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L The Time-Dependent Schrédinger Equation

The Time-Dependent Schrdodinger Equation

ih o w(a, ) = F(a,r, 1

If the Hamiltonian is time-independent, formal solution

V() =exp (—th) v(0)

Further, if H is time-independent we can write

W(x, t) = W(x)e~ i

and 5

iha\ll(x, t) = hwV;(x)

By comparison with the TDSE, V; are solutio
time-independent Schrédinger equation

Av; = EV; = hwv;

Phase factor
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LThe Time-Dependent Schrédinger Equation

V; is a Stationary State as expectation values (properties) are
time-independent

(O) = (Wi|O|w)) et = (| O|w;) (6)
If wavefunction is a superposition of stationary states,
)= cvi(x)e ™" (7)
i

now,

:—IHZZC G (W;|O|w;)ei—it (8)

An expectation value changes with time and depends on the initial
function (c; coefficients).

A non-stationary wavefunction is called a WAVEPACKET.
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The Clamped Nucleus Hamiltonian
For a given nuclear configuration q, if we clamp the nuclei in place
then the electronic Hamiltonian can be written:

i _i* 1 o2 +§ & 35 2.2, o
. = 2Me : — 4meofj 4meoRap
eKE Vee Vin
In atomic units ,
g A 4regh
Length: 1 Bohr=0.529 A ap = ﬁ
Energy: 1 Hartree =2625.5kJ mol~! E, =

47reoao

=27.21eV

N e 9 ZZb
a
et iEa S R

i=1 a=1 ,/1’/ 1
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The clamped nucleus Hamiltonian can be solved to provide the
electronic wavefunctions at a specific nuclear configuration. This is
what is done in quantum chemistry.

Hayi(riq) = Ei(r; q) (11)

i.e. the wavefunction is a function of electronic coordinates but
depends parametrically on the nuclear coordinates.

Return to full TDSE with Hamiltonian
A=Ty+HA. (12)

and write the full wavefunction as a product of nuclear and electronic
parts where the electronic function is a solution of the clamped
nucleus Hamiltonian:

v(q,r,t) = x(a,t)y(r;q) (13)

This is an adiabatic separation of variables
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The Nuclear Schrédinger Equation

First remove the electronic motion from the TDSE.

.0 r
ih vy = H|w) (14)
w192 = (Tt B 10 1) (15)

Multiply by (¢ | and integrate over the electronic coordinates

.0
ihge 1) = (&1 Twly) + V(@) | x) (16)
using the potential function

(Y|Ha(q)) = V(q) (17)
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To analyse KE function, use a simple form of the KEO

1
Z 2M,, 6q2 (18)

with M,, the nuclear mass. Remembering that the electronic functions
depend on the nuclear coordinate, a single term of this KEO can be
written

1 0? 0 0] 0?
WITwl) = g3 (W) +2Wl5e e+ 5 ) (19)

And as the derivative operator 9/0q is anti-hermitian
(W) =0 (20)
oq "
we obtain

2 2
(I Tul) = — Qwa )+ gf) (1)
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Ignoring the first term on the RHS, which is (hopefully) small

(I Tnly) = T (22)
we obtain the TDSE in the Adiabatic Approximation:
.0
iz | %) = (Tu+ V(@) | X) (23)

This is the basic picture used in chemistry that the nuclear and
electronic motions can be separated. The nuclei then move over a
potential surface provided by the electrons that do not depend on the
electronic motion, but only on their position.

This is usually referred to as the Born-Oppenheimer Approximation.
Sometimes, however, B-O Approx is used when the scalar term
<¢\§sz¢> is included. Most authors call this latter approximation the
Born-Huang Approximation.
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Wavepacket Dynamics

it
nadlli

e‘
i

To solve the TDSE require:
» Potential surfaces

231-% » Algorithm to propagate
" rlad wavepacket
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TDSE: The Complete Solution

A full solution requires a multi-configurational ansatz. Start by using
Born representation

ZX: Wi(rq) (24)

where electronic functions are aII the solutions to clamped nucleus
Hamiltonian Eq. (11). The TDSE is now

3 | w) 2 S (T ) L 14 (@9)

!

Now multiply by one electronic function (¢; | and again integrate
.0
i 13y = D [ Tl + Vi@ | xi) (26)
i

using the full set of potential functions

(¥jlHa(q)|4)) = Vi(q) (27)
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One term of the KE operator in the electronic basis is now

1 0? 0 0 0?
(1 Tul) =~ 7 () + 200 )5+ 3z ) (28)

which can be written in terms of the scalar and vector derivative
couplings, G and F

(Wil Tnlvi) = —ﬁ (Gji — 2/:_,7.V) + Tn (29)

where
Gi = Z(%I R 1/),> (30)
Fit = (Yjlz—vi) (31)

8%
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Defining the non-adiabatic operator

/\j,' 2M (G/, + 2F/, V)

the TDSE in the adiabatic picture is therefore

lﬁ* [x3) =D (T + V) & — Ail | xi)
i

Finally, using the fact that
G=(V-F)+F-F
Eqg. (33) can be written:

1 )
—5p(V1+FP+V x = i 2%

(34)
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The Adiabatic Picture
Assuming ; ~ 0
[?n + v} = ih% (36)

and we recover the adiabatic TDSE where the nuclei move over a
single potential energy surface, V, which can be obtained from
quantum chemistry calculations.

An expression for the derivative coupling in terms of the energy of the
states involved can be obtained from

V{i|Heil) = (VUi Hellty) + (il VHall¥)) + (Wil Het| Vi) - (37)
As we are using the adiabatic basis,

V (¥i|Hel|tpj) =0 (38)
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And as Hvy; = Viv;, we obtain

Wil (VFa) 19
—V,

7 fori#£j . (39)

Fj =

Compare this to the Hellman-Feymann expression to the derivative of
a potential

Vil Heili) = (il V Hell i) (40)
and we see this is a “coupling force”.

The derivative coupling is singular if 2 potential surfaces become
degenerate.
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The Diabatic Picture

To remove these singularities, we first separate out a group of
coupled states from the rest (group B.O. approximation).

1 . ox9)
_m(v1 @ 4 F(g))Z + V)| 5 (9) — ,h% , (41)

If we rotate the adiabatic electronic basis via a unitary transformation

P = 5(q)y@) (42)
then (dropping (g) superscript)

sf —ﬁ(V1+F)2+V SS'x =inS'x (43)
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such that the Hamiltonian can be written
(d)
[Tt + W) x(@ = in X2

where all elements of W are potential-like terms

w = sfvs
@ = sty@
1
_ gt 2g _—
2Ms (V1+F)°S a1

The last relationship can be shown to be correct if

VS = —FS

Baer Chem. Phys. Lett. (1975) 35: 112
Worth and Cederbaum Ann. Rev. Phys. Chem. (2004) 55: 127

(44)

(48)



Non-Adiabatic Dynamics
LThe Time-Dependent Schrédinger Equation

L Conical Intersections

Surface Crossings

For a 2-state system, the diabatic potentials are

Wii Wi
W:
< Wiz Wa >

Eigenvalues of diabatic potential matrix are adiabatic PES:

1 1
Vy= E(VVH + Wao) £ 5\/AWZ +4W2,

Surfaces degenerate at qq if

AW = Wop - W1 =0
Wi = 0
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Avoided Crossing

Two conditions need to be met for degeneracy. Impossible if only 1
coordninate. Hence in a 1D system states that have non-zero
coupling do not meet and form an avoided crossing.

] LP e P e e B e e ol

lonic: Na®+1—
sk Yo |
3015 Covalent: Na+1 7|
25 -
20

Diabatic

Nal* —e [Na-- " —e Na+ [ +E,pp, |

Potential Energy (10°cm’™)

Adiabatic

1 1 (RS

1 1 1 1
— t }
s Ra=6S3A 15

Internuclear Separation A)

Nal Potential Surfaces
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In multi-dimensional systems, Egs. (51,52) can be satisfied.

Diabatic potential matrix elements are all potential like functions so
can be represented by a Taylor expansion around a point such as qq

Z 28qaq“ 2—q0)(q5—G0)+
(53)

Move to go where the states |1) and |2) are degenerate. If at this
point we take ©(¥ = (@ then

Wi = ”q0+zaq

qu qqc

Wi = @ IHalv(®) = E ; i=] )
0 ;i i#) (55)
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At qo, E; = E; = E and so expanding to first order:

E 0 R1-F X-T
W= > o =
(0 E>+<)\.r ,‘{2.r> (56)

where r, = 9o — Qoo and A, x; vectors of potential derivatives. As the
diabatic and adiabatic electronic functions are equal at qo, the
on-diagonal derivative is the gradient of the potential

0 0 Vi 5 Hel

Ko = - (Ml ®) = 5o vi= @ 2w e7)

and the off-diagonal derivative is the derivative coupling (See Eq. (37)
and use the fact that thje derivative coupling is 0 in the diabatic basis).

)
0Qa

. OHg
A= 9qa

(W Harp$y = (@ T2 | (58)
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Thus

gradient difference
derivative coupling

> Q
i T Y

If we move so that F is orthogonal to g, h, the states remain
degenerate. If we move so that 7 is in the plane g, h, the degeneracy

is lifted.
The plane defined by {g, h} is called the branching plane. And the

shape of the surfaces in the branching space have the topography of
a double cone. This is a conical intersection

22
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L Conical Intersections

The Importance of Symmetry

Symmetry plays an important role as conical intersections often occur
at nuclear configurations with high symmetry. When this happens, the
matrix elements

0 Hel

(ilHalty) and (|52

%))

will be zero if the integrand is not totally symmetric wrt the point group
of the molecule. As the H is always totally symmetric,

(WilHalwy) # 0 if ;@[> A (59)
OH, :
Wil ggo ) # 0 H Tierel> A (60)

where A; represents the totally symmetric irrep
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In all cases
> Kq,i 7 0onlyfor [, D Aq

If the electronic states have different symmetries
» Ao ZQonlyforl, =T;®T;

For example in pyrazine, molecule is Dyp, states Sy(Bzy), S2(B2y) and
as By, ® B3y, = Big only modes of this symmetry can couple the
states (there is only 1 of these v4¢5). There are four modes with Ay
symmetry that have non-zero « values.

The GD and DCP are thus independent and a conical intersection
must occur.

24
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Some point groups (non-Abelian) have degenerate representations.
These impose further constraints on relationships between the values
of k and .

For example, in many point groups with an E irrep, E ® e D Ay and
the doubly degenerate electronic states are coupled by doubly
degenerate vibrations. This is the E ® e Jahn-Teller case and

Ki = —Ko = A\

Higher order terms are goverened by similar relationships. For a
complete analysis of the JT problem see Viel and Eisfeld JCP (04)
120: 4603.

If no symmetry is present a Coln can form if the modes involved in
the ¥ and A happen to be independent. These are called accidental
Coln in contrast to symmetry induced Coln.
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Types of Conical Intersections

X
S

N
N3

» Sloped conical
intersection

> K2, k1 SAMe sign

bR ook N @

A0
N

7

N \\\\‘\\“‘;}a'llll,,’(/
WL
oobsd

R
NN
L

» Peaked conical
intersection

> ko, k1 Opposite signs

N
K

LA
R XV

bR ook W
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0N
*"Wlill’ 7
SN 1777
NN )
* Q@%ﬁ%&@%%%#zééy

\

» E®e Jahn-Teller

> Ko = —K{ = A

= » Non-Abelian groups
with E irrep

» Jahn-Teller

| 4 Ko = —K{ = A

» second-order
couplings included
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\\\‘*

\\\\\\w

“k\‘k\\\\\\“‘\\t
R

» E x b Jahn-Teller
> kg = —Ky F# A
D>d

0'
'\ 7
z<w%n&¥ko"‘,/a§§?/

v‘)
.O.l:i;z/zf: /

» Renner-Teller
Intersection

> ’{‘27’4’17A:0

» Second-order Terms
highest order
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Peaked v Sloped

For dynamics, 2 main classifications

S — N //’
I 2N I p
> >
Relaxation Co-ordinate Relaxation Co-ordinate

A

A
\ Excited State Excited State I

S~ % I
Ground State \ Ground State

Peaked Sloped
Atchity, Xantheas and Ruedenberg JCP (91) 95: 1862
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Non-adiabatic Crossing in Nal

Pump-probe Spectroscopy B
l PUMP LASER
. HIFP.N!S’
‘- MOLECULAR BEAM
o’ HMOVABLE PRISM

» pump pulse inititiates reaction

» probe pulse provides signal
related to dynamics

Nat* o [Naoo e Na + 1+ By

Signal

5 ReemX o

Internuclear Separation (A)

NN~~~

T2 3 4 s 6 1 ¢

Time Delay (ps)
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Signature of Conical Intersections

Octatetraene Pyrazine

Octatetraene Photochemistry (a)
Ackerman and Konler 1981 [ |

120 -M Radisforiess
Defoay
100 4 Ny

80 -
60 -

o J Sytmn’)
20
g

0 T T 1
0 100 200 10 X/am Jbo

Temperature / K

Yoshihara etal 193

T 19 5
Non-Adiabetic (o) NOKY 14 158 151ps.
Cis-Tran 10 ! “ [:] QAT T
Rt s\ || e
lso b
i wowowomowows owow Ll
JRSES— ¢
0 = T
g L& 1
! } ‘ "ﬂ i
[ 100 zZw  ajw 400 H
Abi fem-1 “
Energy Above the Origin /am = - o

0 %0
wavekeagth,am

)
- h Fig. 1. 5,(n, 1#)=S, absorption speciea of pyrazine dmasmbpweidimenth vapours. Values of
v o a the fuorescence lifetimes (ps) are shown above the absorption bands at which the sample is
excred
o wl

Yamazaki et al Farad. Disctjss. (83) 75:395
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Benzene: Photophysics

Quantum yield

Process 253 nm 248 nm 242nm 237 nm

Formation of photoproducts | 0.016 0.022 0.024 0.037

Fluorescence 0.18 0.10 0 0

Formation of triplet (ISC) 0.6 0.6 0 0
Absorption Spectrum “Channel 3”

10!

: U M

‘|

Clara et al Appl. Phys. B (00)71: 431
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Photochemistry

P

¢ \\\“‘:\\

&
S
A
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§ ; “@@@
i > B
e \\*“}\\\‘\\\:\:\\\

. A
<L A0
ARG \\\\\\\:\\\\\\\\\
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TR
. . S
Evolution over Potential Surfaces ‘.o 4
R

Rt
Conical Intersections = '
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o
W
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Other Conical Intersections

Intersections can also occur in higher dimensions:

» 3-states (Matsika and Yarkony JACS (03) 125: 10672)
» 2-states v 3-states (Coe and Matinez JACS (05) 127: 4560)
» 4-states (Assmann, Worth and Gonzalez JCP (12) 137: 22A524)

3-state Colns have a 5-dimensional branching space etc.

And can also be formed in diatomics when

» Light-Induced (Halasz, Vibok and Cederbaum JPCL (15) 6: 348)

34
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The Adiabatic-Diabatic Transformation matrix

The ADT matrix, S is defined vy Eq. (48) only through a derivative wrt
g. To completely define it specify that the diabatic and adiabatic basis
are identical at a particular point, qo. This may be the Coln minimum
(as above) or the FC point, or some other suitable point such as a
dissociation assymptote.

s@ (o ) (61)

This is referred to as fixing the global gauge.
NB the ADT is a global function S(q)
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For a 2-state Coln it is possible to get an analytic expression for S.

First write the diabatic potential matrix

(TN Wi
W_( Wi, T+A

with . .
Y= E(Wﬁ + Way)

Express the unitary ADT matrix in terms of an angle

S_ cosf sind
~ \ —sind cosé

Now choose 6 to diagonalise W

SWS’ =V

)

AZE(WZZ—VVﬁ)

)

(62)

(63)

(65)

36
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(cosze—sinza) Wis +2cosfsindA = 0

Y + (00320— sin29) A —2cosfsindW;,, = Vi

ViZZi\/AZ-i-WfZ

are the eigenvalues (see Eq. (50)). These equations can be
re-arranged to give

where

tan20 = dd

with

1
d: é(V+— V,): 1/A2+ W122

A
1
1 A\ 2 1 A
cost = —(1+— ©osing=—(1-=
\@< d) \@< d)
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Travel in Branching Space
Around a Coln. ADT.

I
-
o =

>

Il

TN ol

° 3

)

Il

o

>

Il

|
i

S is undefined at 0

Qg

=0 (W:=0,A4=aq)
10
0 1

0=n (W2 =0,A=d)

1 0
(0 1>><—1

3Tﬂ-(VV12<05A:0)
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Geometric Phase

It is known that an adiabatic wavefunction, 1) undergoing transport
has a phase factor

»C) =i 7{0 <w|a%w>dq (72)

which means that the wavefunction changes sign on travelling a
closed loop around a conical intersection.

This is the Berry Phase. Berry, Proc. Roy. Soc. A (84) 392: 45.
Note that the sign change is cancelled by the sign change in S.

Importance in scattering: Juanes-Marcos et al Science (05) 309:
1227

39
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Landau-Zener Model

For a particle on adiabatic surface 2 in the “non-adiabatic region”, the
probability of moving to surface 1 is

— 2r  Ff
P =exp (—hM) (73)

If P,_,;4 — 1 particle changes adiabatic (stays on diabatic) state.

—»  Covalent

40
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Propagating wavepacket: The Standard Method

Nuclear wavefunction expanded in primitive basis set:

N1 N/
W(gr, - ant) =D > A0 (@)X (arn)

h=1 Jp=1

Use Dirac-Frenkel Variational Principle:
.0
oV — V) =
< I@t > 0
to obtain equations of motion for A:

iAo = >0 (Gn) - xan)H (a0) X (@) A
L

H—

iA; = (y|H|®L)AL
L
Kulander “Time-dependent methods for quantum dynamics”, Elsevier, 1991
Kosloff, Ann. Rev. Phys. Chem. (94) 45: 145
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The Hamiltonian matrix elements
Need to evaluate matrix elements (integrals)

1 1 f
Ho o= > 0g) X IHIG - xg)
Z1,...£f
1 f
= > AT VDK
Z1,.HZ/

As written an N’ x N’ matrix of multi-dimensional integrals!

T:ZTK

Ty = Z< T, |Xz N8 yern

K

N x N matrices, which by a suitable choice of basis functions can be
solved analytically

I. Usually

42
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Il. The potential is a local operator V(q). Thus if basis functions are
localised, X,('R) ~ 0(q — q;) then
f
Vi = 03D vl )
= V(G- gp)du

To enable | and Il, use a DVR basis set in which

Xij = (oilX|$))
Uxu’ = x

where ¢; are an analytically known FBR. And so
= Uaii
i

are the DVR, x. ~ d(x — x,,). Various DVRs possible.

Beck et al Phys. Rep. (2000) 324: 1
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Integrating the TDSE

Full solution is

Split-operator method.
ef%":’f ” e*%neféw
so divide propagation into short steps and approximate
W(t+ 6t) = e 27 Vol T am Yoty (1)

Chebyshev Propagation Represent propagator by polynomial
expansion:

e 7w = 3" a,P(H)V
n

where P,(H) are generated by a recurrence relationship
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L Basis-set expansions

Great but limited due to exponential increase in computer resources
~ N ...

45/103
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The Multiconfigurational Time-Dependent Hartree
(MCTDH) Method .

f
\U(q17"‘7qfa Z ZAh /f H@/:)(qlivt)
k=1

=1 Jr=

Variational equations of motion for A and ¢.

iA; = D (y|H|P)AL
L

(1 _ p(n)) (p(n)>’1<H>(n)¢(n>

SPFs expanded in primitive grid

i)

» non-linear equations of
motion

» Computer memory n’ + faN wj= Z ajjXi

Beck et al Phys. Rep. (00) 324:1
Meyer, Gatti and Worth “Multidimensional quantum dynamics”, Wiley-VCH, 2009

46
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Where we have single-hole functions,

Nf—1

f—1
(f) Z Z Al1 Jr— 1k/ )H‘P/(‘:)(qmt)
k=1

Ji=1 Jr—1=1
mean-field operators and density matrices

(YD = @i H gy o = ) |9y = 5, A Age
time-dependent matrix elements

and

Ho = (g H|oL) = (@) .. 60| Hgf" ... o)

» for efficiency need product potential V = 3°_ csh"h®) . ..

(@] HI®g) = T sl |HMol) (02 Ay

47



Non-Adiabatic Dynamics
|—Methods for Solving the TDSE
L MCTDH

The Constant Mean Field Integration Scheme

AQ) — RO sy

o) —Z QRO G
E A D L
m olrj2) L R
Ao D A
@ Arp) — 5O A
t :} 0 t:17/2 t :} T '
iAyt) = XL:KJLALU)
i = (1-20) (h(%}”(mk%( . ZH(‘) )(r))
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Note on Treating Non-Adiabatic Systems

H=T1+W

To include the electronic degree of freedom use either:

Multi-set

ns M
a0 =330 S AL O] A6
s=1ji=
Or Single-Set:
i Ns
‘U(Qh--waa Z ZZAH Jns H ("i) q;mt)ls

=1 =1 s=1

H= 3218 T(s]+ 35 I8} Wat
s=1

s=1 t=1
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Combined Mode Particles
Re-write MCTDH ansatz

W(Cﬁv---an, Z ZAh jp len)(olmt

Jp=1

A “particle” may contain more than one coordinate,
Qf = (Qa, ab,-- -, qW)

e.g.

w(q17q27q3at) ZZAJUZ 90/1 )50/2 (QZ qs, )

ook

ZZAth (’0]1 O t)SO (Q t)

ook
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Saving in memory

All 1D functions

Mem ~ n' + fnN

Now combine d modes in each particle.

p = L particles with grid lengths of N?
If 7 < n? save memory.

Mem ~ &P + phAN?
If d = f, then full-grid used and i = 1
Mem ~ Nf

Result: MCTDH can treat ca 30 modes

Bench Mark: Pyrazine Spectrum

1.0

0.8

Intensity
o
(=2}

o
IS

o
[N}

00 =" S
220 240 260 280

wave length [nm]
» full 24D QD
» 650 MB

(205 MB good result)

» ca?2 x 10?2 MB for
“standard”

Raab et al JCP (99) 110: 936
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Multi-Layer MCTDH (ML-MCTDH)

Expand a multi-mode SPF in an MCTDH expansion to create layers:

ny Np 14
V(g..qnt) = > ) A ]t  Layert
r=1

h=1 Jp=1
ny nq Q

dant = Y .3 By (t)Hukj)(FI,,,t) Layer 2
k=1  ko=1 =

n

WAL = Y ZC,’:",R(t Hg@ (Se.t)  Layer3
h=1  [g=1

Each layer acts as a set of SPFs for the layer above and a set of
coeficients for the layer below.

Leads to a recursive sets of variational equations of motion:

Wang and Thoss JCP (2003) 119; 1289
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Ay = ) (Dy|H|P)AL
L

i) = (1 _ P(n)) (p(”)>_1<H>(H)¢(n)

(1 _ p(v)) (p(v>) Y@L

—
St
N
S
I

135 Mode Quantum Dynamics
Photo-induced ET. Spin-Boson Model.

0|

Borelli et al Mol. Phys. (2012) 110: 751 W w0 w0 w0 w0
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Parametrized Spfs (G-MCTDH)

P
v(Qy,...,Qnt) Z ZAh (1) H‘pj H gf(:)

h=1 Jo=1 K=n+1
Replace single-particle functions with Gau33|an functions

g(Q, 1) = exp (Q7¢,Q+Q"¢; + ;)
Propagate parameters A\ = {¢, &, n}

IA/ = ZSJK ¢k|H|¢’/ A/ ZZISIk gk|8tg/>

k=1 I=1

—1 ., 1
= > Si'HuA _ZZ’S/k ThA
Ik k=1 I=1
iNh = C'Y
Burghardt et al JCP (99) 99:2927 ; Burghardt et al JCP (08) 129:174104
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ADVANTAGES

» Need more GFs than SPFs,
» BUT set of parameters smaller than no. of grid points
» spatially unrestricted

DISADVANTAGES

» Non-orthogonal basis set - numerically difficult

» Efficiency requires approximate integral evaluation
LHA V= V(x)+ V'(x — Xo) + V"(x — x0)?
» convergence on exact result depends on accuraccy of integrals
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|

General Scheme

G-MCTDH gives general framework for Quantum — semi-classical —
classical dynamics. Can also treat open systems using density matrix
formalism.

Environment

Classical

Semi-classical

Quantum
(Grid)

(Uncoupled GWPs)

56/103
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Alternative Ansatz: MCTDH/G

Return to original MCTDH equation and variational derivation:

Ny Np p
V(@ Q)= Y AL T e
r=1

h=1 j=
and now using

m
|<pf>:Z|ga>Dar ) f':1,f7
a=1

obtain EOMs for the A, ¢; and A\, as before, but for SPFs

iDyi =" 8307 (Gal(1 = PY(H)ilr) + D fniDom — > S 7 D
ljw m af
with P =" |¢r) (¢r|. GWPs are TD basis for SPFs.

First layer of “Multi-layer G-MCTDH”
Rémer, Ruckenbauer and Burghardt JCP (13) 138: 064106
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L Gaussian Wavefunctions

Grid-based QD — Gaussian Wavepackets
In limit of only GWP basis functions G-MCTDH becomes the
Variational Multi-configurational GWP Method: vMCG

V(x, 1) =Y Asgu(x,t)
J

GWPs long-tradition in time-dependent QD.

» Conceptually simple
» Can be related to semi-classical dynamics
» possible to use for direct dynamics

BUT

» numerically unstable
» convergence properties not clear
» limited to rectilinear coordinates
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L Gaussian Wavefunctions

vMCG Equations of Motion

n
V(Qr,..., Q) =) Albg
j=1

EOMs are as for G-MCTDH (above). For frozen GWP basis, the
EOMS can be written in terms of the centre coordinate and
momentum as

: Plﬁ
B = — +5— Yoo
Qis Zglﬂ % l[ima m,
P = — v,’ﬁ +Re Y Cizmo Yima
mao

Most other GWP based methods use basis functions that follow
classical trajectories.
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L Gaussian Wavefunctions

Multiple Spawning

Martinez and Ben-Nun have developed GWP propagation for
non-adiabatic systems. Basic ansatz:

=33 AP (1)g¥ (g, 1)
s

Variational solution of TDSE for expansion coefficients

p
IA ZSIK ¢k|H|¢/ A/ ZZISI’( gk'atg/>

k=1 I1=1

» A, as vVMCG.
» GWPs follow classical trajectories as Heller.

If basis set complete, and integrals exact, full solution.
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L Gaussian Wavefunctions

Basis set expanded in non-adiabatic region
» |dentify region
» Propagate GWPs though
region
» “Spawn” GWPs on other
surface

» Rewind time

» Propagate coupled
functions

Different criteria to place func-
tions so as to conserve energy
etc.

Very efficient

Martinez et al JPC (96) 100: 7884
Ben-Nun and Martinez JCP (98) 108:
7244
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E.g. Retinal Isomerisation

@)
/'\,‘\,‘\,' —ittcs
L “ —albtrang
b L =3

aibrans
- = 15gs
1i-cle

R 50 -mo 3 150
Time / fs

2 /\ @ 6 diabatic states all

Lo
@\/\/\/\ éﬁ/\vv\/\\f DOFs. 3 runs with 10
7 starting GWPs

LS 0 50 160 150 200

¥4 z
e N\
V4
-— \:
z £
—
N\
E S z/
N
Population
g g
I
3

(Ben-Nun and Martinez JPCA (98) 102: 9607)

Tunneling can also be simulated but only if barrier position known
(Ben-Nun and Martinez JCP (00) 112: 6113)
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Trajectory Surface Hopping

Classical trajectory swarm sampling surfaces. Non-adiabatic term as
hop. P—,1 = — % log|cz[2. (Tully)

Advantages:
Computationally simple. Good scaling.

Disadvantages:
Can converge slowly (ensemble of emsemble).
Looses nuclear coherence during conical intersection crossing.
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Ehrenfest Dynamics
Assume a single configuration and a TD electronic function

v(q,r,t) = ZA r,t)

Evaluating [, H] and [p, H] leads to the Ehrenfest theorem

0 . 1. 0 . oV
@ =B e =50

m
The localised nature of the nuclear functions means that the
dynamics reduces to classical equations of motion:
P OV

i = , Pi=

m  0q

9=qi
with the potential averaged over electronic states

V = (4 ()| Herl1(1) ZC ) (Wil Herl¥j) ci(t)
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Coherent Coupled States / Multi-Configurational
Ehrenfest

CCS is from the field of semi-classical dynamics. Superposition of
trajectory-guided frozen Gaussians that follow Ehrenfest forces:

qg =p
. ov
p = {

_%>

hence some quantum effects in GWP propagation. Various tricks to
help expand basis set and acheive good results.

Shalashilin and Child JCP (01) 115: 5637
Shalashilin JCP (10) 132; 244111

Compared to vMCG: Shalashilin and Burghardt JCP (08) 129: 084104
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,

A Simple Hamiltonian: The Vibronic Coupling Model

Assume diabatic basis: Zq&a Ya(r; Q)

H(Q) = T(Q) + W(Q)

Wop = (YalHelvp)
0 0
Wog ~ Viap+eat), a_Q<1/’a|Hel|¢ﬁ> 3—Q(¢a|He/|1/fﬁ> Q +
B 1 1
| /
ki, \i #0 if Faxr,-xrﬂgm

Koppel et al Adv. Chem. Phys. (1984) 57: 59
Worth et al, Int. Rev. Phys. Chem. (08) 27: 569
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Butatriene photoelectron spectrum H>c=c=c=<

18 modes Dy,
)(2B2g 0 A2B2u

<¢a‘%|¢ﬁ> B2g X B2u = Au

linear: 5 modes, 16 parameters
bilinear: 18 modes, 79 parameters

i)~ [ atw(o) | w(ee-
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Butatriene Cation PES X /A
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LThe Vibronic Coupling Model

Butatriene Dynamics

Density [arb]  Energy [eV]

Density[arb] ~ Density [ab]  Density [arb.]

Density [arb.]

1

MCTDH
MB

standard

MB

97
7

0.9
10.3
431.5

16.4

2.5 x 10*
1.5 x 10"

Intensity

Intensity

5-mode 18-mode
2 mode 18 mode
undamped

95
Energy [eV]

10

95
Energy [eV]

10
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Diabatisation

The VC Hamiltonian is referred to as diabatisation by ansatz. A
similar, but more powerful version using internal coordinates has been
developed by Yarkony (Zhu and Yarkony JCP (16) 144: 044104).

Other procedures to provide diabatic states rely on using properties
that are assumed to be smooth e.g.

» dipoles + quadrupoles (DQ Method Hoyer et al JCP (16) 144:
194101

» orbitals (Boys localisation Subotnik et al JCP (08) 129: 244101

» generalised Mulliken-Hush ET (Cave and Newton CPL (96) 249:
15)

» overlap wrt a reference MRCI wavefunction (Simah JCP (99) 45:
2193) - Molpro
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Heteroaromatic Photodissociation

oo e
N N
e
v U
Imidazole Pyrrole Phenol

' *5
i

E

Energy (eV)

10 15 20 10 15 2.0
Ry (A) Rou (A)

Ashfold et al Science (06) 312: 1637

Excitation to =7* states
Dissociation after crossing to no* states
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Photodissociation of Aniline

Vertical Excitation Energies at FC using aug-cc-pVDZ

State EOM-CCSD EOM-CCSD(T) Experimental

X A 0.00 0.00 0.00

A(nn*) A 4.77 4.21 4.402

B(ro*/3s) A 5.02 4.69 4.60°
C(Bp,) A 5.67 5.31 -
D@p,) A 5.77 5.42 -

E(zr*) A 5.85 5.42 5.392
(Bp;) A 6.38 6.05 -
G(3d,) A’ 6.39 6.04 -

Wang et al JCPA (13) 117: 7298
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L The Vibronic Coupling Model

Model Hamiltonian

H=T+W with w@Q) =W +whQ)+w®@Q)+---.

Usual Vibronic Coupling model in mass-frequency scaled normal
modes except for N—H bonds: take mode combination

Qs Qse

Vvlfo)(é E + Z Ya 02 + A {Q 35 T @gs} +Wié(35é36
a=1
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Cuts through PES

Energy (eV)

i

Energy (o)

Energy (V)
Energy (eV)

Enog 6V
Energy (¢V)

74/103
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L The Vibronic Coupling Model

Cut through PES along N—H

Morse oscillators for bound states, avoided crossing for B(wo*/3s)

Waa(Qss) = % {Vb + vy — \/(Vb —vg)+4 (Atanh [pégs})z} ,

vp = Dy [eXp(*ab(Q\?G — Chs0)) — 1}

Energy (6V)

vg = Aexp(—ag(Qas— Q% 0))+Da.

o

48 16 14 12 10 B £ 4 2 0

Topologies EOM-CCSD. Corrected at @y using EOM-CCSD(T).
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Aniline Spectrum

Calculated Experiment
@ o
20 240 260 280 300 220 240 260 280 300
wavelength / nm wavelength / nm
Lower band

8 eyer 76/103
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Electronic Absorption Spectrum of Pyrrole

By(3p) ——

Aglan) ——
CD E

55 60 65 56 58 6

J— Energy (eV)

Symmetry Character CASSCF CASPT2

@a,

20
100
s o
HE i o
a0 = 40
2 2
oo o
T 0
0 100

Ay 0.00
As 3s/no* 417
B4 3s/no* 4.87
Ao 3p: 4.91
A4 Tt 6.47
B> T 7.83
B1 sz 5.67

0.00
5.06
5.86
5.87
6.01
6.24
6.69

» 6-state, 9-mode model.
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Pyrrole: 6-State 9(10)-Mode Model

Ignoring v
State populations

=
o
=
i . N
HE
z/vv\
W
é;i_?j;
§
i
H
Flux

Including v»

State populations

==
m=
$ e e
=
“Trapped” -
PP Flux

“Geometry”

78/103



Non-Adiabatic Dynamics
|—The Hamiltonian
LThe Vibronic Coupling Model

Pyrrole: Time-resolved Photo-electron spectroscopy

Y 045
E - T )
£ s £
R s 0T %
015 b
2
03 2
& R 1 s 18 23 b
Kinetic encray(eV} & o
DI
by Decay Associated Specira © "
1 DO 8-
os B
4650V S
¥ a2
s (m0%)
S, (mo*) Tia
03 07 11 15 19 23 < S ki
Kinetic energyieV] .
Bl 2
; onization spectru
.3 —_— =k 5.7eV
it 201 E
15, e :
it | s
i 3
i _l s :
Lk 3
o ° g
S
03 07 11 15 19 23
Kinetic energy(eV)

Pump-probe with 5.7 eV
Wu et al JCP (15) 142: 074312
79/103
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Benzene: Time-Resolved Spectra
Total lon Count

Pump 243 nm
Probe:
260, 254, 235

eKE
9.244 eV __L

Anm
6.05eV —p—— 'S,
4.75eV S,
Anm
- S,
Benzene

1.0

0.9

0.8

0.5

0.4

Integrated photoelectron signal
°
>

0.3

0.2

* Minns et al PCCP (10) 12: 15607

Q“’.._“ 5 sb 08
088
15 ot
-
" 7
0 05 10 15 20

Delay (ps)

Photo-electron spectra

Relative Intensity

Relative Intensity

)
0 1
Figure 3 Time (ps)

o -0 2N w

1

0O 04 08 12 16
e s dd
& & E&,&,

eKE (eV)

Decay 220 fs + 12 ps

Period 1.2 ps
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Benzene Potential Energy Surface Cuts

5 -0 5 0 5 10 15

| Gt | v
Vi6a % / Ga
16 (QJY—‘
\
v
vy M
141

CASPT2 (6,6)/Roos
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LThe Vibronic Coupling Model

Simulated Absorption Spectra

5-state 8-mode model.

«1p?

-

BZu

Penfold and Worth JCP (09) 131: 064303

B1u+E1u
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Importance of Triplet States and ISC

Need SOC between states: (3W|Hsp|' W)
At FC point, S/ T, coupling zero. In general SOC small (<5 cm~)

5-state model (Sp, Si, T1, T2)

12.0
10.0 o0s |\ S+ T (red)
‘ Si (green)
= con| SFC (blue)
B 60 g
L T populations (inset)
4.0
20 02+
0.0

-10 5 0 5 10
Prefulvene Vector

0 =0 10w teos, wow " J
0 500 1000 1500 2000
Time (fs)

Penfold et al JCP (12) 137: 22A548
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Ab Initio Multiple Spawning: AIMS

Efficiency of spawning perfect for direct dynamics. Run in adiabatic
picture.

» Review: Ben-Nun and Martinez Adv. Chem. Phys. (02) 141: 439

» QM/ MM: PYP / GFP Chromophores in solution Virchup et. al
JPCB (09) 113: 3280

» Rydberg states in ethylene Mori et al JPCA (12) 116: 808

» TRPEspec of uracil Hudock at al JPCA (07) 111:8500
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L Direct Dynamics

Surface Hopping

A number of programs / methods. E.g.

» Newton-X (Barbatti)
» SHARC (Gonzalez)
» CPMD (Tavernelli)

Simple, but difficult ot converge and loss of nuclear coherence.
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L Direct Dynamics

Butatriene Dynamics From A

X A
10fs |- B
L # 4

Y
s & +
20fs |- + t{@» + 4
30fs 4 ) .
5
[ LS

+

La o
o 40fs | F + o

-90 -60-30 0 30 60 90
]

148
138
1.28 Re,
119

148
138
1.28 Re,
119

148
138
1.28 Rey
119

1.48
138
1.28 Reep
119

1.48
1.38
1.28 Reey
119

148
1.38
1.28 Reey
119

-90-60-30 0 30 60 90

]

Surface Hopping
v
wavepacket dynamics
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,

Salicylaldimine Test Case: 2D Proton transfer
Hamiltonian in normal modes fitted to RHF/3-21G*

) 4
w 0 2 n
H = W (9 A
Z 2 8q£ +9. )+ Z nQi e © a @
k=1,18 n=1 o9 o o0 o
2 @ _—o 9@
+B11Q1Q18+322CﬁQ13 %,. @®° o0 ©O°
3 3 2
+B51G1qis + Bi3qi1qis g e & <
2D Sallicylaldehyde Proton Transfer Flux: Full QD v GWPs
0.15 . : 2 V18
E}
[
-0.15 ; ; ;
0 20 40 60 80 100 16 /32 GWPs
87/103

Time [fs]
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Trajectories with 16 GWPs

VMCG Classical

GWP centre coordinate 16 classical GWPs

GWP centre coordinate 16 GWPs
4
2
Z,
B ]
3 2
. § N 2
0 20 40 60 80 10 - ~
o 20 40 60 80 100 (i) “1
ime (] 7
GWP trajectory in phase-space 16 classical GWPs. TN 7o
GWP wajectory in phase:space 16 GWPs 8 - T
8 6
6 4
4 2
. o o= ©]
E o = 2
H
2 a
-4 -6
S B
8 6 4 2 0 2 4 6
3 4 2 o 2 4 3 Vil

Richings et al Int. Rev. Phys. Chem. (15) 34: 269

88/103



Non-Adiabatic Dynamics
L The Hamiltonian

L Direct Dynamics

4D model: Linear Coupling

Autocorrelation function:

Full QD v 60, 60 GWPs.

Icl
o
N

0 50 100 150 200
Time [fs]

QD basis size: 4060 SPFs, 355,000 primitives

State Populations:

0.8

0.6

Pop

0.4

0.2

Full QD v 60, 60 GWPs.

20

40 60 80 100
Time [fs]

120
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L Direct Dynamics

Pyrazine wavepacket on Sy
GWPs: 10,10

Time : 50.000

4 ) H 1]
v6a [au] O - r
2 4 L
-4 4 L
-6 L

6 -4 -2 0 2 4 6
v10a [au]

v6a [au] 0 -
2
-4 A
6

MCTDH

Time : 50.000

v10a [au]
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Direct Dynamics
» For integrals (g;|H|gk), Quantum chemistry to second order.
» Gradients and Hessians directly from quantum chemistry.
» Store results in a database (energy, gradient, Hessian)

Ideally use adiabatic PES in direct dynamics as they are readily
available from quantum chemistry packages.

» States interact via the non-adiabatic coupling terms (NACT)

£ _ (el VAalvn)
ab Vb — Va
» NACTSs go to infinity at a conical intersection and adiabatic PES
become non-differentiable at such points.

Problem for LHA. Avoid these problems by transforming to the
diabatic picture. How can we define diabatic states on-the-fly?
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LThe Hamiltonian
L Direct Dynamics

Diabatisation by Propagation
Adiabatic - Diabatic transformation, S, defined by the differential
equation
VS = -FS

where F is derivative coupling. Exact for complete set of states.

v

At each GBF position evaluate F.

Choose S = 1 at the initial point of the propagation.
Solve for S by propagating from the nearest, previously
calculated, point.

S(g+ Aq) = ( 2/FAq> (I—;/F.Aq)S(q)

» PES and gradients transformed by S.
» Applicable to any number of states.

vy

Richings and Worth J. Phys. Chem. A (2015) 119: 12457
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L Direct Dynamics

Butatriene Model

il =
105 4 \\

3 10 A

-2 > > 95 4

\ 9

@ N

» Ground state normal modes from CAS(6,6)/3-21G* (G03).
» 2-mode model: torsion angle and symmetric central C-C stretch.
» Dynamics run on first-excited ion states.

» DD-vMCG using 25 GWPs with propagated diabatisation.
» Powell updated Hessian

93
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L Direct Dynamics

Excited-State Manifold
Diabatic PES

Butatriene lon

Adiabatic PES

» Colns found
» Smooth

5Au

Lo

Diabatic

PES
» Surfaces

depend on
Nstate

77
y
7

Y

N9jABiauz

Ve GIENE]

P GIENE]
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Butatriene lon: Excited State Populations

1.0

2 States
3 States e
s 4 States
g 0.8
=}
(=X
&
) 0.6
I
7]
8 o4
k3
>
i}
B 02
=
0.0
0 20 40 60 80 100
Time/fs

» Initial wavepacket at origin of the coordinate system on A-state.

» Rapid de-population of the A-state as the Coln is encountered followed
by partial re-population and oscillation.

» DD-vMCG results follow full grid-based dynamics.
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Formamide

Formamide

» Smallest, most stable molecule
consisting of HCNO

» Prebiotic Earth

» Found, by spectral molecular survey,

on Hale-Bopp!' e Lj?
> "Tentatively" found in IR-spectra of / : ‘NHZ t>
interstellar ices!? om 3*:”5 1o N
» Decomposition pathways studied ! . 2 E O\ : . L* [E)
» As yet, no excited state studies JI>/ 3 Z

[1]D. Bockelée-Morvan, et al, Astron. Astrophys. (2000) 353 1101-1114
[2]S. Raunier, et al., Astron. Astrophys. (2004) 416 165-169
[3]V. S. Nguyen, et al., J. Phys. Chem. A (2013) 117 2543-2555
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Formamidic Acid: Electronic Structure

» SA-CAS(10,7)/6-31++G*

VEE/eV Transition Dipole/au Character

» 6 states
State
S, 6.761
S, 7.082
Ss  7.747
Sy 10.245
Ss  10.781

0.234
0.010
0.535
1.482
0.351

nm
e
nm
T
TO

*

*

*

*

*
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,

Formamidic Acid: Direct Dynamics
Potential Surfaces

Initial Vertical Excitation to bright
Ss(mm*). 60fs 24 GWPs.

Diabatic Populations

- £=|  Tajoctory Analyss
j- Product No.
g o | O-Hbreak | 14
02{ o N A\ ot HN-CO 2
/s N-CH-O 2

0 10 20 30 “ 50
Time [fs] NH v CO 1
HNC-H-O 1
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L Direct Dynamics

Potential Surfaces
Cut along O-H bond

Adiabatic

Viev]

v10

Viev]

10

Cut along O-H OOP
Adiagatic

12 +

Viev]

12 4 \\\\\

10 4

Viev]
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Ozone Photodissociation

Two dissociation pathways

03(X'A1) — 0(2p'Dy) + 0:(A'Ag)
03(X'A1) — 0(2p°P) + 0:(X%%,)

Chappuis Band:

» 400 - 750 nm

» Coupled 1'A,/1'B;
Detailed QD study.
Full valence CASPT2/DZP.

Woywod et al JCP (97) 107:7282
Fléhtmann et al JCP (97) 107: 7296
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DD-vMCG of Ozone: Spectrum

Intensity
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DD-vMCG of Ozone:

State Populations
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L Direct Dynamics

Conclusions
Variational time-dependent basis sets are a powerful way of obtaining
the full solution to the TDSE including non-adiabatic effects.

» MCTDH provides a complete framework.

» ML-MCTDH grid-based for truly large systems - simple PES
» G-MCTDH flexible route to approximate dynamics - any PES but
restricted coordinates

» G-MCTDH — vMCG — GWP methods

» still complete solution possible
» numerically difficult

» Vibronic Coupling Model good for short-time dynamics

» More flexibility required for complete description of
photochemistry

» Direct Dynamics present state-of-the art: DD-vMCG, AIMS, ...

Present bottleneck: Electronic Structure theory!
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