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Bravais latticesThe fundamental concept for describing 2D and 3D periodic 
systems is that of a Bravais lattice.

A (2D or 3D) Bravais lattice is defined as an arrangement of 
lattice points which can be reached from any point of the 
lattice with displacement (position) vectors of the form

R = n1 a1 + n2 a2 + n3 a3

where n1, n2 and n3 are integer numbers (…-2,-1,0,1,2,...) 

and the three vectors a1, a2 and a3 are called 'primitive 

lattice vectors'. They span the lattice.

The choice of the lattice vectors is not unique for a given 
lattice, as the Fig. 1 shows. 

One lattice point can contain one single atom or a group of 
atoms, called basis of the crystal lattice.

Fig 1. [1]



Basis: 1 atomBasis: 1 atom Basis: 4 atoms



2D Bravais lattices

In 2D there exist 5 Bravais lattices:

Square:                         a1 = a2,   α = 90°

Rectangular primitive: a1 ≠ a2,   α = 90°

Centered rectangular:   a1 ≠ a2,   α = 90°

Hexagonal:                   a1 = a2,   α = 120°

Oblique:                       a1 ≠ a2,   α ≠ 90°

a1 and a2 are the lengths of the primitive lattice 

vectors.

Fig 2. [2]



3D Bravais lattices

1. Triclinic: a1 ≠ a2  ≠ a3,     α ≠ β ≠ γ 

2. Monoclinic: a1 ≠ a2  ≠ a3,    α = γ = 90°≠ β

    2a: primitive, 2b: base centered 
3. Orthorhombic: a1 ≠ a2  ≠ a3,    α = β = γ = 90°

    3a: primitive, 3b: base centered,
    3c: body centered, 3d: face centered
4. Hexagonal: a1 = a2  ≠ a3,    α = β = 90°, γ = 120°

5. Rhombohedral: a1 = a2  = a3,    α = β = γ ≠ 90°

6. Tetragonal: a1 = a2  ≠ a3,    α = β = γ = 90°

    6a: primitive,  6b: body centered
7. Cubic: a1 = a2  = a3,    α = β = γ = 90°

    7a: primitive, 7b: body centered,
    7c: face centered

In 3D: 7 crystal systems with 14 Bravais lattices

Fig 3. [2]
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Band Structure Theory. I. Hückel Theory
Hückel matrix H

Hμμ = (μ|heff|μ) =  α

Hμν = (μ|heff|ν) =  β if μν are nn

                        =  0 else 

H = α E + β T

E   unit matrix, T   topological matrix
S   overlap matrix,   Sμν = (μ|ν) = δμν

εj = α + β λj

λj   eigenvalues of T

Alternative names:
HMO = Hückel Molecular Orbital method
             (chemistry)
TB     = Tight Binding model
             (physics)

Characteristics:
>  one electron model
>  effective one electron Hamiltonian, heff

>  simplest form for n atoms with one
    orbital (1s or 2pz) each, χμ, μ=1,n



Hückel:    1D Linear Chain

Fig. 6.Band width: 2βГ, Г coordination number



Hückel:    Ring

Fig. 12 [6]



1D Hückel systems

TX1,TX2



Band Structure Theory. 
II. k-space

TX4a,TX4b



Reciprocal Lattice

We are looking for values of k that yield plane 
waves with the peridiocity of a given Bravais 
lattice.

     exp(iK(r+R)) = exp(iKr)

for all R in the Bravais lattice.
Obiously, the K values satisfying this requirement 
are given by

     exp(iKR)=1

They span a lattice in the k-space (or „reciprocal 
space“) that is called the „ reciprocal lattice“.
 

The three vectors b1,b2,b3 are the „primitive 

lattice vectors“ in the k-space, as a1,a2,a3 are 

the primitive lattice vectors in the direct space.

     bi * aj = δ ij 

Any vector in the k-space can be written as

     k= k1 b1 + k2 b2 + k3 b3

Fig. 11 [1]



TX5

Band structure Theory. III. 
Bloch functions



Brillouin zones
>   The Bloch functions are the basis functions for the translation group T.
>   Since T is an Abelian group, all irreps are non-degenerate.
>   The components kx,ky,kz of the wave vector k are labels, quantum numbers for   

     the irreps of T.
>   For a crystal of length L and n0 translations (in each direction) with a lattice

     constant a=L/n0 the values of kx,ky,kz are limited to

                      kx,ky,kz  = 0, ±2π/n0a, ±4π/n0a, ±π/a

>   These values are contained in the first Brillouin zone (BZ).
>   Wave vectors in extended Brilloin zones with k=k+Km where Km is a reciprocal 

     lattice vector, have the phase factor
                        exp(i(k+Km)Rn) = exp(ikRn)

     Rn being a lattice vector in the direct lattice, since  exp(iKmRn) = 1 .

>   It is always sufficient to study the first BZ.



Band Structure Theory. IV. 
HF theory for crystal orbitals

•    
  •

•    
  •

•    
  •

•    
  •

•    
  •

•    
  •

Cell number        -2       -1        0         1       2        3       

Direct space:

Local basis functions:
     |i;p>
cell i; basis p

Matrix element for Fock operator F:
    <i;p | F | j;q>

Translational symmetry:
   <i;p | F | j;q> = < 0;p | F | j-i;q>

Reciprocal space:

Fourier transform:
     Fpq (k) = Σj exp(iktj) <0;p | F | j;q>

tj translation vector to cell j

Diagonalization of the Fock matrix for all 
values of k. No off-diagonal elements of F 
between different values of k.



2D example

Valence bands of a 2D layer of NiO(100) Fig 13. [21]
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Molecules: Point Group Symmetry Operations

Operation                             Schoenflies                      Hermann-Mauguin
                                              (Chemistry)                       (Crystallography)

Identity                                  E                                      1
Rotation through 2π/n           Cn                                     n

Reflection in a plane             σ                                       m
   'horizontal' plane                σh                                      n/m

   'vertical' plane                    σv                                      nm

   two nonequivalent 
      vertical planes                                                          nmm
   'diagonal' plane                  σd

Inversion                               i                                       -1 
Rotation reflection σhCn        Sn                                                   

Rotation inversion  iCn                                                   -n



32 crystallographic point groups 



32 crystallographic point 
groups

(continuation) 

Fig5



Crystals: Space groups, formal approach

TX3, Ref. 4 Space group is a group



Space group elements

Translations:                 (invariant subgroup), for each direction x,y,z
                                      Abelian groups
                                      1-dim irreps, kx,ky,kz

Point group elements:   Subgroup?

Compound elements:    Glide planes, screw axes       

Fig 14. [4]

Glide plane: Translation parallel to a given plane + 
reflection in that plane.
Screw axis: Translation along a given axis and 
rotation through this axis. 



Space groups: Symbols, Names

Symbols for symmetry elements:

Most important:
           ≬             2-fold rotation
           ▲           3-fold rotation
           ◾           4-fold rotation
           ●           6-fold rotation

Many more, see Appendix A.

Notations for space groups:

Examples: P4/m, Immm

  P              primitive
  I               body centered
  F              face centered
  A,B,C      base centred
  R             rhombohedral

  numbers  rotations
  m             mirror planes

Details:  Ref. 1,7



Point groups,

space groups: 

Schoenflies and 
Hermann-Mauguin

names

Ref. 7



Detour: Direct Products of Groups

Be G a group with the subgroups G and H

   G = (G1, G2,..., Gg),     order g  

   H = (H1, H2,..., Hh),     order h

We build the compound elements Gi Hj

Multiplication of the compound elements

    ( Gi Hj ) ( Gk Hl )  =  Gi Hj Gk Hl    =  Gi Gk Hj Hl    =  ( Gi Gk) ( Hj Hl ) = Gi' Hj'   

The compound elements form a group, if the elements of H commute with those of G.

„Direct product“ of the groups G and H,  K = G×H,  order g·h



Space groups

In general, translations and point group operations do not commute.

   {ε|τ'} {α|τ} =  {εα|ετ+τ'} = {α|τ+τ'}

   {α|τ} {ε|τ'}  = {αε|ατ'+τ} = {α|ατ'+τ}

Therefore, in general a space group is not a direct product of the translational group T and a 
point group.

>  Symmorphic space groups: They contain the entire point group as a subgroup. 
            They are (semi)-direct products of the translation and point subgroups.
            They do not contain glide planes and screw axes.
>   Nonsymmorphic space groups: No direct products, contain glide planes and screw axes.

There exist 230 different space groups, 73 of them are symmorphic. Ref. 12.



2D space groups

For the five 2D Bravais lattices 
there are 17 2D space groups.

Their properties are given in the 
Table.

The full information is given in 
Ref. 12

2D space groups

Fig. 4 [4] 
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Group of k

We are interested in the symmetry properties of the Bloch funcions ψ(k,r) for different 
wave vectors k.

1.  The point group of the reciprocal space is the same as for the direct space.
     (Proof?)

2.  Definition: The group of (the wave vector)  k is the set of space group elements that
     transform k into itself or into an equivalent k.

3.   Definition: The star of k is the set of all wave vectors k' which are obtained by applying the 
      point group elements on k. 



Example 1: 2D square lattice

Space group: p4mm
Point group: (D4h) C4v 

Lattice constant: a 

Reciprocal space 



2D square lattice: Space groups

p4
C4

p4mm
C4v

p4gm



Fig. 15 [4]

Star of k for the 
2D square lattice



Г

Z

Δ

G

Σ

M

X

2D square lattice: High symmetry points
Space group: p4mm (symmorphic)
Point group: C4v

Elements: E, 2C4,C2,2σv,2σd

1. Brillouin zone

k point type group of k

Г high symmetry C4v

M high symmetry C4v

X high symmetry C2v

Δ symmetry line {E,σv}

Σ symmetry line {E,σd}

Z symmetry line {E,σv}

G general {E}



Fig. 17 [5]

Irreps of the groups 
of k



2D square: k-space, reciprocal lattice
Fig. 9 [6]

s orbitals:   Hückel theory 

Hückel band structure of a square
Fig. 7b [5]ε(kx,ky) =α +2β cos(kxa) + 2β cos(kya)



Node structure in the 2D planar 
Hückel system (s orbitals)

Fig. 10 [6]

Symmetry of the crystal orbitals at 
different k points

k point p4mm C4v

Γ Γ1 a1

M M4 b2

X X3 b2

Δ Δ1 a'

Σ Σ2 a''

Z Z2 a''



Symmetries at the high symmetry points 
 

a1

b2

b2

a''
a''

a'



px, py orbitals: Hückel theory 

px orbitals:  εx(kx,ky) =α -2βσ cos(kxa) + 2βπ cos(kya) 

py orbitals:  εy(kx,ky) =α -2βσ cos(kya) + 2βπ cos(kxa) 

βσ

βπ

Fig. 18 [5]

Nearest neighbour interactions 
of py orbitals



Symmetry of the crystal orbitals 
at different k points

k point p4mm C4v

Γ Γ5 e

M M5 e

X X3+X4 b1+b2

Δ Δ1+Δ2 a'+a''

Σ Σ1+Σ2 a'+a''

Z Z1+Z2 a'+a''

The formulas show that the energy levels 
are degenerate at the points Γ and M:

Γ:   ε = α - 2βσ + 2βπ  
M:  ε = α + 2βσ – 2βπ

but not at the other points.

At the high symmetry points Γ and M they 
span the two-dimensional irrep Γ5 (or e), 
which is split at all other k points.



Again:
NiO(100)

Valence bands of a 2D layer of NiO(100) Fig 13. [21]



Example 2: 2D hexagonal structures

graphene, p6mm ??, p6mm



2D hexagonal space groups

Number Space 
group

Subgroup 
of C6v

Point group elements Symm
orphic

13 p3 C3 E, 2C3 yes

14 p3m1 C3v E, 2C3, 3σv yes

15 p31m C3d E, 2C3, 3σd yes

16 p6 C6 E, 2C6, 2C3, C2 yes

17 p6mm full C6v E, 2C6, 2C3, C2, 3σv, 3σd yes



Graphene

direct space reciprocal  space

Nobel price in physics 2010 for K. S. Novoselov and  A. K. Geim 

Two trigonal sublattices:
- Blue and yellow points in the direct space
- Inequivalent points K and K' in the
   reciprocal space.

Lattice vectors:
Direct space:
    a1 =  a/2 (3,√3),  a2 = a/2 (3, -√3)

Reciprocal space:
    b1 =  2π/3a (1,√3),  b2 = 2π/3a (1, -√3)

a=1.42 Å is the C-C distance

Ref. 22



Hückel theory of graphene

Hückel band structure of graphene
Fig. 8 [5]

Closed solution possible (Wallace 1947)

>  + sign:  lower (π) band
>  -  sign: upper (π*) band
>  symmetric around α
>  high symmetry points:  Γ:   ε = α ± 3β
                                          M:  ε = α ± β
                                          K:   ε = α
> Fermi energy (K point): EF = α



TB theory of graphene

Ref. 22
> nn interaction:   t = β= 2.7eV
> nnn interaction: t' = 0.2 t
> E(k) in eV

ε(k)
Density of states (DOS)



Band structure of graphene

E. Kogan [24]

Hückel: Only s orbitals
FP-LAPW: All valence orbitals



Determination of the symmetries of 
crystal orbitals and vibrations

Reducible representation for a given k point (explicit treatment in Ref. 4) 
(for symmorphic space groups) 
   Γ(k) = Γequiv(k) × Γvec

where  Γequiv(k) is the representation of the lattice and Γvec the representation of 

the orbitals or coordinates (vibrations).

The characters of  Γequiv(k) are 1 for all elements of the group of k that transform 
an atom of the lattice into itself or into an equivalent atom and are 0 else.
For k ≠ 0 the appropriate phase factors have to be included.

The usual rules are applied to determine the irreps which are contained in Γ(k).

For nonsymmorphic space groups everything is more difficult. Details in Ref. 4.



Crystal orbitals of graphene

k point Group of k Гequiv Гvec Irreps
Гequiv  × Гvec

Γ D6h a1g + b1u a1g+a2u+e1u A1g+A2u+E1u +B1u+B2g+E2g

K D3h e' a1'+a2''+e' E'+E''+A1'+A2'+E'

M D2h b1u+b2g ag+b1u+b2u+b3u Ag+Au+2B2g+B3g+2B1u+B3u

Гequiv : The two nonequivalent C atoms
Гvec

   : The  four valence orbitals at the C atoms: s,px,py,pz

                         2*4 = 8 crystal orbitals



Ref. 25



Vibrational modes of graphene

k point Group of k Гequiv Гvec Irreps
Гequiv  × Гvec

Γ D6h a1g + b1u (a2u)+e1u (A2u)+E1u +(B2g)+E2g

K D3h e' (a2'')+e' (E'')+A1'+A2'+E'

M D2h b1u+b2g (b1u)+b2u+b3u (Ag)+Au+B2g+B3g+B1u+(B3u)

Гequiv : The two nonequivalent C atoms
Гvec

   : The three Carterian displacements coordinates x,y,z

2*3 = 6 vibrational modes (two out-of-plane modes, in 
parentheses)



Vibrational modes of 
graphene at the K point

Ref. 4

In-plane modes

Ref. 4

out-of plane 
modes



Graphene: Massless Dirac particles (Dirac cone)

For electrons with k in the vicinity of the K point,
i.e. k = K+q and |q| ≤ |K| we have:
     E(q) = vF |q| +O ( (q/K)2 )

     vF = 3βa/2

is the Fermi velocity. It does not depend on the energy E. 

Usually, one has for a particle with mass m
     E(q) = q2 /2m
     v = q/m = √(2E/m)
Here, v changes with the energy.

Classical relativistic movement:
E2 / c2 = p2 + m² c2

2D Dirac equation:
(-i vF σ ∙∇ - m ) ψ(r) = E ψ(r)



Properties of graphene

>  Half metal
>  Insulator with zero band gap
>  Pseudorelativistic electrons at the Fermi energy
>  Anomalous Quantum Hall effect
 
>  High electron and hole mobility at room temperature
>  Small resistivity, even less than silver
>  Large mechanical and chemical stability

>  Several chemical functionalizations possible 
>  Sensors, solar cells, ...
>  Li coated graphene exhibits superconductivity
>  Quantum computers (??)
>  ...

←   Physics

←   Applications
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Group-subgroup relationships

Reduction of symmetry:

>   Change of atoms   
>   Contaminations
>   Jahn-Teller systems
>   Peierls distortion
>   …
>   Temperature effects; phase transitions

Symmetry of the crystal is lowered
Space group is replaced by a (smaller) subgroup



Subgroups of space groups

Pm-3m;  point group Oh

Pbcm;  point group D2h

Ref. 7



Bärnighausen Tree, example 1

Ref. 7

From diamond to zinc blende:

> 'translationsgleich'
> point groups
           diamond: Td

           zinc blende: Td

> Wyckoff positions:
           diamond: 8a
           zinc blende: 4a,4c



Ref. 25

Bärnighausen Tree, 
example 2

Boron compunds

> translationsgleich
> klassengleich
> isomorphic



Peierls distortion

Peierls distortion (physics)
Bond alternation (chemistry)

Example: Linear chain, alternant distances, 
long and short bonds
Hückel theory: β1, β2

1. Brillouin zone:
      ε(0) = α ± (β1+β2)

band gap:
      W = 2 (β1 – β2 )

Linear chain with 35 H atoms
Hückel theory:
    α  = 0
    β2 = 0.75 β1



Peierls distortionLinear chain
Hückel theory
Lattice constant: a=1

One atom in unit cell:
0  ≤   k   ≤  π/a

Two atoms in unit cell:
0  ≤   k   ≤  π/2a

β2 = 0.75 β1
β2 = β1



Jahn-Teller Theorem
Jahn-Teller Theorem:

If a (nonlinear) molecule possesses a (spatially) degenerate electronic state, there exists 
always a vibrational mode (distortion of the nuclear frame) that lifts the degeneracy.

Proofs:

1. H. A. Jahn, E. Teller, Proc. R. Soc. London A161, 220 (1937) 
    By checking all possible point groups.
2. E. Ruch, A. Schönhofer, Theoret. Chim. Acta 3, 291 (1965)
    By using group theoretical methods.

Group theoretical formulation:

If the electronic state belongs to a multi-dimensional irrep Γ, then the (nontotally symmetric) 
vibrations that are contained in [Γ2] will lift the degeneracy.



Jahn-Teller splitting: Example

Let px and py be two orbitals in an environment 

of D4h symmetry.

The pair px,py spans the irrep Γ = eu of D4h.

The direct product of Γ with itself is
        Γ2 = Γ × Γ = a1g + {a2g} + b1g + b2g

{a2g} is the antisymmetric part of the product.

Therefore the two vibrational modes b1g and 

b2g split  the irrep eu. Jahn-Teller splitting: The energy levels W+ and W- as 

functions of one mode Q . 



Alkali Hyperoxides, AO2, A=K,Rb,Cs

Ref. 27 Ref. 28



Rubidium superoxide, RbO2

Crystal structure:
    tetragonal
    a=4.24 Å, c=7.03 Å
    below 15K: weakly monoclinic 
Molecular unit:
    Rb+O2

- 
    R(O2

-)=1.350 Å
Antiferromagnetic
  Néel temperature: 15 K
  Curie-Weiss temperature: -26 K
Electronic states:
    Rb+: 1S
    O2

-:  2Π, 
    SOC: 2Π1/2 , 2Π3/2,   160 cm-1



Electronic structure, O2
-

3σ
u

1π
g

1π
u

3σ
g

Molecular orbitals,
derived from O2p

Electronic states

O
2    

..1π
u

41π
g
2   3Σ

g
-

O
2

-   ..1π
u
41π

g
3    2Π

g

O
2

2-  ..1π
u
41π

g
4    1Σ

g
+

Spin-orbit coupling (SOC) in O
2
-:

   2Π   →   2Π
1/2

, 2Π
3/2

Splitting of 160 cm-1 = 20 meV



Embedded cluster approach

Cluster setup for the interaction of two O
2
- anions 

in RbO2

O
2

- + O
2

- + 10 Rb+ + 4 ECP +PCF (3404)

each O
2
- must be fully surrounded by Rb+ ions

ECPs for O
2

- (not necessary) 



Jahn-Teller Splitting in RbO2
One O2

- molecular ion in a D4h environment:

Electronic ground state is degenerate
     without SOC:   2Π      (twofold space and spin)
     with SOC:         Π

3/2      
(twofold spin)

Questions: 
    1.   Which vibrational mode removes the degeneracy?
    2.   How do SOC and Jahn-Teller splitting interact?
    3.   Comparison with experiment?
 

Cluster claculations:  >   One O2
- in the cluster

                                                 >   Crystal structure preserved
                                   >   One vibrational mode activated

 
 
  
 



B1g mode

B2g mode



Magnetic coupling paths

parallel
J    = -7.90
Dzz=-14.04

skew
J    = -18.71
Dzz= -21.28

diagonal
J    = -1.11
Dzz= -0.99

linear
J   = -0.65
Dzz= +0.01

All values in cm-1;    F. Uhl, V. St., unpublished 
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Appendix A

Ref. 7, p78



Appendix B1

Character Table D3h

Ref. 11



Appendix B2

Character Table D6h

Ref. 11
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