity

Electrostatic
term

nonelectrostatic:
dispersion &
repulsion




B2 Non electrostatic contributions:

dn €

~

Ive strategy

An “imaginary” process

& Create an empty cavity: a positive contribution to the solvation free energy

& Switch on the nonelectrostatic solute-solvent interactions: positive &
negative contributions to the solvation free energy

We can simplify the process by merging all contributions through an empirical

expression:

Gron-el =G py T Gygw = Zi \)

E_,,- is an empirically determined parameter for the i-th atom and S, is the

part of the solvent accessible surface for the i-th atom %




EEW Flectrostatics & Polarization

Two milestones

* A point charge (q) in a spherical cavity
* Born Model ( | 920) of radius a inside the dielectric
electrostatic q2 1
component of AG, =——|1-=
solvation free energy 2a
dielectric
constant
* A dipole at the center of a spherical
° Onsager Model ( | 936) cavity inside a dielectric.
“It measures the electric
Reaction 1 2(e-1) .. ~ field which acts upon
field of the R=— u=rfu the dipole as a result of
solvent a 2e€+1 the electric
_ 2 displacement induced by
_l R.ij—=_ (8 1)‘u its own presence”
AG, R-U 3
R R CY




EEW Flectrostatics & Polarization

:> The modern extension:
Generalized Born (GB)

* Born Model (1920)

Several charges inside an arbitrary cavity: each one with its
own “effective” Born radius.

2
AG =—+[1-1 )40
C T

€)a. o effective
! Born radii

N N N
AG, =Y AG +2) Y AGI
i=1 =1 j>i
aGrr=—1f1-1 44,
4 A \/ 2 ]

, -
r;+aa exp| - .
4al.aj

Different GB-models:

€ The Still model (Still, 1990, 1997)

& SMx (Cramer & Truhlar, 1996-today): extended to QM

& ACE:Analytical Continuum Electrostatics (Schaefer & Karplus, 1996)
¢ GBMV (GB Molecular Volume, Brooks 2003)



EEW Flectrostatics & Polarization

j> The modern extension:

the multipole expansion
(MPE)

* Onsager Model (1936)

The solute enclosed in a spherical cavity is represented in terms of a
multipolar expansion

Mm is the m component of the

Solute-solvent
interaction energy WMS — 22 Mllem spherical multipole moment of
I om order | corresponding to the

solute charge distribution

Generalized _ 1 (I + 1)(8 - 1)

m m . .
Reaction field term RZ = fl Ml fz Generalized reaction

a*'! (l+De+! field factors

Different MPE-models (both extended to QM):
¢ Nancy model (Rivail & Rinaldi, 1973-today)
¢ Mikkelsen model (Mikkelsen et al., 1988-today)
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A more general strategy
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I he electrostatic problem

A “general” charge

density py inside a
cavity of any shape

within a n

homogeneous &
isotropic continuum

dielectric

(

‘<

Generalized Poisson equation

V- (e(F)E(F))= 4mp,, (F)

—

E

B

r

)

—

l
E

V(F)]|=-evr

In terms of the electrostatic potential V

-V =4mp
-V V =0

inside the
cavity: €=

outside the
cavity: pmM=0

+

p

Vv ] =[evy i

in

Boundary conditions

out

out
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The Apparent Surface Charge

Which electrostatic potential V ¢

Vis the sum of the electrostatic potential V
generated by the charge distribution py and

of the reaction potential V; generated by the
polarization of the dielectric medium:

Vir)=V, @F)+V,(r)

Which form for the reaction potential V;?

V. (F) =V, (F)= jr f(_?

G

d’s

The reaction potential is defined by
introducing an apparent surface
charge (ASC) density (O) on the cavity




W Numerical methods for

partial differential equations

Boundary element method (BEM)

BEM Is derived through the discretization of an integral equation that is
mathematically equivalent to the original partial differential equation (PDE).
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In applying the boundary
element method, only a mesh
of the surface is required.

FEM FDM

Finite element method (FEM) or finite
difference method (FDM): the whole domain
of the PDE requires discretization.



5§ The Apparent Surface Charge:

the BEM solution

Reaction potential

v (F) =V (F)= j o(5)

=

1. Construction of the molecular cavity in terms of
interlocking spheres (centered on the solute atoms)

2. Partition of the cavity surface into N finite elements
(tesserae)

3. Discretization of the apparent surface charge O into
N point-like charges q

we assume that O is _ .
constant on each q (S) =a.0 (Si)
element of area g,




5§ The Apparent Surface Charge:

the BEM solution

NTS apparent surface charges

q(5;)=a0(s))

Reaction potential

VR(F)=L‘;(_§;‘d2s :> v (F)=

Electrostatic interaction

W, = | p" GV (F)dr : > W,




Apparent surface charges

Which o7



g Apparent surface charges:

the PCM family

Dielectric PCM: DPCM
S. Miertus, E. Scrocco, J. Tomasi

Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects
Chem. Phys. 117-129, 55 (1981)

Integral Equation Formalism: IEFPCM

E. Cancés, B. Mennucci and ). Tomasi

A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic & anisotropic dielectrics
J. Chem. Phys. 3032-3041 107 (1997)

Conductor-like Screening Model: COSMO

A. Klamt and G. Schiulrmann,

COSMO:A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient
J. Chem. Soc. Perkin Trans. Il 799-805, 2 (1993).

A PCM-like reformulation of the COSMO model: CPCM

V. Barone, M. Cossi
Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model
J. Phys. Chem.A 1995-2001, 102 (1998)



€2 The original formulation: DPCM

S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. [17-129,55 (1981)

In the linear response At the boundary of two dielectrics, i & j,
approximation, the solvent there is an apparent surface charge
polarization vector is: distribution given by

P=-—F ,\@ o,==(F-B)-7,

Taking into account that :
€ =1 (inside the cavity there is no dielectric) DPCM _ €— 1(

g> | (outside the cavity there is the solvent) 4re

Integral operator

A E+1)s  av| _ppey OV
D*a(x):MV(I/|x—y|)-n(x)]6(y)dy {M(QJI_D }G =



5320 The Conductor-like formulation

A.Klamt and G. Schiiiirmann, J. Chem. Soc. Perkin Trans. Il 799-805, 2 (1993).

A conductor (infinite permittivity, € =00) instead of a dielectric:a new condition on
the total potential

v (F)+V, (F)=0

o“(5)

dS = So¢ Integral operator

V()= V(7)) = j

I/'—S

A C C _ Q-1 Conductor
VM +S50 =0 ‘ o =-5 VM apparent charge

We recover the true dielectric behavior by scaling the conductor charges
using the real (finite) dielectric constant:

E+X

the value of x should be set to 0.5 for neutral molecules and to 0.0 for ions



9% Integral Equaﬂon Formalism: [EFPCM

E. Can and ). Tomasi, ). Chem. Phys. 3032-3041 107 (1997)

LinV — _VzV — 47z.pM insif:Ie the

cavity: €=1
o) outside the
L V — —gV V — O cavity: pm=0
out 4
|
X —
| v Green
1 Functions
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The ASC family & the connections

Son= [ 2 4,

rlx—yl
Integral

operators  Do()= [ [V(V/[x=y))-n(») o(ndy

D'o(x)= JF[V(I/ =y )-n) Jo()dy

+1 A oA 5N
IEFPCM 27: i D $o"M = (21 - D)V,

DPCM COSMO (CPCM)

{2”(8“)1 D} prev _ 9V SoC =

-1 on M



¥ The discretization of the surface charge

-

Feyo=—ky "
£)0 =—R :> —

y T(e)q=—-Rf
Vector fy collects .
electrostatic potential I (§J) : ﬁ(§}) DPCM
(or field) produced by [fMl=< - CPCM & IEFPCM
the solute on the \ M(Sj)

surface elements:

There are basically two strategies to solve the system:

¢ Inverting T by a direct method

¢ By an iterative method



gy QM/continuum: a step by step strategy

1) The

definition of 2) The :
electrostatic
the boundary:
problem:
the molecular :
cavit the Poisson
4 equation
3) The
numerical 4) The QM
solution: problem

the surface
mesh
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The QM/Continuum approach

The Self-Consistent Reaction Field (SCRF) method

Tomasi, J., Mennucci, B., & Cammi, R. (2005) 105, 2999



B2 The outlying charge effect

The ASC model is formulated for an ideal charge density completely inside the cavity
s
-V =47 (in)

—eVy =0 (0w

Boundary
\ conditions

Gauss Theorem
In the ideal world:

oM dS:——J E-hids _ the Gauss
4. ‘ ZQ Q“’IC = _—QM theo.rem is

satisfied

Within a QM description of the solute:

e—-1 | i
In the “real” word: Qcalc £ _ Q the electr9n|c chargg necessarily
M spreads outside the cavity (escaped or

outlying charge)




B2 The outlying charge effect

In the presence of the escaped or outlying charge:

The polarization of the solvent should be expressed in terms of two apparent charge
distributions:

o) ﬁ__—pM

On the cavity surface
4 In the outside (bulk) volume

B is easily computed once p is known, but its contribution to the reaction field
involves an integration over the whole space outside the cavity !

The electrostatic interaction between solute and (s )
solvent (solvent reaction field) should be J. oL J.
computed by a double integration " - 5‘

!'—'!



¥ A solution for the outlying charge effect

To have a more correct description of the solvent polarization we have to find
a way to include the effects of the volume apparent charge 8

These effects can be approximated by an additional surface charge.

o'=0_ +«
Ins out

Oout can be defined so to generate inside the cavity the same
electrostatic potential as that due to P:

Sa=%

v

IEFPCM

o' o0

IEFPCM charges produce inside the
cavity an exact reaction potential

D M Chipman, ] Chem Phys, | 12,5558 (2000).



g The effective Hamiltonian

3 elec
Heff\P QM { QM/clag \P = EY

V., = Z gV ()

ASC ( 8) qASC RV

charges OM
Solute electrostatic
potential on the on (5= < Vl >+ Y =— — 2
surface cavity: |r S i| K

The solute wavefuntion depends on the solvent operator
& the solvent operator depends on the wavefunction!



B A variational formulation

A

~ 5 non linear effective
Heﬁ\P = (HQM T VR )‘P =LY Hamiltonian

The variational principle can be applied but not in the standard form:
here the functional to be minimized does NOT correspond to the eigenvalue

)

)4

Eigenvalue:
Internal energy

E = <‘P‘Hﬁ

o

% LP>=E—1E

Telf
He R N 9) nt

Electrostatic Free G = <‘~P
energy functional

In a thermodynamical language:
we have to add the work necessary to polarize the solvent which is opposite
in sign and half in magnitude with respect to the interaction energy.
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Self consistent reaction field (SCRF)

q"*?=(-T"'R)V(p)

How do we introduce solvent effects?

we add a new solvent-dependent operator

Effective R R R
Fock (or Kohn-Sham)  F¥ = F°+ X &
operator
Reaction
Field )"(RF _ l aEint _ l a{qASC(’O)V(’O)}
operator " 29p 2 dp

T(e)q™ =-RV(p)

It changes at

> XRF = ASC V7 each iteration of
(P) qu (p) l the SCF cycle

=QV(p)



SF Post-SCF methods & Polarization

The nonlinear solvent operator is easily nested in the standard
Self-Consistent-Field approaches (Hartree-Fock, DFT):

no need of further iterative schemes

But difficulties appear in post-SCF calculations

An example:
inclusion of electronic correlation using
Moller Plesset perturbation theory



SF MP2 & Continuum Models

MP2 (i1 ab) (ial 1))
{ occ vin ({ii]ab) = (id| j
correction Ez:Z;% £+e —€ ¢

When the molecule interacts with a solvent

Orbitals & orbital energies are obtained with a “solvated” Fock
operator:

they account for the presence of the environment

Solvation effects change correlation but not viceversa

Can we Include correlation effects In
solvation?



e MP2/ASC: the relaxed scheme

Solvated Hartree-Fock
fefl — fO L YRF
)A(RF <:>qASC(PHF)

Relaxed MP2 MP2 change in the
> d . P =P density matrix: orbital
ensity relax HF relaxation

Iteration until Relaxed ASC charges

convergency
qASC (Prelax) — qASC (PHF) + qASC (P(Z))

|

New reference state in the presence of new ASC charges




W Unrelaxed & Relaxed solvation:

Interaction energies

uumb)\/C;[ - /\& Hydrogen bonding interaction energies
/(‘:( ):E[ ) UnRelaxed Relaxed % variation
| . Uu -1,06 -2,23 -110

GC(Hb) GC '6,73 '9,97 -48
j )m AU -3,37 -4.65 -38

BSSE MP2/aug-cc-pVDZ; energies in kcal/mol

Stacking interaction energies R S :(‘;Q
UnRelaxed Relaxed % variation ﬁ /(Z:E}v s
CU -4,58 -6,85 -50
Uy 4,54 5,90 30 e e
GC -4,92 -6,24 -27 Sa(sY ’\:;Y N
AU -6,53 -7,68 -18 & m

BSSE MP2/aug-cc-pVDZ; energies in kcal/mol



