Electronic Structure and Symmetry in Periodic Structures

Volker Staemmler
Lehrstuhl für Theoretische Chemie
Ruhr-Universität Bochum
44780 Bochum, Germany

Mariapfarr, February 2016

Outline

I. Introduction
II. Bravais lattices
III. Band structure theory
IV. Space groups
V. Symmetry properties of crystal orbitals and vibrations
VI. Group-subgroup relationships
VII. References

Outline

I. Introduction
II. Bravais latticesIII. Band structure theoryIV. Space groupsV. Symmetry properties of crystal orbitals and vibrations
VI. Group-subgroup relationships
VII. References

The fundamental concept for describing 2D and 3D periodic systems is that of a Bravais lattice.

A (2D or 3D) Bravais lattice is defined as an arrangement of lattice points which can be reached from any point of the lattice with displacement (position) vectors of the form
$\mathbf{R}=\mathrm{n}_{1} \mathbf{a}_{1}+\mathrm{n}_{2} \mathbf{a}_{2}+\mathrm{n}_{3} \mathbf{a}_{3}$
where n_{1}, n_{2} and n_{3} are integer numbers ($\ldots-2,-1,0,1,2, \ldots$) and the three vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} are called 'primitive lattice vectors'. They span the lattice.

The choice of the lattice vectors is not unique for a given lattice, as the Fig. 1 shows.

One lattice point can contain one single atom or a group of atoms, called basis of the crystal lattice.

Bravais lattices

Fig 1. [1]

Basis: 1 atom
Basis: 4 atoms

2D Bravais lattices

In 2D there exist 5 Bravais lattices:

Square:

$$
a_{1}=a_{2}, \quad \alpha=90^{\circ}
$$

Rectangular primitive: $a_{1} \neq \mathrm{a}_{2}, \quad \alpha=90^{\circ}$
Centered rectangular: $a_{1} \neq \mathrm{a}_{2}, \quad \alpha=90^{\circ}$
Hexagonal:
$a_{1}=a_{2}, \quad \alpha=120^{\circ}$
Oblique:
$a_{1} \neq a_{2}, \quad \alpha \neq 90^{\circ}$
a_{1} and a_{2} are the lengths of the primitive lattice vectors.

$\left|\mathbf{a}_{\mathbf{s}}\right| \neq\left|\mathbf{b}_{\mathbf{s}}\right| \gamma=90^{\circ}$

Fig 2. [2]

3D Bravais lattices

In 3D: 7 crystal systems with 14 Bravais lattices

1. Triclinic: $a_{1} \neq a_{2} \neq a_{3}, \quad \alpha \neq \beta \neq \gamma$
2. Monoclinic: $a_{1} \neq a_{2} \neq a_{3}, \quad \alpha=\gamma=90^{\circ} \neq \beta$ 2a: primitive, 2b: base centered
3. Orthorhombic: $a_{1} \neq a_{2} \neq a_{3}, \quad \alpha=\beta=\gamma=90^{\circ}$

3a: primitive, 3b: base centered, 3c: body centered, 3d: face centered
4. Hexagonal: $a_{1}=a_{2} \neq a_{3}, \quad \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
5. Rhombohedral: $a_{1}=a_{2}=a_{3}, \quad \alpha=\beta=\gamma \neq 90^{\circ}$
6. Tetragonal: $a_{1}=a_{2} \neq a_{3}, \quad \alpha=\beta=\gamma=90^{\circ}$

(4)

6a: primitive, 6b: body centered
7. Cubic: $a_{1}=a_{2}=a_{3}, \quad \alpha=\beta=\gamma=90^{\circ}$

7a: primitive, 7b: body centered, 7c: face centered

Fig 3. [2]

Outline

I. Introduction
II. Bravais lattices
III. Band structure theory
IV. Space groups
V. Symmetry properties of crystal orbitals and vibrations
VI. Group-subgroup relationships
VII. References

Band Structure Theory. I. Hückel Theory

Alternative names:

HMO = Hückel Molecular Orbital method (chemistry)
TB = Tight Binding model (physics)

Characteristics:

> one electron model
$>$ effective one electron Hamiltonian, $\mathrm{h}_{\text {eff }}$
$>$ simplest form for n atoms with one orbital (1s or $2 p_{z}$) each, $\chi_{\mu}, \mu=1$,n

Hückel matrix H

$$
\begin{aligned}
\mathrm{H}_{\mu \mu}=\left(\mu\left|\mathrm{h}_{\text {eff }}\right| \mu\right) & =\alpha \\
\mathrm{H}_{\mu \nu}=\left(\mu\left|\mathrm{h}_{\mathrm{eff}}\right| v\right) & =\beta \text { if } \mu v \text { are nn } \\
& =0 \text { else }
\end{aligned}
$$

$H=\alpha E+\beta T$
E unit matrix, T topological matrix
S overlap matrix, $S_{\mu \nu}=(\mu \mid v)=\delta_{\mu v}$
$\varepsilon_{\mathrm{j}}=\alpha+\beta \lambda_{\mathrm{j}}$
λ_{j} eigenvalues of T

Hückel: 1D Linear Chain

Band width: $2 \beta \Gamma, \Gamma$ coordination number

Fig. 6.

Hückel: Ring

Fig. 12 [6]

1D Hückel systems

Linear chain of n atoms

Close solution possible.
Orbital energies and wavefunctions

$$
\begin{gathered}
\epsilon_{j}=\alpha+2 \beta \cos (j \pi /(n+1)), j=1, n \\
\psi_{j}(r)=2 /(n+1) \sum_{p} \sin \left(p j \pi /(n+1) \chi_{p}(r)\right.
\end{gathered}
$$

All energies are singly degenerate.
Change of the running index from a discrete index j to a continuous index k . a $=$ lattice constant

$$
k=(2 \pi j / n a)
$$

Orbital energies and wavefunctions

$$
\begin{aligned}
& \epsilon(k)=\alpha+2 \beta \cos (k a / 2), 0 \leq k \leq 2 \pi / a \\
& \psi(k, r)=2 /(n+1) \sum_{p} \sin (k a p / 2) \chi_{p}(r)
\end{aligned}
$$

Ring of n atoms

Close solution possible.
Orbital energies and wavefunctions

$$
\begin{gathered}
\epsilon_{j}=\alpha+2 \beta \cos (2 j \pi / n), j=1, n \\
\psi_{j}(r)=1 / \sqrt{n} \sum_{p} \exp (2 \pi i j(p-1) / n) \chi_{p}(r)
\end{gathered}
$$

All energies except for one are doubly degenerate.
Change of the running index from discrete index j to a continuous index k. a = lattice constant

$$
k=(2 \pi j / n a)
$$

Orbital energies and wavefunctions

$$
\begin{gathered}
\epsilon(k)=\alpha+2 \beta \cos (k a), \quad-\pi / a \leq k \leq \pi / a \\
\psi(k, r)=1 / \sqrt{n} \sum_{p} \exp (i k a p) \chi_{p}(r)
\end{gathered}
$$

Band Structure Theory. II. k-space

One electron in vacuum

Hamiltonian

$$
H=-1 / 2 m \Delta
$$

Eigenfunctions:
Plane waves (not normalized)

$$
\psi(k, r)=\exp (i k r)
$$

3D k-space : $k=\left(k_{x}, k_{y}, k_{z}\right)$

One electron in a periodic potential

Hamiltonian

$$
H=-1 / 2 m \Delta+U(r)
$$

Periodicity of the potential

$$
U(r+R)=U(r)
$$

for all points R of the Bravais lattice.
Eigenfunctions

$$
\psi(k, r)=\exp (i k r) u(k, r)
$$

where $u(k, r)$ has the periodicity of the potential

$$
u(k, r+R)=u(k, r)
$$

(Bloch's Theorem). Alternative formulation

$$
\psi(k, r+R)=\exp (i k R) \psi(k, r)
$$

Reciprocal Lattice

We are looking for values of \mathbf{k} that yield plane waves with the peridiocity of a given Bravais lattice.

$$
\exp (\mathbf{i K}(\mathbf{r}+\mathbf{R}))=\exp (\mathbf{i} \mathbf{K r})
$$

for all \mathbf{R} in the Bravais lattice.
Obiously, the \mathbf{K} values satisfying this requirement are given by

$$
\exp (\mathbf{i K R})=1
$$

They span a lattice in the \mathbf{k}-space (or „reciprocal space") that is called the „reciprocal lattice".

$$
\begin{aligned}
& \mathbf{b}_{1}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}, \\
& \mathbf{b}_{2}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}, \\
& \mathbf{b}_{3}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)} .
\end{aligned}
$$

Fig. 11 [1]
The three vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ are the „primitive lattice vectors" in the k-space, as $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are the primitive lattice vectors in the direct space.

$$
\mathbf{b}_{\mathbf{i}}{ }^{*} \mathbf{a}_{\mathbf{j}}=\delta_{\mathrm{ij}}
$$

Any vector in the k-space can be written as

$$
\mathbf{k}=\mathrm{k}_{1} \mathbf{b}_{1}+\mathrm{k}_{2} \mathbf{b}_{2}+\mathrm{k}_{3} \mathbf{b}_{3}
$$

Band structure Theory. III. Bloch functions

We use periodic boundery conditions (Born-von Karman conditions). Then the possible values values of k are real.

We start from the Hückel solution for the energies and wavefunctions in 3D for a cubic lattice.

$$
\begin{gathered}
\epsilon\left(k_{x}, k_{y}, k_{z}\right)=\alpha+2 \beta\left(\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)+\cos \left(k_{z} a\right)\right) \\
\psi(\vec{k}, \vec{r})=1 / \sqrt{n} \sum_{p} \exp (i \vec{k} a p) \chi_{p}(\vec{r})
\end{gathered}
$$

(From here on r, k, R, \ldots are 3D vektors.)

Alternative formulation for the wave function in case that there is only one atomic orbital χ at each lattice point:

$$
\psi(k, r)=1 / \sqrt{N} \sum_{j} \exp \left(i k R_{j}\right) \chi\left(r-R_{j}\right)
$$

General case: There are M basis functions (orbitals) χ_{μ} at each lattice point

$$
\psi_{n}(k, r)=1 / \sqrt{N} \sum_{j} \exp \left(i k R_{j}\right) \sum_{\mu} c_{n \mu}(k) \chi_{\mu}\left(r-R_{j}\right)
$$

j indicates the lattice point, μ the basis function at the lattice point.
The coefficients $c_{n \mu}(k)$ determine the orbital (band) and have to be calculated by solving the one-electron Schrödinger equation.

Brillouin zones

$>$ The Bloch functions are the basis functions for the translation group T.
$>$ Since T is an Abelian group, all irreps are non-degenerate.
$>$ The components $\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}$ of the wave vector \mathbf{k} are labels, quantum numbers for the irreps of T .
$>$ For a crystal of length L and n_{0} translations (in each direction) with a lattice constant $\mathrm{a}=\mathrm{L} / \mathrm{n}_{0}$ the values of $\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}$ are limited to

$$
\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}=0, \pm 2 \pi / \mathrm{n}_{0} \mathrm{a}, \pm 4 \pi / \mathrm{n}_{0} \mathrm{a}, \pm \pi / \mathrm{a}
$$

$>$ These values are contained in the first Brillouin zone (BZ).
$>$ Wave vectors in extended Brilloin zones with $\mathbf{k}=\mathbf{k}+\mathbf{K}_{\mathrm{m}}$ where \mathbf{K}_{m} is a reciprocal lattice vector, have the phase factor

$$
\exp \left(\mathrm{i}\left(\mathbf{k}+\mathbf{K}_{\mathrm{m}}\right) \mathbf{R}_{\mathrm{n}}\right)=\exp \left(\mathrm{i} \mathbf{k} \mathbf{R}_{\mathrm{n}}\right)
$$

\mathbf{R}_{n} being a lattice vector in the direct lattice, since $\exp \left(i \mathbf{K}_{\mathbf{m}} \mathbf{R}_{\mathrm{n}}\right)=1$.
> It is always sufficient to study the first BZ.

Band Structure Theory. IV. HF theory for crystal orbitals

Direct space:
Local basis functions:
|i;p>
cell i; basis p
Matrix element for Fock operator F: <i;p | F | j;q>

Translational symmetry:
<i;p | F |j;q> = < 0;p | F | j-i;q>

Reciprocal space:
Fourier transform:

$$
\mathrm{F}_{\mathrm{pq}}(\mathbf{k})=\Sigma_{\mathrm{j}} \exp \left(\mathrm{ik} \mathbf{t}_{\mathbf{j}}\right)<0 ; \mathrm{p}|\mathrm{~F}| \mathrm{j} ; q>
$$

$\mathbf{t}_{\mathbf{j}}$ translation vector to cell j
Diagonalization of the Fock matrix for all values of \mathbf{k}. No off-diagonal elements of F between different values of \mathbf{k}.

2D example

Abbildung 3.4: I.BZ des quadratischen Gitters

Valence bands of a 2D layer of $\mathrm{NiO}(100)$
Fig 13. [21]

Outline

I. Introduction
II. Bravais lattices
III. Band structure theory
IV. Space groups
V. Symmetry properties of crystal orbitals and vibrations
VI. Group-subgroup relationships
VII. References

Molecules: Point Group Symmetry Operations

Operation	Schoenflies (Chemistry)	Hermann-Mauguin (Crystallography)
Identity	E	1
Rotation through $2 \pi / n$	C_{n}	n
Reflection in a plane	σ	m
'horizontal' plane	$\sigma_{\text {h }}$	n / m
'vertical' plane	σ_{v}	nm
two nonequivalent vertical planes 'diagonal' plane	$\sigma_{\text {d }}$	nmm
Inversion	i	-1
Rotation reflection $\sigma_{h} \mathrm{C}_{\mathrm{n}}$	S_{n}	
Rotation inversion iC_{n}		-n

32 crystallographic point groups

$\frac{\text { Kristallographische }}{\text { Punktgruppen }}$

Nr.	Sihcenflies	International Hermann-Maugwin	Oroinung	isomorph 24")	Bemerkung
1	C_{1}	1	1	z_{1}	
2	c_{2}	2	2	z_{2}	
3	c_{3}	3	3	z_{3}	
4	C_{4}	4	4	3_{4}	
5	$c_{6}{ }^{\text {b }}$	6	6	z_{6}	
6	D_{2}	222	4	10φ_{3}	$\left\{\begin{array}{l} \text { Dieder. } \\ \text { gruppen } \end{array}\right.$
7	D_{3}	32	6		
8	D_{4}	422 (42)	8		
9	D_{6}	622 (62)	12		
10	T	23	12		kubische
11	0	432 (43)	24	φ_{4}	\int Drehgr

12	$c_{1 h}=c_{s}$	m	2	c_{2}	
13	$c_{2 \hbar}$	2/m	4	D_{2}	$c_{2} \times c_{5} ; c_{2} \times c_{i}$
14	$c_{3 h}=s_{3}$	$\overline{6}$	6	c_{6}	$c_{3} \times c_{5}$
15	$c_{4 n}$	4/m	8	D_{4}	$C_{4}+c_{5} ; c_{4} \times c_{i}$
16	c_{6} h	$6 / \mathrm{m}$	12	D 6	$c_{6} \times c_{5} ; c_{6} \times c_{i}$
17	$c_{2 v}$	2 mm	4	D_{2}	entsteren
18	$c_{3 v}$	3 m	6	D_{3}	
19	$\mathrm{C}_{4 v}$	4 mm	8	D_{4}	
20	cov_{6}	6 mm	12	D6	
21	$\mathrm{D}_{2} \mathrm{~h}$	mmm	8	D_{4}	$D_{2} \times C_{j} D_{2} \times C_{i}$
22	D_{3}	\square_{72}	12	D_{6}	
23	D_{4}	$4 / \mathrm{mmm}$	16		$D_{4} \times c_{5} ; D_{4} \times C_{i}$
24	D_{6}	$6 / \mathrm{mmm}$	24		$D_{6} \times C_{5} ; D_{6} \times C_{i}$

32 crystallographic point groups
 (continuation)

Crystals: Space groups, formal approach

The symmetry properties of crystals are described by space gropus. The elements of a space group $A=\{\alpha \mid \tau\}$ are combinations of a point group element α and a translation τ.

$\{\epsilon \mid 0\}$	identity
$\{\alpha \mid 0\}$	pure point group element
$\{\epsilon \mid \tau\}$	pure translation

Operation of a space group element on a position vector r (α is a 3×3 transformation matrix):

$$
\{\alpha \mid \tau\} r=r^{\prime}=\alpha r+\tau
$$

Multiplication of elements:

$$
\left\{\beta \mid \tau^{\prime}\right\} \star\{\alpha \mid \tau\}=\left\{\beta \alpha \mid \beta \tau+\tau^{\prime}\right\}
$$

Inverse element:

$$
\{\alpha \mid \tau\}^{-1}=\left\{\alpha^{-1} \mid-\alpha^{-1} \tau\right\}
$$

Associative law is valid:

$$
(A \star B) \star C=A \star(B \star C)
$$

Space group elements

Translations:
(invariant subgroup), for each direction $\mathrm{x}, \mathrm{y}, \mathrm{z}$ Abelian groups
1-dim irreps, $\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}$

Point group elements: Subgroup?

Compound elements: Glide planes, screw axes

Glide plane: Translation parallel to a given plane + reflection in that plane.
Screw axis: Translation along a given axis and rotation through this axis.

(a) Glide plane

Space groups: Symbols, Names

Notations for space groups:

Symbols for symmetry elements:

Most important:

2-fold rotation

- $\begin{gathered}\text { 3-fold rotation } \\ \text { 4-fold rotation } \\ \text { 6-fold rotation }\end{gathered}$

Many more, see Appendix A.

Examples: P4/m, Immm

P primitive
I body centered
F face centered
A,B,C base centred
R rhombohedral
numbers rotations
m mirror planes
Details: Ref. 1,7

Schoenflies	Hermann- Mauguin	Schoenflies	Hermann- Mauguin	Schoenflies	Hermann-M short	Mauguin full
Point-group types						
C_{1}	1	C_{i}	$\overline{1}$	C_{s}	m	
C_{2}	2	$C_{2 h}$	2/m	$C_{2 v}$	$m m 2$	
C_{3}	3	$C_{3 h}=S_{3}$	$\overline{6}=3 / m$	$C_{3 v}$	3 m	
C_{4}	4	$C_{4 h}$	4/m	$C_{4 v}$	4 mm	
C_{6}	6	$C_{6 h}$	6/m	$C_{6 v}$	6 mm	
S_{4}	$\overline{4}$	$C_{3 i}=S_{6}$	$\overline{3}$	$C_{\text {cov }}$	∞m	
D_{2}	222	$D_{2 d}=S_{4 v}$	$\overline{4} 2 \mathrm{~m}$	$D_{2 h}$	mmm	$2 / m 2 / m 2 / m$
D_{3}	32	$D_{3 h}$	$\overline{6} 2 m$	$D_{3 d}$	$\overline{3} m$	$\overline{3} 2 / m$
D_{4}	422	$D_{4 d}=S_{8 v}$	$\overline{8} 2 \mathrm{~m}$	$D_{4 h}$	$4 / \mathrm{mmm}$	$4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$
D_{5}	52	$D_{5 h}$	$\overline{10} 2 m$	$D_{5 d}$	$\overrightarrow{5} m$	5 $2 / \mathrm{m}$
D_{6}	622	$D_{6 d}=S_{12 v}$	$\overline{12} 2 m$	$D_{6 h}$	$6 / \mathrm{mmm}$	$6 / m 2 / m 2 / m$
T	23	T	$\overline{4} 3 \mathrm{~m}$	$D_{\text {eh }}$	$\infty / m m$ $m \overline{3}$	$\infty / m 2 / m=\bar{\infty} 2 / m$
		${ }_{\text {Id }}$	432	$\begin{aligned} & I_{h} \\ & O_{h} \end{aligned}$	$m \overline{3} m$	$4 / m \overline{3} 2 / m$
		I	235	I_{h}	$m \overline{3} \overline{5}$	$2 / m \overline{3} 5$
Space-group types						
C_{1}^{1}	P1	C_{i}^{1}	$P \overline{1}$	C_{s}^{1}	Pm	P1m1
C_{2}^{1}	$P 2$	C_{2}^{2}	$P 2_{1}$	$C_{2 h}^{5}$	$P 2_{1 / c}$	$P 121 / c 1$
D_{2}^{1}	P222	$C_{2 v}^{12}$	Cmc 2_{1}	$D_{2 h}^{16}$	Pnma	$P 2_{1} / n 2_{1} / m 2_{1} / a$
$C_{4 h}^{6}$	$14_{1} /$ a	$D_{2 d}^{3}$	$P \overline{4} 2_{1} m$	$D_{4 h}^{9}$	$P 4_{2} / \mathrm{mmc}$	$P 4_{2} / m 2 / m 2 / c$
$C_{3 i}^{2}$	$R \overline{3}$	$C_{6 h}^{2}$	$P 63 / m$	$D_{6 h}^{4}$	$P 6_{3} / \mathrm{mmc}$	$P 6_{3} / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{c}$
T_{d}^{2}	$F \overline{4} 3 \mathrm{~m}$	O^{3}	F432	O_{h}^{5}	$F m \overline{3} m$	F $4 / m \overline{3} 2 / m$

Detour: Direct Products of Groups

Be \mathbf{G} a group with the subgroups G and H

$$
\begin{array}{ll}
\mathrm{G}=\left(\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{g}}\right), & \text { order } \mathrm{g} \\
\mathrm{H}=\left(\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{h}}\right), & \text { order } \mathrm{h}
\end{array}
$$

We build the compound elements $\mathrm{G}_{\mathrm{i}} \mathrm{H}_{\mathrm{j}}$
Multiplication of the compound elements

$$
\left(G_{i} H_{j}\right)\left(G_{k} H_{l}\right)=G_{i} H_{j} G_{k} H_{l}=G_{i} G_{k} H_{j} H_{l}=\left(G_{i} G_{k}\right)\left(H_{j} H_{l}\right)=G_{i^{\prime}} H_{j^{\prime}}
$$

The compound elements form a group, if the elements of H commute with those of G.
„Direct product" of the groups G and $\mathrm{H}, \mathrm{K}=\mathrm{G} \times \mathrm{H}$, order $\mathrm{g} \cdot \mathrm{h}$

Space groups

In general, translations and point group operations do not commute.

$$
\begin{aligned}
& \left\{\varepsilon \mid \tau^{\prime}\right\}\{\alpha \mid \tau\}=\left\{\varepsilon \alpha \mid \varepsilon \tau+\tau^{\prime}\right\}=\left\{\alpha \mid \tau+\tau^{\prime}\right\} \\
& \{\alpha \mid \tau\}\left\{\varepsilon \mid \tau^{\prime}\right\}=\left\{\alpha \varepsilon \mid \alpha \tau^{\prime}+\tau\right\}=\left\{\alpha \mid \alpha \tau^{\prime}+\tau\right\}
\end{aligned}
$$

Therefore, in general a space group is not a direct product of the translational group T and a point group.
> Symmorphic space groups: They contain the entire point group as a subgroup.
They are (semi)-direct products of the translation and point subgroups.
They do not contain glide planes and screw axes.
> Nonsymmorphic space groups: No direct products, contain glide planes and screw axes.
There exist 230 different space groups, 73 of them are symmorphic. Ref. 12.

2D space groups

For the five 2D Bravais lattices there are 17 2D space groups.

Their properties are given in the Table.

The full information is given in Ref. 12

Fig. 4 [4]

point group	lattice type	international $^{\text {a }}$ table number	notation full	type	notatios short
1	oblique	1	$p 1$	symmorphic	$p 1$
2	$a \neq b, \phi \neq 90^{\circ}$	2	$p 211$	symmorphic	$p 2$
m	rectangular	3	$p 1 m 1$	symmorphic	$p m$
	$(p$ or $c)$	4	$p 1 g 1$	nonsymmorphic	$p g$
	$a \neq b, \phi=90^{\circ}$	5	$c 1 m 1$	symmorphic	$c m$
$2 m m$	rectangular	6	$p 2 m m$	symmorphic	$p m m$
	$a \neq b, \phi=90^{\circ}$	7	$p 2 m g$	nonsymmorphic	$p m g$
		8	$p 2 g g$	nonsymmorphic	$p g g$
		9	$c 2 m m$	symmorphic	$c m m$
4	square p	10	$p 4$	symmorphic	$p 4$
$4 m m$	$a=b, \phi=90^{\circ}$	11	$p 4 m m$	symmorphic	$p 4 m$
		12	$p 4 g m$	nonsymmorphic	$p 4 g$
3	hexagonal	13	$p 3$	symmorphic	$p 3$
$3 m$	$a=b, \phi=120^{\circ}$	14	$p 3 m 1$	symmorphic	$p 3 m 1$
		15	$p 31 m$	symmorphic	$p 31 m$
6		16	$p 6$	symmorphic	$p 6$
$6 m m$		17	$p 6 m m$	symmorphic	$p 6 m$

Outline

I. Introduction
II. Bravais lattices
III. Band structure theory
IV. Space groups
V. Symmetry properties of crystal orbitals and vibrations
VI. Group-subgroup relationships
VII. References

Group of \mathbf{k}

We are interested in the symmetry properties of the Bloch funcions $\psi(\mathbf{k}, \mathbf{r})$ for different wave vectors \mathbf{k}.

1. The point group of the reciprocal space is the same as for the direct space. (Proof?)
2. Definition: The group of (the wave vector) \mathbf{k} is the set of space group elements that transform \mathbf{k} into itself or into an equivalent \mathbf{k}.
3. Definition: The star of \mathbf{k} is the set of all wave vectors \mathbf{k}^{\prime} which are obtained by applying the point group elements on \mathbf{k}.

Example 1: 2D square lattice

Space group: p4mm Point group: $\left(\mathrm{D}_{4 \mathrm{~h}}\right) \mathrm{C}_{4 \mathrm{v}}$

Lattice constant: a

Reciprocal space

2D square lattice: Space groups

p4mm
p4gm

Star of k for the 2D square lattice

Fig. 10.1. Illustration of the star of k for various wave vectors in the Brillouin zone of a simple 2D square lattice. The top three diagrams are for k-vectors to an interior point in the Brillouin zone, while the bottom three diagrams are for wave vectors extending to the Brillouin zone boundary. In each case the point group elements for the group of the wave vector are given in parentheses
$8 \vec{k}$ in star; (E)

symmetrical \vec{k} to BZ interior: $4 \hat{k}$ in star; $\left(E, C_{2}\right)$

symmetrical \vec{k} to BZ interior: $4 \vec{k} \ln \operatorname{star} ;\left(E, C_{2}^{2}\right)$

Fig. 15 [4]

2D square lattice: High symmetry points

Space group: p4mm (symmorphic)
Point group: $\mathrm{C}_{4 \mathrm{v}}$
Elements: E, $2 \mathrm{C}_{4}, \mathrm{C}_{2}, 2 \sigma_{\mathrm{v}}, 2 \sigma_{\mathrm{d}}$

\mathbf{k} point	type	group of \mathbf{k}
Γ	high symmetry	$C_{4 v}$
M	high symmetry	$C_{4 v}$
X	high symmetry	$C_{2 v}$
Δ	symmetry line	$\left\{E, \sigma_{v}\right\}$
Σ	symmetry line	$\left\{E, \sigma_{d}\right\}$
Z	symmetry line	$\left\{E, \sigma_{v}\right\}$
G	general	$\{E\}$

1. Brillouin zone

Irreps of the groups of \mathbf{k}

Table 3.1 Character tables for some groups of \mathbf{k}

Γ, M	E	C_{2}	$2 C_{4}$	$2 \sigma_{\mathrm{v}}$	$2 \sigma_{\mathrm{d}}$
Γ_{1}, M_{1}	1	1	1	1	1
Γ_{2}, M_{2}	1	1	1	-1	-1
Γ_{3}, M_{3}	1	-1	-1	1	-1
Γ_{4}, M_{4}	1	1	-1	-1	1
Γ_{5}, M_{5}	2	-2	0	0	0

Fig. 17 [5]

					Δ	E	σ^{y}
X	E	C_{2}	σ^{y}	σ^{x}	Z	E	σ_{d} σ^{x}
X_{1}	1	1	1	1	$\Delta_{1}, \Sigma_{1}, Z_{1}$	1	1
X_{2}	1	1	-1	-1	$\Delta_{2}, \Sigma_{2}, Z_{2}$	1	-1
X_{3}	1	-1	1	-1			
X_{4}	1	-1	-1	1			

s orbitals: Hückel theory

2D square: k-space, reciprocal lattice Fig. 9 [6]
$\varepsilon\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)=\alpha+2 \beta \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{a}\right)+2 \beta \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{a}\right)$
Hückel band structure of a square Fig. 7b [5]

Node structure in the 2D planar Hückel system (s orbitals)

Symmetry of the crystal orbitals at different \mathbf{k} points
Symmetry of the crystal orbital
different k points

k point	p 4 mm	$\mathrm{C}_{4 \mathrm{v}}$
Г	Γ_{1}	a_{1}
M	M_{4}	$\mathrm{~b}_{2}$
X	X_{3}	$\mathrm{~b}_{2}$
Δ	Δ_{1}	a^{\prime}
Σ	Σ_{2}	a^{\prime}
Z	Z_{2}	$\mathrm{a}^{\prime \prime}$

Fig. 10 [6]
$k_{x}, k_{y}=\pi /(2 a)$

Symmetries at the high symmetry points

p_{x} orbitals: $\varepsilon_{\mathrm{x}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)=\alpha-2 \beta_{\sigma} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{a}\right)+2 \beta_{\pi} \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{a}\right)$
p_{y} orbitals: $\varepsilon_{\mathrm{y}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)=\alpha-2 \beta_{\sigma} \cos \left(\mathrm{k}_{\mathrm{y}} \mathrm{a}\right)+2 \beta_{\pi} \cos \left(\mathrm{k}_{\mathrm{x}} \mathrm{a}\right)$

Symmetry of the crystal orbitals at different \mathbf{k} points

The formulas show that the energy levels are degenerate at the points Γ and M :
$\Gamma: \varepsilon=\alpha-2 \beta_{\sigma}+2 \beta_{\pi}$
M: $\varepsilon=\alpha+2 \beta_{\sigma}-2 \beta_{\pi}$
but not at the other points.
At the high symmetry points Γ and M they span the two-dimensional irrep Γ_{5} (or e), which is split at all other k points.

k point	$p 4 m m$	$C_{4 v}$
Γ	Γ_{5}	e
M	M_{5}	e
X	$X_{3}+X_{4}$	$b_{1}+b_{2}$
Δ	$\Delta_{1}+\Delta_{2}$	$a^{\prime}+a^{\prime \prime}$
Σ	$\Sigma_{1}+\Sigma_{2}$	$a^{\prime}+a^{\prime \prime}$
Z	$Z_{1}+Z_{2}$	$a^{\prime}+a^{\prime \prime}$

Again: NiO(100)

Abbildung 3.4: I.BZ des quadratischen Gitters

Valence bands of a 2D layer of $\mathrm{NiO}(100)$
Fig 13. [21]

Example 2: 2D hexagonal structures

graphene, p6mm

??, p 6 mm

2D hexagonal space groups

$\left.\begin{array}{l|l|l|l|}\hline \text { Number } & \begin{array}{l}\text { Space } \\ \text { group }\end{array} & \begin{array}{l}\text { Subgroup } \\ \text { of } C_{6 v}\end{array} & \text { Point group elements }\end{array} \begin{array}{l}\text { Symm } \\ \text { orphic }\end{array}\right]$ yes

Graphene

Nobel price in physics 2010 for K. S. Novoselov and A. K. Geim

direct space

reciprocal space

Two trigonal sublattices:

- Blue and yellow points in the direct space
- Inequivalent points K and K ' in the reciprocal space.

Lattice vectors:
Direct space:

$$
\mathbf{a}_{1}=\mathrm{a} / 2(3, \sqrt{ } 3), \mathbf{a}_{2}=\mathrm{a} / 2(3,-\sqrt{ } 3)
$$

Reciprocal space:

$$
\mathbf{b}_{1}=2 \pi / 3 \mathrm{a}(1, \sqrt{ } 3), \mathbf{b}_{2}=2 \pi / 3 \mathrm{a}(1,-\sqrt{ } 3)
$$

$\mathrm{a}=1.42 \AA$ is the $\mathrm{C}-\mathrm{C}$ distance
Ref. 22

Hückel theory of graphene

Closed solution possible (Wallace 1947)

$$
\epsilon_{ \pm}\left(k_{x}, k_{y}\right)=\alpha \pm \beta \sqrt{3+f\left(k_{x}, k_{y}\right)}
$$

$f\left(k_{x}, k_{y}\right)=2 \cos \left(\sqrt{3} k_{y} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} k_{y} a\right) \cos \left(\frac{3}{2} k_{x} a\right)$
> + sign: lower (π) band
$>-$ sign: upper (π^{*}) band
$>$ symmetric around α
$>$ high symmetry points: $\Gamma: \varepsilon=\alpha \pm 3 \beta$
M: $\varepsilon=\alpha \pm \beta$
K: $\varepsilon=\alpha$
$>$ Fermi energy (K point): $\mathrm{E}_{\mathrm{F}}=\alpha$

Hückel band structure of graphene Fig. 8 [5]

TB theory of graphene

$>$ nn interaction: $t=\beta=2.7 \mathrm{eV}$
$>\mathrm{nnn}$ interaction: $\mathrm{t}^{\prime}=0.2 \mathrm{t}$
Ref. 22
$>\mathrm{E}(\mathrm{k})$ in eV

Density of states (DOS)

Band structure of graphene

Figure 1. (Color online) Graphene band structure evaluated with use of the FP-LAPW method. The dashed line shows the Fermi energy [reproduced from [8]].

E. Kogan [24]

Hückel: Only s orbitals FP-LAPW: All valence orbitals

Determination of the symmetries of crystal orbitals and vibrations

Reducible representation for a given \mathbf{k} point (explicit treatment in Ref. 4) (for symmorphic space groups)

$$
\Gamma(\mathbf{k})=\Gamma^{\text {equiv }}(\mathbf{k}) \times \Gamma_{\text {vec }}
$$

where $\Gamma^{\text {equiv }}(\mathbf{k})$ is the representation of the lattice and $\Gamma_{\text {vec }}$ the representation of the orbitals or coordinates (vibrations).

The characters of $\Gamma^{\text {equiv }}(\mathbf{k})$ are 1 for all elements of the group of \mathbf{k} that transform an atom of the lattice into itself or into an equivalent atom and are 0 else. For $\mathrm{k} \neq 0$ the appropriate phase factors have to be included.

The usual rules are applied to determine the irreps which are contained in $\Gamma(\mathbf{k})$.
For nonsymmorphic space groups everything is more difficult. Details in Ref. 4.

Crystal orbitals of graphene

Гequiv : The two nonequivalent C atoms
$\Gamma_{\text {vec }}$: The four valence orbitals at the C atoms: s, p_{x}, p_{y}, p_{z}
$2 * 4=8$ crystal orbitals

$$
\begin{array}{lllll}
\text { k point } & \text { Group of k } & \text { Гequiv } & \Gamma_{\text {vec }} & \begin{array}{l}
\text { Irreps } \\
\Gamma \text { equiv } \times \Gamma_{\text {vec }}
\end{array} \\
\text { Г } & D_{6 h} & a_{1 g}+b_{1 u} & a_{1 g}+a_{2 u}+e_{1 u} & A_{1 g}+A_{2 u}+E_{1 u}+B_{1 u}+B_{2 g}+E_{2 g} \\
\text { K } & D_{3 h} & e^{\prime} & a_{1}{ }^{\prime}+a_{2}{ }^{\prime \prime}+e^{\prime} & E^{\prime}+E^{\prime \prime}+A_{1}^{\prime}+A_{2}^{\prime}+E^{\prime} \\
M & D_{2 h} & b_{1 u}+b_{2 g} & a_{g}+b_{1 u}+b_{2 u}+b_{3 u} & A_{g}+A_{u}+2 B_{2 g}+B_{3 g}+2 B_{1 u}+B_{3 u}
\end{array}
$$

Ref. 25
Figure 1: (Color online) Graphene band structure evaluated with use of the FP-LAPW method and the code Elk [12]. The dashed line shows the Fermi energy.

Vibrational modes of graphene

$\Gamma^{\text {equiv }}$: The two nonequivalent C atoms
$\Gamma_{\text {vec }}$: The three Carterian displacements coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$
$2 * 3=6$ vibrational modes (two out-of-plane modes, in parentheses)

k point	Group of k	Гequiv	$\Gamma_{\text {vec }}$	Irreps Гequiv $\times \Gamma_{\text {vec }}$
Γ	$D_{6 h}$	$a_{1 g}+b_{1 u}$	$\left(a_{2 u}\right)+e_{1 u}$	$\left(A_{2 u}\right)+E_{1 u}+\left(B_{2 g}\right)+E_{2 g}$
K	$D_{3 h}$	e^{\prime}	$\left(a_{2}{ }^{\prime \prime}\right)+e^{\prime}$	$\left(E^{\prime \prime}\right)+A_{1}^{\prime}+A_{2}^{\prime}+E^{\prime}$
M	$D_{2 h}$	$b_{1 u}+b_{2 g}$	$\left(b_{1 u}\right)+b_{2 u}+b_{3 u}$	$\left(A_{g}\right)+A_{u}+B_{2 g}+B_{3 g}+B_{1 u}+\left(B_{3 u}\right)$

Vibrational modes of graphene at the K point
(a) KiLAE' $D_{3 n}$

(d) KiLOE' $\mathrm{D}_{3 n}$

(b) $\mathrm{KiTAA}_{2}^{\prime} \mathrm{D}_{3 n}$

(e) K іто $A_{1}^{\prime} \mathrm{D}_{3 \mathrm{~h}}$

(c) K oTA $E^{\prime \prime} D_{3 n}$

(f) K ото $\mathrm{E}^{\prime \prime} \mathrm{D}_{3 \mathrm{~h}}$

out-of plane modes

Graphene: Massless Dirac particles (Dirac cone)

For electrons with \mathbf{k} in the vicinity of the \mathbf{K} point, i.e. $\mathbf{k}=\mathbf{K}+\mathbf{q}$ and $|\mathbf{q}| \leq|\mathbf{K}|$ we have:

$$
\begin{aligned}
& \mathrm{E}(\mathbf{q})=\mathrm{v}_{\mathrm{F}}|\mathbf{q}|+\mathrm{O}((\mathbf{q} / \mathbf{K}) 2) \\
& \mathrm{v}_{\mathrm{F}}=3 \beta \mathrm{a} / 2
\end{aligned}
$$

is the Fermi velocity. It does not depend on the energy E.
Usually, one has for a particle with mass m

$$
\begin{aligned}
& \mathrm{E}(\mathbf{q})=\mathbf{q}^{2} / 2 \mathrm{~m} \\
& \mathbf{v}=\mathbf{q} / \mathrm{m}=\sqrt{ }(2 \mathrm{E} / \mathrm{m})
\end{aligned}
$$

Here, \mathbf{v} changes with the energy.

Classical relativistic movement:

$$
\mathrm{E}^{2} / \mathrm{c}^{2}=\mathrm{p}^{2}+\mathrm{m}^{2} \mathrm{c}^{2}
$$

> 2D Dirac equation:
> $\left(-\mathrm{i} \mathrm{v}_{\mathrm{F}} \sigma \cdot \nabla-\mathrm{m}\right) \psi(\mathbf{r})=\mathrm{E} \psi(\mathbf{r})$

Properties of graphene

$>$ Half metal
> Insulator with zero band gap
$>$ Pseudorelativistic electrons at the Fermi energy
> Anomalous Quantum Hall effect
> High electron and hole mobility at room temperature
$>$ Small resistivity, even less than silver
> Large mechanical and chemical stability
> Several chemical functionalizations possible
> Sensors, solar cells, ...
$>\mathrm{Li}$ coated graphene exhibits superconductivity
\leftarrow Applications
$>$ Quantum computers (??)
> ...

Outline

I. Introduction
II. Bravais latticesIII. Band structure theoryIV. Space groupsV. Symmetry properties of crystal orbitals and vibrations
VI. Group-subgroup relationships
VII. References

Group-subgroup relationships

Reduction of symmetry:
$>$ Change of atoms
$>$ Contaminations
> Jahn-Teller systems
$>$ Peierls distortion
> ...
> Temperature effects; phase transitions
Symmetry of the crystal is lowered
Space group is replaced by a (smaller) subgroup

Subgroups of space groups

Pbcm; point group $\mathrm{D}_{2 \mathrm{~h}}$
Pm-3m; point group O_{h}
Ref. 7

Bärnighausen Tree, example 1

From diamond to zinc blende:
> 'translationsgleich'
> point groups
diamond: T_{d} zinc blende: T_{d}
> Wyckoff positions:
diamond: 8a
zinc blende: $4 \mathrm{a}, 4 \mathrm{c}$

Ref. 7

Bärnighausen Tree, example 2

Boron compunds
> translationsgleich
> klassengleich
$>$ isomorphic

Fig. 5. The Bärnighausen tree (Bärnighausen, 1980) illustrating the group - subgroup relations in the family of mullite-type boron compounds. The symbol t stands for "translationengleich", k for "klassengleich", i for "isomorphic". Unit-cell transformations are given by the corresponding expressions for the basis vectors. The numbers after this symbol represent the index of symmetry reduction for the respective step. Roman numerals represent the index of symmetry reduction relative to the aristotype. Group symbols in grey fields refer to observed compounds, the others are needed as intermediate steps for the symmetry reductions.

Peierls distortion

Peierls distortion (physics)
 Bond alternation (chemistry)

Example: Linear chain, alternant distances, long and short bonds Hückel theory: β_{1}, β_{2}

$$
\epsilon(k)=\alpha \pm \sqrt{\beta_{1}^{2}+\beta_{2}^{2}+2 \beta_{1} \beta_{2} \cos (k a)}
$$

1. Brillouin zone:

$$
\varepsilon(0)=\alpha \pm\left(\beta_{1}+\beta_{2}\right)
$$

band gap:

$$
W=2\left(\beta_{1}-\beta_{2}\right)
$$

Linear chain with 35 H atoms Hückel theory:

$$
\begin{aligned}
& \alpha=0 \\
& \beta_{2}=0.75 \beta_{1}
\end{aligned}
$$

Linear chain

Peierls distortion

Hückel theory
Lattice constant: a=1

One atom in unit cell:
$0 \leq \mathrm{k} \leq \pi / \mathrm{a}$

Two atoms in unit cell: $0 \leq \mathrm{k} \leq \pi / 2 \mathrm{a}$

$\beta_{2}=0.75 \beta_{1}$

Jahn-Teller Theorem

Jahn-Teller Theorem:

If a (nonlinear) molecule possesses a (spatially) degenerate electronic state, there exists always a vibrational mode (distortion of the nuclear frame) that lifts the degeneracy.

Proofs:

1. H. A. Jahn, E. Teller, Proc. R. Soc. London A161, 220 (1937) By checking all possible point groups.
2. E. Ruch, A. Schönhofer, Theoret. Chim. Acta 3, 291 (1965) By using group theoretical methods.

Group theoretical formulation:

If the electronic state belongs to a multi-dimensional irrep Γ, then the (nontotally symmetric) vibrations that are contained in $\left[\Gamma^{2}\right]$ will lift the degeneracy.

Jahn-Teller splitting: Example

Let p_{x} and p_{y} be two orbitals in an environment of $\mathrm{D}_{4 \mathrm{~h}}$ symmetry.

The pair $\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}$ spans the irrep $\Gamma=\mathrm{e}_{\mathrm{u}}$ of $\mathrm{D}_{4 \mathrm{~h}}$.
The direct product of Γ with itself is

$$
\Gamma^{2}=\Gamma \times \Gamma=\mathrm{a}_{1 \mathrm{~g}}+\left\{\mathrm{a}_{2 \mathrm{~g}}\right\}+\mathrm{b}_{1 \mathrm{~g}}+\mathrm{b}_{2 \mathrm{~g}}
$$

$\left\{\mathrm{a}_{2 \mathrm{~g}}\right\}$ is the antisymmetric part of the product.

Therefore the two vibrational modes $b_{1 g}$ and $\mathrm{b}_{2 \mathrm{~g}}$ split the irrep e_{u}.

Jahn-Teller splitting: The energy levels W_{+}and W_{-}as functions of one mode Q .

Alkali Hyperoxides, AO_{2}, $\mathrm{A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$

phase	temperature [K]	lattice constants [pm, ${ }^{\circ}$]	$\begin{aligned} & \text { space } \\ & \text { group } \end{aligned}$	structure	remarks*
$\mathrm{I}-\mathrm{KO}_{2}$	$383<T$	$a=609$	Fm3̄m	$\begin{aligned} & \mathrm{NaCl} \text {-type } \\ & {[115,118]} \end{aligned}$	phase decomposes by oxygen evolution; [106, 117] X-P.
II-KO2	$231<T<383$	$\begin{aligned} & a=403.3(2) \\ & c=669.9(2) \end{aligned}$	14/mmm	$\begin{aligned} & \mathrm{CaC}_{2} \text {-type } \\ & \text { (average structure) } \\ & \text { [119-122] } \end{aligned}$	two orthorhombic domains simulating tetragonal symmetry [106]; diffuse scattering $[106,123]$. X-P; X-SC
III-KO2	196<T<231	$\begin{aligned} & a=400.4(3) \\ & c=670.4(2) \end{aligned}$	14/mmm	$\begin{aligned} & \mathrm{CaC}_{2} \text {-type } \\ & \text { (average structure) } \end{aligned}$	incommensurate superstructure modulation period: ($3.4 . \pm 0.02$)a [106, 107, 123] X-P; X-SC.
$\mathrm{IV}-\mathrm{KO}_{2}$	12.1<T<196	$\begin{aligned} & a=788.0(5) \\ & b=403.6(5) \\ & c=796.8(5) \\ & B=122.85(5) \end{aligned}$	ca/c	CaC_{2}-similar with $\mathrm{O}_{2}{ }^{-}$groups reoriented [106, 107, 124]	four monoclinic domains [106, 107, 124] X-SC.
$\mathrm{V}-\mathrm{KO}_{2}$	$7.1<\mathrm{T}<10.6$	coexistence of IV- KO_{2} and $\mathrm{VI}-\mathrm{KO}_{2}$			EPR [128]; X-SC [107]
$\mathrm{VI}-\mathrm{KO}_{2}$	T<7.1	$\begin{aligned} & a=596(1) \alpha=94.0(1) \\ & b=543(1) \beta=87.5(1) \\ & c=659(1) \gamma=90.0 \end{aligned}$			x -SC[107] $\mathrm{N}-\mathrm{P}$ [125] antiferromagnetic ordering [107, 125]
*: X-P, X-SC: X-ray powder, single crystal (resp.) diffraction data. $\mathrm{N} \cdot \mathrm{P}$: neutron powder diffraction data.					

Rubidium superoxide, RbO_{2}

Crystal structure:
tetragonal
$\mathrm{a}=4.24 \AA, \mathrm{c}=7.03 \AA$
below 15 K : weakly monoclinic
Molecular unit:
$\mathrm{Rb}^{+} \mathrm{O}_{2}^{-}$

$$
R\left(\mathrm{O}_{2}\right)^{-}=1.350 \AA
$$

Antiferromagnetic
Néel temperature: 15 K
Curie-Weiss temperature: -26 K Electronic states:
Rb^{+}: ${ }^{1} \mathrm{~S}$
$\mathrm{O}_{2}:{ }^{2} \Pi$,
SOC: ${ }^{2} \Pi_{1 / 2},{ }^{2} \Pi_{3 / 2}, \quad 160 \mathrm{~cm}^{-1}$

Electronic structure, $\mathrm{O}_{2}{ }^{-}$

Molecular orbitals, derived from O2p

$$
\begin{aligned}
& \mathrm{O}_{2} . .1 \pi_{\mathrm{u}}^{4} 1 \pi_{\mathrm{g}}^{2} \\
& { }^{3} \Sigma_{\mathrm{g}}- \\
& \mathrm{O}_{2}^{-} . .1 \pi_{\mathrm{u}}^{4} 1 \pi_{\mathrm{g}}^{3}
\end{aligned}{ }^{2} \Pi_{\mathrm{g}} \mathrm{C}
$$

Electronic states

Spin-orbit coupling (SOC) in O_{2} :

$$
{ }^{2} \Pi \rightarrow{ }^{2} \Pi_{1 / 2},{ }^{2} \Pi_{3 / 2}
$$

Splitting of $160 \mathrm{~cm}^{-1}=20 \mathrm{meV}$

Embedded cluster approach

Cluster setup for the interaction of two $\mathrm{O}_{2}{ }^{-}$anions in RbO_{2}

$$
\mathrm{O}_{2}^{-}+\mathrm{O}_{2}^{-}+10 \mathrm{Rb}^{+}+4 \mathrm{ECP}+\mathrm{PCF}(3404)
$$

each O_{2}^{-}must be fully surrounded by Rb^{+}ions
ECPs for O_{2}^{-}(not necessary)

Jahn-Teller Splitting in RbO_{2}

One $\mathrm{O}_{2}{ }^{-}$molecular ion in a $\mathrm{D}_{4 \mathrm{~h}}$ environment:

Electronic ground state is degenerate without SOC: ${ }^{2} \Pi$ (twofold space and spin) with SOC: $\quad \Pi_{3 / 2} \quad$ (twofold spin)

Questions:

1. Which vibrational mode removes the degeneracy?
2. How do SOC and Jahn-Teller splitting interact?
3. Comparison with experiment?

Cluster claculations: $>$ One $\mathrm{O}_{2}{ }^{-}$in the cluster
$>$ Crystal structure preserved
> One vibrational mode activated

B1g mode

B2g mode

B1g mode

Magnetic coupling paths

parallel
$\mathrm{J}=-7.90$
$D_{z z}=-14.04$

skew
J = -18.71
$D_{z z}=-21.28$

diagonal
J $=-1.11$
$D_{z z}=-0.99$

linear
$\mathrm{J}=-0.65$
$D_{z z}=+0.01$

All values in $\mathrm{cm}^{-1} ; \quad$ F. Uhl, V. St., unpublished

Outline

I. Introduction
II. Bravais lattices
III. Band structure theory
IV. Space groups
V. Symmetry properties of crystal orbitals and vibrations
VI. Group-subgroup relationships
VII. References

Textbooks

1. N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976
2. A. Zangwill, Physics at Surfaces, Cambridge University Press, 1988
3. K. Kopitzki, Einführung in die Festkörperphysik, Teubner Taschenbücher, 1989
4. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory. Application to the Physics of Condensed Matter, Springer-Verlag, 2010
5. J. Y. Burdett, Chemical Bonding in Solids, Oxford University Press, 1995
6. R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Systems, VCH Publishers, 1988
7. U. Müller, Symmetry Relationships between Crystal Structures, Oxford University Press, 2013
8. S. L. Altmann, Band Theory od Solids: An Introduction from the Point of View of Symmetry, Clarendon Press, Oxford, 1991

Tables

11. S. L. Altmann, P. Herzig, Point-Group Theory Tables, Clarendon Press, Oxford 1994
12. International Tables for X-ray Crystallography
13. R. W. G. Wyckoff, Crystal Structures, Interscience Publishers, 1965

Papers

21. A. Leitheußer, Dissertation, Bochum 2001
22. P. R. Wallace, Phys. Rev. 71, 622 (1947)
23. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 81, 109 (2009)
24. E. Kogan, Graphene 2, 74 (2013)
25. E. Kogan, V. U. Nazarov, V. M. Silkin, E. E. Krassovskii, arXiv:1306.4084v3
26. R. X. Fischer, H. Schneider, Eur. J. Mineral. 20, 917 (2008)
27. M. Labhart, D. Raoux, W. Känzig, M. A. Bösch, Phys. Rev. B 20, 53 (1979)
28. W. Hesse, M. Jansen, W. Schnick, Prog. Solid St. Chem. 19, 47 (1989)
29. F. Uhl, V. Staemmler, unpublished

Appendix A

Table 6.5 The most important graphic symbols for symmetry elements.

Ref. 7, p78

Appendix B1

Character Table $\mathrm{D}_{3 \mathrm{~h}}$ Ref. 11

T 32.4							Character table
$\mathrm{D}_{3 h}$	E	$2 C_{3}$	$3 C_{2}^{\prime}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$	τ
A_{1}^{\prime}	1	1	1	1	1	1	a
A_{2}^{\prime}	1	1	-1	1	1	-1	a
E^{\prime}	2	-1	0	2	-1	0	a
$A_{1}^{\prime \prime}$	1	1	1	-1	-1	-1	a
$A_{2}^{\prime \prime}$	1	1	-1	-1	-1	1	a
$E^{\prime \prime}$	2	-1	0	-2	1	0	a
$E_{1 / 2}$	2	1	0	0	$\sqrt{3}$	0	c
$E_{3 / 2}$	2	-2	0	0	0	0	c
$E_{5 / 2}$	2	1	0	0	$-\sqrt{3}$	0	c

Appendix B2

Character Table $\mathrm{D}_{6 \mathrm{~h}}$ Ref. 11

Character table § 16-4, p. 71													
D_{6}	E	$2 C_{6}$	$2 C_{3}$	C_{2}	$3 C_{2}^{\prime}$	$3 C_{2}^{\prime \prime}$	i	$2 S_{3}$	$2 S_{6}$	σ_{h}	$3 \sigma_{d}$	$3 \sigma_{v}$	τ
$A_{1 g}$	1	1	1	1	1	1	1	1	1	1	1	1	
$A_{2 g}$	1	1	1	1	-1	-1	1	1	1	1	-1	-1	
$B_{1 g}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	
$B_{2 g}$	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1	
$E_{1 g}$	2	1	-1	-2	0	0	2	1	-1	-2	0	0	
$E_{2 g}$	2	-1	-1	2	0	0	2	-1	-1	2	0	0	
$A_{1 u}$	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	
$A_{2 u}$	1	1	1	1	-1	-1	-1	-1	-1	-1	,	1	
$B_{1 u}$	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	
$B_{2 u}$	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	
$E_{1 u}$	2	1	-1	-2	0	0	-2	-1	1	2	,	0	
$E_{2 u}$	2	-1	-1	2	0	0	-2	1	1	-2	0	0	
$E_{1 / 2, g}$	2	$\sqrt{3}$	1	0	0	0	2	$\sqrt{3}$,	0	0	0	
$E_{3 / 2, g}$	2	0	-2	0	0	0	2	0	-2	0	0	0	
$E_{5 / 2, g}$	2	$-\sqrt{3}$	1	0	0	0	2	$-\sqrt{3}$	1	0	0	0	
$E_{1 / 2, u}$	2	$\sqrt{3}$	1	0	0	0	-2	$-\sqrt{3}$	-1	0		0	
$E_{3 / 2, u}$	2	0	-2	0	0	0	-2	0	2	0	0	0	
$E_{5 / 2, u}$	2	$-\sqrt{3}$	1	0	0	0	-2	$\sqrt{3}$	-1	0	0	0	

