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Solvated systems: 

a (supra)molecular system within an environment 
which is “almost” homogeneous & isotropic

Embedded systems: 

a (supra)molecular system within an 
environment which is heterogeneous & 
anisotropic

Composite systems:

a (supra)molecular system within an the 
environment containing surfaces/nanoparticles  

Which environment?
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V (R). In calculating transition state partition functions along s and in calculating reactant
partition functions, W (R) is used instead of V (R) at the minimum energy structure of
each transition state or reactant, but vibrational frequencies are calculated using V (R).
In tunneling calculations, as in ESP theory, U (R) is used instead of V (R). The CMS-0
approximation is usually made in computing U (R).

SES theory can be used to illustrate a classic example of a solvent effect on a chem-
ical reaction, namely the solvent effect on bimolecular nucleophilic substitution !SN2"
reactions [58]. Figure 3.8 shows how an approximate potential of mean force changes
with the solvent. We can see that in the gas phase, the barrier is very low. In aqueous
solution, the anion is very well solvated, and the formation of the transition state leads to
considerable charge delocalization, decreasing the favorable solvation effect. As a conse-
quence, a very high effective barrier is generated. In dipolar aprotic solvents, such as
dimethyl sulfoxide, because the ionic species are less solvated than in water, the solvent
effect decreases, producing the well-known [59] rate acceleration of ionic SN2 reactions
on going from aqueous to dipolar aprotic solvents.
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Figure 3.8 Potential of mean force profile for a typical SN2 reaction in different media.

Nonequilibrium Solvation (NES)
In the above treatments only the solute coordinates R appear explicitly and therefore
the definition of the transition state does not depend on solvent coordinates. The NES
approximation [60,61] provides a way to include solvent in the reaction coordinate while
retaining a continuum description of the solvent by adding a coupling Hamiltonian for
a collective solvent coordinate [60–70] (or more than one) to the Hamiltonian for the

En
er

gy direct & indirect 
effects 

Specific effects 
(first solvation shell effects)

Solvent can explicitly enter into 
the mechanism of the reaction

Solvent can change the energetics and the 
kinetics by changing the relative energy & 

geometry of the involved species

⇄+ +

A simple example: solvent & chemical reactions
Which environment effects?



Direct effects: 

environment-induced changes in the electronic charge distribution

Indirect effects: 

environment induced changes in the molecular geometry 
and/or in the relative energies of conformers

Dynamic effects: 

environment relaxation effects

Specific effects: 

“first solvation shell” effects

... and many others

Always

In particular cases

Which environment effects?
A (simplified) classification



The multiscale strategy

Subsystem 
1

Subsystem 
2

Is it possible to 
localize the 
“process of 
interest”?

YES
The 

whole 
system

QM
Classical

Is it reasonable to 
neglect quantum 
effects between 

the two 
subsystems?

YES

Which classical 
embedding?

ĤQM ⇒ ĤQM + ĤQM−class



QM/MM

From atomistic to continuum descriptions

Environment inhomogeneities 
& anisotropies✅ Automatically 

Included
To be added 
(only of some 

kind)
⚠

Sampling of the 
environment 

configurational space
To be explicitly 

“added” ✅ (Implicitly) 
included⚠

Both subsystems are treated 
atomistically 

ε

QM/Continuum

A “coarser grained” description is 
used for the “external” subsystem 



Which ingredients?

The definition of boundary between the two subsystems

The definition of the interactions: electrostatic & nonelectrostatic

The inclusion of mutual polarization between the two subsystems

The continuum approach



Simple models
Sphere

Ellipsoid

We need molecular models

NOT ENOUGH!

Figure 1: This is a 2-dimension (2D) schematics of the Solvent Accessible Surface and the Solvent
Excluded Surface, both defined by a spherical probe in orange rolling over the molecule atoms in
dark blue.

We notice that the above implicit function of the SAS is simple to compute. It seems nevertheless
hopeless to us to further obtain an implicit function of the SES if constructing upon this simple
implicit function efsas(p) which is not a distance function. On the other hand, having the signed
distance function, see (2.1), at hand would allow the construction of an implicit function for the
SES due to the geometrical relationship between the SAS and the SES.

Indeed, according to the fact that any point on the SES has signed distance �rp to the SAS,
an implicit function of the SES is obtained directly as:

fses(p) = fsas(p) + rp, (3.4)

which motivates the choice of using the signed distance function to represent the SAS. From the
above formula, the SES can be represented by a level set f

�1
sas(�rp), associated with the signed

distance function fsas to the SAS. Therefore, the key point becomes how to compute the signed
distance fsas(p) from a point p 2 R3 to the SAS. Generally speaking, given a general surface S ⇢ R3

and any arbitrary point p 2 R3, it is di�cult to compute the signed distance from p to S. However,
considering that the SAS is a special surface formed by the union of SAS-spheres, this computation
can be done analytically.

We state a remark about another implicit function to characterize the SES, proposed by Pomelli
and Tomasi [15]. In [14], this function can be written as:

efses(p) = min
1i<j<kM

fijk(p), 8p 2 R3
, (3.5)

where fijk represents the signed distance function to the SES of the i-th, j-th and k-th VdW atom.
However, this representation might fail sometimes, see two representative 2D examples in Figure 2.
Indeed, the formula (3.5) for each molecule in Figure 2 can be rewritten as:

efses(p) = min
1i<j3

fi,j(p), 8p 2 R2
, (3.6)

where fi,j represents the signed distance function to the SES of the i-th and the j-th VdW atom.

However, each molecular cavity defined by {p 2 R2 : efses(p)  0} has excluded the region in grey
inside the real SES.

4

2. Solvent Accessible Surface (SAS): 
is the surface traced by the center of the probe 
sphere (the solvent).

3. Solvent excluded Surface (SES or 
Connolly): 
is traced by the inward-facing part of the probe 
sphere as it rolls on the vdW surface. 

But if we want to account for the 
dimension of the solvent:

1. van der Waals Surface (VWS): 
is constructed from the overlapping vdW 
spheres of the atoms

The boundary



The coupling work

W(M/S) = Gcav + Gelec + GvdW

Cavitation term: 
work required to 
create the cavity

Electrostatic
term

nonelectrostatic: 
dispersion & 

repulsion

We introduce a partition in terms of different interactions

work necessary to “build up” the solute M in the solvent S



Non electrostatic contributions: 
an effective strategy

Create an empty cavity: a positive contribution to the solvation free energy

Switch on the nonelectrostatic solute-solvent interactions: positive & 
negative contributions to the solvation free energy

Gnon-el =Gcav + GvdW = Σi ξiSi

ξi  is an empirically determined parameter for the i-th atom and Si is the 
part of the solvent accessible surface for the i-th atom

We can simplify the process by merging all contributions through an empirical 
expression:

Si

An “imaginary” process



Two milestones

• Onsager Model (1936) • A dipole at the center of a spherical 
cavity inside a dielectric. 

Reaction 
field of the 

solvent

!
R = 1

a3
2(ε -1)
2ε +1

!µ = f
!µ

“It measures the electric 
field which acts upon 

the dipole as a result of 
the electric 

displacement induced by 
its own presence”ε

−
!
R
!µ

ΔGelec = − 1
2
!
R ⋅
!µ = −

ε −1( )µ2
2ε +1( )a3

Electrostatics & Polarization

  
ΔGelec = − q2

2a
1− 1

ε
⎛

⎝
⎜

⎞

⎠
⎟

• Born Model (1920) • A point charge (q) in a spherical cavity 
of radius a inside the dielectric

electrostatic 
component of 

solvation free energy

ε

q
.

dielectric 
constant



• Born Model (1920)

Electrostatics & Polarization
The modern extension: 
Generalized Born (GB)

Several charges inside an arbitrary cavity: each one with its 
own “effective” Born radius. 

ΔGel = ΔGi
self

i=1

N

∑ + 2 ΔGij
pair

j>i

N

∑
i=1

N

∑
ΔGi

self = − 1
2
1− 1

ε
⎛
⎝⎜

⎞
⎠⎟
qi
2

ai

ΔGij
pair = − 1

2
1− 1

ε
⎛
⎝⎜

⎞
⎠⎟

qiq j

rij
2 + aia j exp −

rij
2

4aia j

⎛

⎝
⎜

⎞

⎠
⎟

effective 
Born radii

Different GB-models:

 The Still model (Still, 1990, 1997)

 SMx  (Cramer & Truhlar, 1996-today): extended to QM

 ACE: Analytical Continuum Electrostatics (Schaefer & Karplus, 1996)

 GBMV (GB Molecular Volume, Brooks 2003)



Electrostatics & Polarization
• Onsager Model (1936) The modern extension: 

the multipole expansion 
(MPE)

The solute enclosed in a spherical cavity is represented in terms of a 
multipolar expansion

Ml
m is the m component of the 

spherical multipole moment of 
order l corresponding to the 

solute charge distribution

Solute-solvent 
interaction energy

 
WMS = Ml

mRl
m

m
∑

l
∑

Generalized 
Reaction field term  Rl

m = fl Ml
m Generalized reaction 

field factors  
fl =

1
a2l+1

(l +1)(ε -1)
(l +1)ε + l

Different MPE-models (both extended to QM):

 Nancy model (Rivail & Rinaldi, 1973-today)

 Mikkelsen model  (Mikkelsen et al., 1988-today)



A more general strategy



A “general” charge 
density ρM inside a 
cavity of any shape 

within a n 
homogeneous  & 

isotropic continuum 
dielectric

In terms of the  electrostatic potential V

Boundary conditions

inside the 
cavity: ε=1

outside the 
cavity: ρM=0

+  −∇
2V = 4πρM

  −ε∇2V = 0
  

!
∇V ⋅ !n⎡⎣ ⎤⎦in

= ε
!
∇V ⋅ !n⎡⎣ ⎤⎦out

 Vin =Vout

The electrostatic problem

ρM

εn

   
!
∇ ⋅ ε(!r )

!
E(!r )( ) = 4πρM (!r )

ε
!
∇⋅
!
E !r( ) = −ε

!
∇⋅
!
∇V !r( )⎡⎣ ⎤⎦ = −ε∇2V

Generalized Poisson equation



The Apparent Surface Charge
Which electrostatic potential V ?

Which form for the reaction potential VR ?

V is the sum of the electrostatic potential VM 
generated by the charge distribution ρM and 
of the reaction potential VR generated by the 
polarization of the dielectric medium:

   V (!r ) =VM (!r )+VR (!r )

The reaction potential is defined by 
introducing an apparent surface 

charge (ASC) density (σ) on the cavity   
VR (!r ) ⇒Vσ (!r ) = σ (!s )

!r − !sΓ∫ d 2s

ρM

εn



Boundary element method (BEM)
BEM is derived through the discretization of an integral equation that is 

mathematically equivalent to the original partial differential equation (PDE).

Finite element method (FEM) or finite 
difference method (FDM): the whole domain 

of the PDE requires discretization.

FEM FDM

In applying the boundary 
element method, only a mesh 

of the surface is required.

BEM

Numerical methods for 
partial differential equations



   
VR (!r ) ⇒Vσ (!r ) = σ (!s )

!r − !sΓ∫ d 2s

Reaction potential

2. Partition of the cavity surface into N finite elements 
(tesserae)

1. Construction of the molecular cavity in terms of 
interlocking spheres (centered on the solute atoms)

3. Discretization of the apparent surface charge σ into 
N point-like charges q

 q
!si( ) = aiσ

!si( )
we assume that σ is 
constant on each 
element of area ai

The Apparent Surface Charge: 
the BEM solution



 q
!si( ) = aiσ

!si( )

The Apparent Surface Charge: 
the BEM solution

NTS apparent surface charges

   
VR (!r ) =

q(!si )!r − !sii=1

NTS

∑
Reaction potential

   
VR (!r ) =

σ (!s )
!r − !sΓ∫ d 2s

   
Wele = q(!si )V

M (!si )
i=1

NTS

∑
Electrostatic interaction

   
Wele = ρM (!r )VR (!r )∫ d!r



Which σ?

 q
!si( ) = aiσ

!si( )

Apparent surface charges



Dielectric PCM: DPCM 
S. Miertuš, E. Scrocco, J. Tomasi
Electrostatic interaction of a solute with a continuum.  A direct utilization of ab initio molecular potentials for the prevision of solvent effects 
Chem. Phys. 117-129, 55 (1981)

Integral Equation Formalism: IEFPCM
E. Cancès, B. Mennucci and J. Tomasi 
A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic & anisotropic dielectrics
J. Chem. Phys. 3032-3041 107 (1997)

Conductor-like Screening Model: COSMO
A. Klamt and G. Schüürmann, 
COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient
J. Chem. Soc. Perkin Trans. II 799-805, 2 (1993). 

V. Barone, M. Cossi
Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model 
J. Phys. Chem. A 1995-2001, 102 (1998)

A PCM-like reformulation of the COSMO model: CPCM

Apparent surface charges:
the PCM family



In the linear response 
approximation, the solvent 

polarization vector is:

The original formulation: DPCM

At the boundary of two dielectrics, i & j, 
there is an apparent surface charge 

distribution given by

   

!
P = ε −1

4π
!
E

  
σ ij = −

!
Pi −
!
Pj( ) ⋅ !nij

Taking into account that :
εi = 1  (inside the cavity there is no dielectric) 
εj> 1 (outside the cavity there is the solvent)

σ DPCM = − ε −1
4πε

!
EM +

!
Eσ( ) ⋅ !n

S. Miertuš, E. Scrocco, J. Tomasi,  Chem. Phys. 117-129, 55 (1981)

2π ε +1
ε −1

⎛
⎝⎜

⎞
⎠⎟
Î − D̂*

⎡

⎣
⎢

⎤

⎦
⎥σ DPCM =

∂VM
∂nD̂*σ (x) = ∇ 1/ | x − y |( ) ⋅n(x)⎡⎣ ⎤⎦σ ( y)dyΓ∫

Integral operator 

i

j

nij



The Conductor-like formulation

A conductor (infinite permittivity, ε =∞) instead of a dielectric: a new condition on 
the total potential

   VM (!r )+VR (!r ) = 0

Integral operator
   
VR (!r ) →Vσ (!r ) =

σ C (!s )
| !r − !s |

d!s∫ = Ŝσ C

Conductor 
apparent charge  VM + Ŝσ C = 0   σ

C = −Ŝ −1VM

We recover the true dielectric behavior by scaling the conductor charges 
using the real (finite) dielectric constant:

σ CPCM = ε −1
ε + x

σ C

A. Klamt and G. Schüürmann,  J. Chem. Soc. Perkin Trans. II 799-805, 2 (1993).

the value of x should be set to 0.5 for neutral molecules and to 0.0 for ions



inside the 
cavity: ε=1

outside the 
cavity: ρM=0

LinV = −∇2V = 4πρM

LoutV = −ε∇2V = 0

Lin ⇔Gin(x, y) =
1

| x − y |

Lout ⇔Gout (x, y) =
1

ε x − y

Green 
Functions

Integral Equation Formalism: IEFPCM
E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys. 3032-3041 107 (1997)



IEFPCM 2π ε +1
ε −1

⎛
⎝⎜

⎞
⎠⎟
Î − D̂

⎡

⎣
⎢

⎤

⎦
⎥ Ŝσ IEFPCM = − 2π Î − D̂( )VM

DPCM

2π Î − D̂( )VM + S
∂VM
∂n

= 0

2π ε +1
ε −1

⎛
⎝⎜

⎞
⎠⎟
Î − D̂*

⎡

⎣
⎢

⎤

⎦
⎥σ DPCM =

∂VM
∂n

COSMO (CPCM)

Ŝσ C = −VM

The ASC family & the connections
Ŝσ (x) = σ ( y)

| x − y |
dy

Γ∫
D̂σ (x) = ∇ 1/ | x − y |( ) ⋅n( y)⎡⎣ ⎤⎦σ ( y)dyΓ∫

Integral
operators

D̂*σ (x) = ∇ 1/ | x − y |( ) ⋅n(x)⎡⎣ ⎤⎦σ ( y)dyΓ∫



There are basically two strategies to solve the system:

Inverting T by a direct method

By an iterative method

   T(ε)q = −RfM

The discretization of the surface charge

   

T̂ (ε)σ = −R̂
!
EM ⋅ !n

VM    

⎧
⎨
⎪

⎩⎪

    

fM
⎡⎣ ⎤⎦ j=

!
EM (!sj ) ⋅

!n(!sj )                    DPCM

VM (!sj )             CPCM & IEFPCM

⎧
⎨
⎪

⎩⎪

Vector fM collects 
electrostatic potential 
(or field) produced by 
the solute on the 
surface elements: 



4) The QM 
problem

QM/continuum: a step by step strategy

3) The 
numerical 
solution: 

the surface 
mesh

2) The 
electrostatic 

problem: 
the Poisson 

equation

ρQM

ε
1) The 

definition of 
the boundary: 
the molecular 

cavity



The QM/Continuum approach

The Self-Consistent Reaction Field (SCRF) method

Tomasi, J., Mennucci, B., & Cammi, R. (2005) 105, 2999



The ASC model is formulated for an ideal charge density completely inside the cavity

The outlying charge effect

(in)

(out)

Boundary 
conditions

  −∇
2V = 4πρ

  −ε∇
2V = 0

ρQM

ε

In the ideal world: 
the Gauss 
theorem is 
satisfied

Gauss Theorem

σ PCM ds
Γ∫ = − ε −1

4πε
!
E ⋅ !n ds

Γ∫
!
E ⋅ !n ds

Γ∫ = 4π ρ dv
V∫   

qi = Qcalc = −
ε −1
εi

∑ QM

Within a QM description of the solute: 
the electronic charge necessarily 

spreads outside the cavity (escaped or 
outlying charge)

In the “real” word:
  
Qcalc ≠ −

ε −1
ε

QM



In the presence of the escaped or outlying charge:

The polarization of the solvent should be expressed in terms of two apparent charge 
distributions:

On the cavity surface
In the outside (bulk) volume

  
β = −

ε −1
ε

ρM
outσ

β is easily computed once ρ is known, but its contribution to the reaction field 
involves an integration over the whole space outside the cavity !

The electrostatic interaction between solute and 
solvent (solvent reaction field) should be 
computed by a double integration

The outlying charge effect



A solution for the outlying charge effect
To have a more correct description of the solvent polarization we have to find 

a way to include the effects of the volume apparent charge β

These effects can be approximated by an additional surface charge. 

  σ ' = σ ins +αout

IEFPCM charges produce inside the 
cavity an exact reaction potential 

  σ ' ⇔σ IEFPCM

αout can be defined so to generate inside the cavity the same 
electrostatic potential as that due to β:

  
Ŝα =Vβ

D M Chipman, J Chem Phys, 112, 5558 (2000).



Solute electrostatic 
potential on the 
surface cavity:

VQM (
!si ) = Ψ V̂i Ψ +Vi

N = − Ψ 1
!r − !si

Ψ +
Zk!

RK −
!siK

∑

The effective Hamiltonian

The solute wavefuntion depends on the solvent operator 
& the solvent operator depends on the wavefunction!

T(ε )qASC = −RVQM
ASC 

charges

V̂R =
i
∑ qi

ASCV̂ (!si )

  
Ĥeff Ψ = ĤQM + ĤQM /clas

elec( )Ψ = EΨ



  
Es = Ψ Ĥ eff Ψ

Eigenvalue: 
Internal energy

G = Ψ Ĥ eff Ψ − 1
2

Ψ V̂R Ψ = Es −
1
2
EintElectrostatic Free 

energy functional

In a thermodynamical language: 
we have to add the work necessary to polarize the solvent which is opposite 

in sign and half in magnitude with respect to the interaction energy.

non linear effective 
Hamiltonian

The variational principle can be applied but not in the standard form:
here the functional to be minimized does NOT correspond to the eigenvalue

A variational formulation

ĤeffΨ = ĤQM + V̂R( )Ψ = EΨ



How do we introduce solvent effects?
we add a new solvent-dependent operator

Effective  
Fock (or Kohn-Sham) 

operator
F̂ eff = F̂ 0 + X̂ RF

X̂ RF = 1
2
∂Eint
∂ρ

= 1
2
∂ qASC (ρ)V(ρ){ }

∂ρ

Reaction 
Field 

operator

It changes at 
each iteration of 

the SCF cycle
X̂ RF (ρ) = qi

ASC (ρ)V̂i
i
∑

Self consistent reaction field (SCRF)

qASQ = −T−1R( )V(ρ)
=QV(ρ)

T(ε )qASC = −RV(ρ)



Post-SCF methods & Polarization

An example: 
inclusion of electronic correlation using 

Moller Plesset perturbation theory

The nonlinear solvent operator is easily nested in the standard 
Self-Consistent-Field approaches (Hartree-Fock, DFT): 

no need of further iterative schemes

But difficulties appear in post-SCF calculations 



When the molecule interacts with a solvent

Orbitals & orbital energies are obtained with a “solvated” Fock 
operator: 

they account for the presence of the environment

MP2 
correction E2 =

1
4

ij ab − ia jb( )2
ε i + ε j − εa − εbab

virt

∑
ij

occ

∑

MP2 & Continuum Models

Solvation effects change correlation but not viceversa

Can we include correlation effects in 
solvation?



MP2/ASC: the relaxed scheme

New reference state in the presence of new ASC charges

Relaxed MP2 
density

MP2 change in the 
density matrix: orbital 

relaxation   Prelax = PHF + P(2)

Relaxed ASC charges

qASC(Prelax ) = q
ASC(PHF )+ q

ASC(P(2) )

Solvated Hartree-Fock

Iteration until 
convergency

X̂ RF ⇔ qASC(PHF )
F̂ eff = F̂ 0 + X̂ RF



Unrelaxed & Relaxed solvation: 
Interaction energies

BSSE MP2/aug-cc-pVDZ; energies in kcal/mol

UnRelaxed Relaxed % variation

UU -1,06 -2,23 -110

GC -6,73 -9,97 -48

AU -3,37 -4,65 -38

Hydrogen bonding interaction energies

UnRelaxed Relaxed % variation

CU -4,58 -6,85 -50
UU -4,54 -5,90 -30
GC -4,92 -6,24 -27
AU -6,53 -7,68 -18

BSSE MP2/aug-cc-pVDZ; energies in kcal/mol

Stacking interaction energies


