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Group theory is the mathematics of symmetry ...

‘Group-theoretical deductions are usually quite easy to
perform and the information so obtained concerning the
solutions [of the Schrédinger equation (DA)], although
not complete, often contains the essential physics.’

M Weissbluth, Atoms and Molecules, Academic Press, 1974, p 204

. and is hence an essential tool for our understanding.
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How to specify the state of a quantum system?

A quantum state is completely specified by its eigen-
values associated with a complete set of commuting
operators (CSCO).

PAM Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1930
S Gasiorowicz, Quantum Physics, Wiley, 1974

H atom |n/m °L) (ﬁ L2, L, are part of the CSCO for this case):

H |nim?) = — (2n%)~Y B, |nlm 2L)
[2|nim2L) = I(1+ 1) 12 [nlm %), L, |nlm3L) = mA|nim 2L)
The CSCO contains H, L and A (Runge-Lenz vector). In this

special case (one-electron atom), the symmetry group is
isomorphic to SO(4) (group of rotations of a 4D sphere).
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Scheme of terms for four p electrons.

+ | = M Singlet M Triplet
0 s 0
+1 1 3P
1 1
0 Ip
+2
-2

H Hellmann, Einfiihrung in die Quantenchemie, Deuticke, 1937, Springer, 2015, Tabelle 28
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., Wenn man sich einmal das Schema
[...] notiert hat, kann man die in-
teressierenden Energien fast unmit-
telbar hinschreiben. Es sei noch
erwahnt, daB die Heranziehung des
Vektormodells fiir diese Rechnung
eigentlich eine Benutzung grup-
pentheoretischer Satze bedeutet.
Diese Satze finden im Vektormodell
eine uberaus anschauliche und be-
queme Formulierung. Wenn man
das Vektormodell benutzt, muB
man sich nur daruber klar sein,
daB es sich dabei um eine bequeme
Modellvorstellung zur Fixierung ab-
strakter und streng bewiesener
mathematischer Satze handelt."”

‘Once one has noticed the scheme
[...] one can write down the ener-
gies of interest almost immediately.
It is worth to remark that the use
of the vector coupling model for
this calculation actually means the
use of theorems of group theory.
These theorems are expressed in a
very obvious and convenient form
by the vector coupling model. But
when the vector coupling model
is used one has to be aware that
it is nothing more than a conve-
nient model to express abstract
and strictly proven mathematical
theorems.’

H Hellmann, Einfiihrung in die Quantenchemie, Deuticke, 1937, Springer, 2015, p 251f
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Electron configurations and terms in atoms

5Li 2st ((f) =2 /1 term)
25+1 25 |S|#
2 1]1]2
2

... forms the simplest metal ...
.. non-simple form of bonding ...

EU Condon, GH Shortley, The Theory of Atomic Spectra,

0 2p* ((2) =15/ 3 terms)

254+1 25|S P D|#

1 01 - 1| 6
3 2/- 1 —-19
15

... forms open-shell system O, ...
.. simple enough to learn from ...

Cambridge Univ Press, 1935, p 208
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Electron configurations and terms in atoms (contd.)

O atom: 1s? 252 2p* ...

.. (P41, Po. p_1) in K,: Density of states:

*Pg | 'Dg | 'S P, D, 1S,
.- (Pxy Py, Pz) in Dy 9 ) (@
3Blg @ 3B2g S 3B3g /

1,(2) & 1y & oy & sy | YA
... (Px, Py, Pz) in Cy

3B1@ 3B @ %Ay /

N2 e Bra B A /1A

-« (Px, Py, Pz) in Cy:

A(3) / 'A(5) / A w

... and all results — degeneracies, energies, 0 2 4
occupation numbers, orbital radial parts — (E — Eo)/eV
are aIWayS the Same! NIST Atomic Spectra Database (http://physics.nist.gov/asd)



Electron configurations and terms in atoms (contd.)

2o Ti 3d? 452 ((%) =45 / 5 terms)
25+1 25|S P D F G| #

1 0|1 - 1 - 1]15
3 2|- 1 - 1 -1]30
45

sMn?T 3d% (() =252 / 16 terms)

25+1 25|S P D F G H 1| #
2 1|1 1 3 2 2 1 1/|150
4 3|- 1 1 1 1 - -| 9%
6 5|1 - - - - - -| 6
252

GAMESS inputs for SCF jobs for all terms from p? and d9, and for the high-spin
terms from f7 (0 < g < 4/ + 2, state-optimized or state-averaged) see:
http://userpage.fu-berlin.de/~dandrae/openshell /openls /openls.html
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Electron configurations and terms in diatomics

O,, low-lying bound states: Density of states (R ~ R.):

E(cm!) 3

" X3ro alA, byt
N g g g
L @'

0(*P)+0('D)

0CP)+0(P)
40,000/ -

20,000

P N x
1 2 3 (10w 0 2 4
(E — Ey)/eV

G Herzberg, Spectra of Diatomic Molecules, Van Nostrand, 1950, p 446 / KP Huber, G Herzberg, Constants of Diato-
mic Molecules, Van Nostrand, 1979 / PF Bernath, Spectra of Atoms and Molecules, 2nd ed, Oxford, 2005, p 326
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Electron configurations and terms in diatomics (contd.)

0, m,° ((5) =6/ 3 terms)
25+1 25 |5 ¥, N, A | #

Several bound states
out of a single electron

1 0] 1 - - 1|3
3 o | — 1 _ — | 3 configuration
6

O 3P + O 3P (lowest asymptote: 9-9 = 81 / 18 terms)

25+1 25| %f ¥ M, A |Xf £, N, A, | #
1 ol2 - 1 1|- 1 1 -1]09

3 2(- 1 1 -]2 - 1 1]27

5 4/2 - 1 1]- 1 1 - |4

81

G Herzberg, Spectra of Diatomic Molecules, Van Nostrand, 1950, p 321 (Wigner-Witmer rules, 1928)
P Su et al, J Comput Chem 28 (2007) 185 (VB study)
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Groups — General Aspects
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General Aspects

Group. A group G = (S, %) results from a set of objects, S, and a
law of combination, x (usually called multiplication), when the
following requirements are fulfilled:

(1) Closure:

axbeg Va,be G
(2) Multiplication is associative:
ax(bxc)=(axb)x*c Va,b,ce g
(3) Existence of a neutral element e:

ate=exa=a Vae g
(4) Existence of inverse elements:
axad =adxa=e Vac G

Group element. Any member of the set forming a group.

Abelian group. [1] A group where multiplication is commutative:
axb=>bxa Va,be G

[1] named after Niels Henrik Abel (1802-1829, Norwegian mathematician)
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General Aspects (contd.)

Order of the group G. The cardinality of the set S forming the
group G, usually denoted as h or |G|.
h € N: G is a finite group (h is the number of its elements).
Example: Symmetry operations of a Platonic solid.
h = oo (countably infinite): G is an infinite discrete group.
Example: Translations of a crystal lattice.
h = oo (continuous): G is a continuous group.
Example: Rotations of a plane.

Order of the element a. The smallest positive integer n such
that " = e.

Generators of a group. A smallest set of elements from which
the complete group can be generated.
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General Aspects (contd.)

Some more examples:

» integer numbers Z with addition
(Abelian group, countably infinite order)

» rational numbers Q \ {0} with multiplication
(Abelian group, countably infinite order)

» complex roots of unity {exp (i2wk/n),i> = —1,k=1,...,n}
with multiplication (Abelian group, order n, a cyclic group)

> Q= {£1,+i 4j, +k} (i?=j2=k?>=—1, ij = k) with
multiplication (quaternion group, non-Abelian, order 8)

» permutations of n objects (symmetric group S,, n > 1)
(order n!, non-Abelian for n > 2)

» nonsingular n X n matrices with matrix multiplication (non-
Abelian continuous group, important for representation theory)

» rotations of a sphere (SO(3), special orthogonal group in R3,
real orthogonal 3 x 3 matrices, non-Abelian continuous group)
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General Aspects (contd.)

Subgroup of a group. A subgroup H of a group G is a subset
which obeys the group requirements, usually denoted as H < G.
Every group G has {e} as trivial subgroup, and itself as improper
subgroup. Lagrange's theorem (for finite groups): |G| = k - |H|
(k € N).

Conjugate elements. Given p, g, x € G, then p and g are said to
be conjugate if a similarity transform of p by x yields g (and vice
versa):

X_lpx:q 54 pzqu_1

Classes of conjugate elements. All elements conjugate to p,
x~tpx (x € G), constitute a class of the group. For every group
G, the classes of conjugate elements provide a decomposition into
disjoint subsets of group elements. In Abelian groups, every group
element is in a class by itself.
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General Aspects (contd.)

Mapping of groups. Given two groups G and G’. A mapping
© : G+ G assigns to each element g € G an element

g’ = ¢(g) € G, such that every g’ € G’ is the image of at least
one g € G.

Homomorphism. If ©(g1)p(g2) = »(g142), for all g1, € G,
then ¢ is a homomorphic mapping of G on G’: G +— G’. Such a
mapping is always n-to-one (n > 1).

Isomorphism. If the mapping ¢ is one-to-one (hence invertible),
then it is an isomorphic mapping of G on G": G ~ G’. Isomorphic
groups have the same group structure, they are simply different
realizations of the same abstract group.
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General Aspects (contd.)

How many essentially different (i. e., non-isomorphic) finite groups
exist for given order h?

h|{ N, Ny N h|Ns2 Ny N| h|N, Ny N
111 o0 1183 2 5|15, 1 0 1
2,1 0 192 0 2|16|5 9 14
31 0 1101 1 2{17|1 0 1
4,2 0 2|11} 1 0 1182 3 5
5,1 0 1}12(2 3 5{19|1 0 1
61 1 2131 0 1]20|2 3 5
7|1 0 1141 1 2

Table 1:  Number of finite groups for small values of the order h [1].

[1] On-Line Encyclopedia of Integer Sequences (https://oeis.org/), sequences A000001 (N = N, + N,), A000688
(N3 number of Abelian groups) and A060689 (N, number of non-Abelian groups)
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< h<6:

Cayley tables for the finite groups with 1
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< h<6:

Cayley tables for the finite groups with 1
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ba
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General Aspects (contd.)

Invariant subgroup (or normal subgroup or self-conjugate
subgroup). Given a subgroup H of a group G. If

xH = Hx & xHxL=H Vx e G\H

then H is an invariant subgroup of G, written as H <1 G. An
invariant subgroup H of G consists of complete classes of G.

Simple group. A simple group G has only the trivial subgroup of
order one (containing the identity element of the group) and itself
(as improper subgroup) as invariant subgroups:

{e} <@ and Gg<«g.

The role of simple groups in group theory is comparable to the role
of the prime numbers in number theory.



General Aspects (contd.)

Classification theorem of finite simple groups.

Every finite simple group is isomorphic to one of the following groups:
- A cyclic group of prime order, Z,

- An alternating group of degree at least 5, A, (n > 4)

- A simple group of Lie type [1] over a finite field (16 infinite families)
- The 27 sporadic simple groups.

A, (n > 4) is a simple group = Important consequence:
Non-existence of general algebraic solution for polynomial equations of degree
5 or higher (Abel-Ruffini theorem, 1799/1823) [2,3]

Direct product of groups. Given two finite groups G, = ({a1 = e, a;}, *)
(i=2,...,ha) and Gy = ({b1 = e, b;},*) (j =2,..., hp), for which holds
aj * bj = bj x a; for all a;, bj. Then the direct product group G is defined as

G =GaxG,=({ai* bj}, *).

The order of G is h = hyhp. The groups G, and Gy, are invariant subgroups of
G. Important special cases include direct products of pure rotation groups (C,,
D, T, O, 1) with C, or C;.

[1] named after Sophus Lie (1842-1899, Norwegian mathematician)
[2] named after Paolo Ruffini (1765-1822, Italian mathematician)
[3] for more details see P Pesic: Abel’s Proof; MIT Press, 2003
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General Aspects (contd.)

Anything missing?
Well, a lot — for example:

Cosets (left cosets, right cosets, double cosets), automorphism,
factor group, ...

Representation Theory (reducible representations, irreducible
representations [IRs], characters, character tables, Kronecker
products, simply reducible groups, Clebsch—Gordan coefficients,
projection operators, Wigner—Eckart theorem, ...)

Angular Momentum Theory
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Finite Groups
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An example of a permutation group

The elements of the symmetric group S3 (the 3! = 6 permutations of 3 objects):

group two-line disjoint cycle cycle matrix trace of

element notation notation structure notation matrix
1 0 0

e (i 3 g) (1)(2)(3) 32 0 1 0 3
0 0 1
0 1 0

a (; g i’) (123) f3 0 0 1 0
1 0 0
0 0 1

a® (; f 3) (132) fy 1 0 0 0
0 1 0
0 1 0

b ( N ) (12)(3) £, 1 0 0 1
0 0 1
1 0 0

ba (i 2 g) (1)(23) £, 0 0 1 1
0 1 O
0 0 1

ab (; : f) (13)(2) .1, 01 0 1
1 0 0

Subgroups: {e}, {e, a, a’}, {e, b}, {e, ba}, {e, ab}, S3 / Classes: {e}, {a, a*}, {b, ba, ab}

26
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Importance of permutation groups, in particular of the symmetric
groups Sp:

Cayley’s theorem [1]. Any group of order h = n is isomorphic to
a subgroup of the symmetric group S,,.

Pauli exclusion principle. The total wave function |V) for a
system of n indistinguishable fermions [bosons| has to transform —
under permutations of these particles — in accordance with the
totally antisymmetrical [totally symmetrical] irreducible
representation (IR) of S, (both IRs are one-dimensional).

Quantum mechanical treatment of nuclear motion makes use of
the complete nuclear permutation and inversion (CNPI) group,
e. g. ethene, C,H,: G = S(H) X S ) x {E E*}a (the order of this
group is h = 4! 2! 2= 96).

[1] named after Arthur Cayley (1821-1895, British mathematician)
af identity (Er =r), E* space inversion (E*r = —r).



Symmetry Operations and Point Groups

Symmetry operation. An operation that carries an object into a
situation indistinguishable from its situation before application of
the operation.

Symmetry element. A geometrical object (point, line, plane), or
a combination thereof, with respect to which certain symmetry
operations may be carried out.

Important note: Symmetry elements (e. g. inverison centre, axes,
planes) are not group elements, but symmetry operations (e. g.
rotations, reflections) are.

Point group. A group formed by the set of symmetry operations
of a rigid physical object. The two kinds of symmetry operations in
point groups are proper rotations (physically feasible) and
improper rotations (roto-reflections or roto-inversions, not
physically feasible).
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Symbol  Generators Symmetry elements Order Comments

(o E none 1 no symmetry

CS o [ea 2 Cs = clh = c:lv = sl
C i i 2 C, =5,

C, Cy Cp n n=2,3,4,...; Abelian
S,, Son Cn, Son 2n Abelian

C.h é,,, oh Cn, on, Sn 2n Abelian

C,. C,, Oy Cn, noy 2n regular n-gonal pyramid
D, Co, G Cn, nC} 2n

D, Q,,, (:_:\2/ oh Cn, nC}, Sy, op, noy 4n regular n-gonal prism
D, Cn, G}, 54 Cn, nC}, Son, nogy 4n

C. ax,, ov Coo, 00Oy, 00 Full sym. of cone

D_, Coo, 62’ oh Coo, 000V, Soo, 00C) 00 Full sym. of cylinder

T ¢ ¢ ac, 36 12 Rotations of {3,3}

T, CMY C T 4G, 3G, 456, 30, 24

T, 63(111), §4z) 4G5, 3Gy, 35,4, 60y 24 Full symmetry of {3,3}
o cM P 4G, 3G, 66 24 Rotations of {3, 4}

0, CM CH T 4C3, 3G, 6Co, 354, 4S5, 304, 604 48 Full symmetry of {3,4}
[ ¢l P 6Cs, 106, 156, 60 Rotations of {3,5}

1, cl®@, P, T 6Cs, 10Gs, 15y, 12510, 10S6, 150 120 Full symmetry of {3,5}

Table 2:  Point groups in three-dimensional space (except K and K,) [1].
[1] adapted from JA Salthouse, MJ Ware: Point group character tables and related data. Cambridge, 1972, p 16 ~ 29/74



An algorithm to determine the point group from symmetry elements’

Linear?

/ \
| i

Unique C, of highest order?

|
ooh 6Gs? Son I G417

1JA Salthouse, MJ Ware: Point group character tables and related data. Cambridge, 1972, p 29
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Determination of point groups Cnv1 (Examples: H,0 [n = 2], NH3 [n = 3])

Linear?

T \ n
|

i? Unique C, of highest order?

cov ooh 6Gy? Son 11657

1JA Salthouse, MJ Ware: Point group character tables and related data. Cambridge, 1972, p 29
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Determination of the point group D2h1 (Example: CpHyg)

Linear?

/ \
f i

? Unique C, of highest order?

6C5? Sonll C7

1JA Salthouse, MJ Ware: Point group character tables and related data. Cambridge, 1972, p 29
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Benzene

G |
D

1
4 — 1 5
1 4
2 1 3 9
Kekulé structures (top) and 1 2 5
Dewar structures (bottom) 0 - 1 9 5
Branching diagram for electrons > T T T T T T
(up to N = 6 electrons) 1 2 3 4 5 6N
Dy, | E 26 26, G 3G 3Gy 0 25 25 Gy 334 36,
red 12 0 2 0 o0 2 0 2 o 2 2 0
red 13 0 0o 3 3.0 0o 3 1 1

Both the Kekulé structures and the Dewar structures
red = A @ Bay contribute to the electronic grond state X *A, (So)
rbed = A1z ® Eog of benzene, but the Dewar structures do not con-
tribute to the lowest excited singlet state 1By, (S1).
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Benzene (contd) — Counting derivatives CgH, _, X, [1,2]

Symmetry operations (from either Dg or D, ) induce permutations
among the positions of the H atoms

Cycle index Zot = Zgyi (summarizes permutational structure of
parent compound), here:

1

Z
12

(FF + 326 + 455 + 212 + 2f)

Substitution of f, by figure counting function (here: f. = 1 + x')
yields counting polynomial G(x), here:

G(x) =) axF =14 x+3x"+33 +3x" + x° + x°
k

[1] G Pélya, Acta Math. 68 (1937) 145-254
[2] G Pélya, RC Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds; Springer, 1987
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I?I?fi? I%I%I%Ii

000000 100000 110000 111000 111100 111110 111111
C2\/
101000 110100 111010
100100 101010 110110

The complete set of benzene derivatives CcH,_, X, (0 < k < 6), showing their
structural formulas, point group symbols and encoding strings [1].

[1] AP Bhati, D Andrae, submitted for publication (2015)
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Magnitude of molecular static electric dipole moments p (in Debye) of polar
benzene derivatives CgHg X, (1 < k<5, X =For X =Cl) [1].

k benzene derivative encoding
(point group) string X=F X =l

1 CeHsX (Cy) 100000 1.34 (1.60) 1.91 (1.69)
1,2-CeH,X, (C,,) 110000 2.25 (2.46) 2.75 (2.50)
1,3-CeH, X, (C,,) 101000 1.33 (1.51) 1.79 (1.72)

3 1,23-CHyX, (Cy,) 111000 257 2.79
1,2,4-CoH X (C,) 110100  1.27 (1.40) 1.39

4 1234-CH,X, (C,) 111100 219 (2.42) 2.09
1,2,3,5-CgH,X, (C,,) 111010 124 (1.46) 1.00

5 1,2345CHX; (C,,) 111110 1.4 0.93

[1] AP Bhati, D Andrae, submitted for publication (2015)

2 caled. from KS-DFT, B3-LYP, 6-31G** (exptl. values in parentheses, from CRC Hdbk of Chemistry and Physics)

36
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Continuous Groups
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Proper and improper rotations in 3D

g Parametrization with angle ¢ and unit vector fi:

(a)

Proper rotations R, (pf):
v = Ry (oh)r

=ar+baxr+ (c—a)i(i-r)

. 1_
=cos(p)r+ M(pﬁ X r+ Cio;(w)goﬁ((pﬁ-r)
® ®

(a=cos(p), b=sin(p), c= +1)
Identity: E = Ry (0)

(b)
r=r, +ry, r = AR Improper rotatiqns R_(f):
as above, but with c = — 1

n= (n17n27 n3)T1 ﬁ’ =1
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Proper and improper rotations in 3D (contd)

Parametrization with angle ¢ (0 < ¢ < 7) and direction to the pole fi:

N a+(c—a)m? (c—a)nmmp —bnz (c—a)mn3+bny
Ri(pf) = | (¢ —a)nan + bnz a+ (c—a)n? (¢ —a)nmnz — bn
(c—a)nmny —bnm (c—a)nzm+bm a+ (c—a)n3?
det(Ry)=c= +1, x(Re)=c+2a= £1+2cos(p)

Alternative parametrization of proper rotations with quaternions? [1]:
o= [N\ A] with A =cos(¢/2), N=sin(p/2)i (A\2+N-A=1)

Multiplication rule:

[)\,’,/\,’][)\j,/\j] = [)\kv,\k] where A\, = /\,‘)\j—/\,“/\j and Ay = /\i/\j+)\j,\i+/\i X/\j

~» The group of proper rotations in 3D is not Abelian (because A; X A; # A; x A))!

Warning: In single groups, rather than double groups, the result [Ax, Ak] may be
mutllplled by £1 without any change! The double group G* of G is obtained when

E= R+(27rn) is distinguished from the identity E = R+(47rn) (any f).

[1] SL Altmann, P Herzig, Point-Group Theory Tables, 2nd corr. ed., 2011
? Quaternions H = {q = a+ ib+ jc + kd = [a, (b, c, d)]|a, b,c,d € R; P=72=k=—1,ij= k}
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Transformation of Scalar Functions

Let ¥ = Rr. How is a scalar function f(r) then being transformed? The
required condition is (this demands equality of function values)

(O=F)(r') = f(r) = F(R™'Y),

or in short simply

Example:
What happens to f(r) = f(x,y,z) = xy exp (—r®) under the counterclock-
wise rotation around the z axis (A = (0,0,1)") through ¢ = 7/4 = 27/87?

11 9 1 _1 9
T V22 5 [ aiav—1 o2
Rph)=| -5 5 0|, [R(@R)] =| 5 5 O

0 0 1 0 0 1
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L L L B |
o~ — o — o~

%(X2 - y2) exp (_r2) (dx27y2)

Xy eXp(_r2) (dxy )
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Some Continuous Groups (incl. Classical Groups)

Group elements are represented as non-singular (i. e. invertible) n x n matrices A.
Matrix elements are continuous functions of a set of parameters: A = A(ay,...,ar).
Under certain conditions, the resulting groups may qualify as Lie groups.

No.  Symbol? Number r of real  Remarks
parameters
1 GL(n,C) 2n®  general complex linear group of degree n
2 GL(n,R) n?  general real linear group of degree n
3 SL(n,C) 2(n?> —1)  special complex linear group of degree n (det = +1)
4 SL(n,R) n?> —1  special real linear group of degree n (det = +1)
5 U(n) n®  unitary group of degree n,
leaves invariant Y7 ; ziz* (z; € C)
6 SU(n) n?> —1  special unitary group of degree n (det = +1)
7 O(n) n(n—1)/2 (real) orthogonal group of degree n (det = +1)
8 50(n) n(n—1)/2  special orthogonal group of degree n (det = +1),
leaves invariant >.7_; x;? (x; € R)
9 Aff(n,R) n?> 4+ n  group of invertible affine transformations in R":

t' = Ar + a (A nonsingular matrix, a vector)

a

adapted from BG Wybourne, Classical Groups for Physicists, Wiley, 1974
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Examples:

(1) Complex numbers of modulus 1, U(1) (1% = 1 real parameter):

U(1) = {exp (i¢);0 < ¢ < 2}

(2) 2 x 2 unitary matrices with det = +1, SU(2) (22 — 1 = 3 real parameters):

SU(2):{< Z _Z* );a,bE(C;det :aa*+bb*:1}

SU(2) is the double cover group of SO(3) (group of rotations of a 3D sphere), i. e.

there exists a two-to-one homomorphism between SU(2) and SO(3) ~» double groups.

(3) 2 x 2 orthogonal matrices with det = +1, SO(2) (2-1/2 =1 real parameter):

50(2):{( 7‘;?55?;3 ;‘)’;gg; ) 0<¢<2n (or—7r§¢<7r)}

(4) 3 x 3 orthogonal matrices (3 -2/2 = 3 real parameters):

S0(3) = {Ri(pR)},  O(3) = {Ry(ph)} U{R_(ph)}

S0(3) = K (rotations of the 3D sphere),
0(3) = K, = K x C; (full symmetry of 3D sphere).
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Noether’s (first) theorem (1918) [1]:

To every continuous symmetry of a physical system
belongs a conserved quantity.

Remark: Actually, the action (or the action functional) of the

system is studied, and a variational principle must be applicable.

Examples:

Homogeneity of Time ~» Conservation of Energy

Homogeneity of Space ~» Conservation of Linear Momentum
Isotropy of Space ~» Conservation of Angular Momentum
Invariance of scalar quantities under Lorentz transformations ~»

Conservation of charges (electric and other) in particle physics

[1] named after Emmy Noether (1881-1935, German mathematician)

44 /74



Infinite Discrete Groups
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Space groups (symmetry groups containing translations)

Translations introduce new symmetry elements:
» Glide planes (reflection & translation)

» Screw axes (rotation & translation)

Now rotations have to map lattice points onto lattice points
~ X(Ry) =142 cos(p) € Z

~ restriction of order of crystallographic axes n to

2 (x= -1 p=m),
3 (x=0,¢=271/3),
4 (x=19=m7/2),

6 (x=2 ¢=1/3),

1 (x=3,¢=0)

~» restriction to 32 crystallographic point groups
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Synoptical table of notation for crystallographic and some other point groups and
for some examples of space groups?

Schoen- Hermann- Schoen- Hermann- Schoen- Hermann-Mauguin
flies Mauguin flies Mauguin flies short full

Point Groups

c, 1 C 1 c, m
C, 2 G,y 2/m C,, mm?2
C, 3 Cyp=S; 6=3%m  Cy 3m
C, 4 Cup 4/m C,y 4mm
Cs 6 Con 6/m Cov 6mm
s, 3 S¢=Cy; 3 C., com
D, 222 Dy, 42m D,, mmm 2/m2/m 2/m
D, 32 Dy, 62m Dy 3m 32/m
D, 422 D,y 82m Dy, 4/mmm 4/m 2/m 2/m
Dg 52 Dg, 102m Dg, 5m 52/m
D¢ 622 D¢y 122m Dg), 6/mmm 6/m 2/m 2/m
Do oo/mm oo/m2/m

T 23 T, i3m T, m3 Ym3

o} 432 o, m3m 4/m32/m

1 235 1 m35 m35
Space Groups
ci P1 ct PT cl Pm P1m1
ci P2 c3 P2, c3, P2,/c P12,/c1
D} P222 ci? Cme2, D Pnma P2,/n2,/m2;/a
Cgh 14/a ng P42, m Dih P4,/mmc P 4,/m 2/m 2/c
C%,— R3 Céh P 65/m DZ, P6y/mmc  P63/m2m2c
T F43m o? F432 o} Fm3m F 4/m32/m

? adapted from U Miiller, Symmetry Relationships between Crystal Structures, Oxford, 2013
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Space group elements: Seitz operator [1] {I$|t}

Action of Seitz operator {R|t} on position vector r:

¥ = Rr+t = {R|t}r

Closure: R R L
{S|u}{R|t}r = {SR|St + u}r
Identity: R
{E|O}r =
Inverse:

(Rt} HRityr=r = {Rt}"'={RY-R't}

[1] named after Frederick Seitz (1911-2008, American physicist)
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Lattice in Direct Space (Position Space)

W Borchardt-Ott, Kristallographie, 7. Aufl., Springer, Berlin, 2009

Vectors of the direct lattice (lattice translation vectors):

tuww = vaj + vas + was (u, V,w € Z)
Vectors in the direct lattice: r = xai + yas + zasz (x,y,z € R)

fF0<x<1,0<y<1 0<z<1,thenr belongs to unit cell 000.
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Crystal Structure = Lattice + Basis

o o o o O O O O

o 0 o
o 6 0 O O O O O
o 0 o
e o 0 O O O O O
Crystal pattern Bravais lattice

SL Altmann, Band Theory of Solids — An Introduction from the Point of View of Symmetry, Clarendon, Oxford,
1994

The pure translations 7 = {{E\tuw\,}} constitute an Abelian
subgroup of the full space group G of the crystal: 7 C G

Hence, 7 has only one-dimensional IR, their labels k can be used
to label symmetry-adapted crystal orbitals, the so-called Bloch
functions [1] ¥k (r) (Born—von-Karman boundary conditions
assumed, see below for more on this)

[1] named after Felix Bloch (1905-1983, Swiss-American physicist)
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—

Lattice in Reciprocal Space (Momentum Space)

Introduce a new basis — the basis for

reciprocal space — to describe normal
vectors of stacks of lattice planes of
PR the direct lattice, such that
\ & oL
\ '/\/ PDE\‘E? ¢
\\ \\ \\\ a; - b j = 27 5,'J'
\\ \ \l /
} g @
‘ (100) |

<« Example: ac plane in a
monoclinic primitive lattice
W Borchardt-Ott, Kristallographie, 7. Aufl., Springer, Berlin, 2009

Vectors of the reciprocal lattice:

8hki = hby + kby + /b3

(Miller indices h, k, | € Z)
Vectors in the reciprocal lattice: k = oby + pby + gbs (0, p, g € R)
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Oblique, p (a,0) (bcos g, bsinp)
Rectangular, p  (a,0) (0, b)
Rectangular, ¢ (3a,1b) (—%a,1b)
Square, p (a,0) (0,a)
Hexagonal, p (0, —a) (1v3a, 3a)

b1 b2
Oblique, p (2m/a)(1, — cotp) (2m/b)(0,cscp)
Rectangular, p  (27/a)(1,0) (2m/b)(0,1)
Rectangular, ¢ 27(1/a,1/b) 2n(—1/a,1/b)

Square, p
Hexagonal, p

(2m/a)(1,0)
(2m/a)(1/v3, 1)

(27/a)(0,1)
(27/a)(2/V/3,0)

Table 3: Basis vectors for the 2D Bravais lattices® (top) and the 2D
reciprocal lattices”? (bottom) [1].

[1] AP Cracknell, Thin Film Solids 21 (1974) 107
? The vectors a; and a, are given in terms of unit vectors in the orthogonal x and y directions

b The vectors by and by are given in terms of unit vectors in the orthogonal kx and ky directions
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The 2D Bravais Lattices [1]

laJ # laj, ¢ = 90°

2

o o
o o
Qu®

3

la] # la], ¢ # 90°

o 0 O

laj =laj, @ = 120°
4

o 0 O
o
o

lail = laJ, ¢ = 90°
5

[1] named after Auguste Bravais (18111863, French physicist)

Source of figure: https://en.wikipedia.org/wiki/Bravais_lattice (not fully consistent with table on previous page)
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The 2D Reciprocal Lattices

Ky
ky . c s
of
Y
A I D
| :
k!
X " r o X ky
a<b
(@) (b}
ky
M
1o}
L7 sy
A
rooag X Kk
) (&)

AP Cracknell, Thin Film Solids 21 (1974) 107, Fig. 1 (read g as b;)
e

(a) oblique, p; (b) rectangular, p; (c) rectangular, c; (d) square, p; (e) hexagonal, p
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System No.  Short Full Generators Remark®*®
Symbol  Symbol (in addition to those of T)
Oblique 1 pl pl {E|0} s
2 p2 p211 {Cyz |0} s
Rectangular 3 pm (p11m)*  {o,|0} s
4 pg (p1lg)*  {5y[5a1} ns
5 cm clml {EX\O} s
6 pmm p2mm {C22|0} {O'y|0} s
7 pmg p2mg {C2z|0} {5y] 231} ns
8 peg p2gg {sz|0} {Gy|3a1 + 2a2}  ns
9 cmm c2mm {C2.|0}, {5x|0} s
Square 10 p4 p4 {€4z|0} s
11 p4m p4mm {C4Z|0} {o'x|0} s
12 p4g p4gm {C4z|0} {rry\ a; + 32} ns
Hexagonal 13 p3 p3 {C3\0} s
14 p3ml p3ml {Gs|0}, {51]0} s
15 p3lm p31m {G3]0}, {541/0} s
16 p6 p6 {Cs|0} s
17 pbm p6mm {Cs|0}, {541/0} s

Table 4: The 17 two-dimensional space groups [1].

[1] AP Cracknell, Thin Film Solids 21 (1974) 107

® Non-standard orientation for groups no. 3 and 4 (compared to the International Tables).

®® The symbols s and ns indicate whether the space group is symmorphic or non-symmorphic, respectively.
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Space groups (symmetry groups containing translations) ...

> ... with periodicity in one dimension:
2 line groups
(pl: - >>>>>>--;plm: - <A <A> <>+ )
7 frieze groups [1]
(pl, plml, pllm, pllg, p2, p2mm, p2mg)
75 rod groups (if restriction n € {1,2,3,4,6} is applied)
» ... with periodicity in two dimensions:
17 plane groups (wallpaper groups) [2]
(pl, plml, plgl, clml, p211, p2mm, p2mg, p2gg,
c2mm, p4, pAmm, pdgm, p3, p3ml, p31m, p6, p6mm)
80 layer groups

> ... with periodicity in three dimensions:
230 space groups (ES Fedorov, A Schoenflies, 1891/1892)

[1] see Hargittay |, Lengyel G, J. Chem. Educ. 61 (1984) 1033 for illustrations with Hungarian needlework
[2] see Hargittay |, Lengyel G, J. Chem. Educ. 62 (1985) 35 for illustrations with Hungarian needlework
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Primitive Domains

Construction of the Voronoi polyhedron
(or Dirichlet region) for lattice point 0
8 leads to ...

the Wigner-Seitz cell (WS, in direct
space)

e ... the first Brillouin zone (BZ, in recipro-
cal space)

Knowledge of a periodic function, like

REURLURDY fe

within the primitive domain is completely

sufficient.
C Hammond, The Basics of Crystallography and Diffraction, 3rd ed., Oxford, 2009
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Orbitals in Periodic Systems

» Born—von-Karman boundary conditions: f(r + Na;) = (r)
= infinite translation subgroup 7 replaced by a cyclic group.

» Bloch functions: One-particle functions (crystal orbitals)
jk(r) (j band index; k IR label within first BZ) of the form

Gic(r) = e ui(r),  up(r +1) = ui(r),  Y(r+ 1) = e ypr),

are plane waves in the lattice, ", modulated by the periodic
cell function wji(r).

» Wannier functions: Obtained via unitary transformation of

Bloch functions, for example for band j (summation over all
N values of k in the first BZ):

(Pjt 1/22¢k kt _ 1/22u |kr t)

Wannier function for 1D free particle (at ceII 0)

@o(x) = \/ESin;:;ZL) ~x7t
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Example: Bloch Functions in a Square Lattice

ke=/12a)ky =0 ke, ky = 7 /(20) Ky =0, ky= 7/(20)

ky = /0, ky=0 ke ky = w/a ky=0, ky=1/a

2O
HOHDO
Yo

A0

O

R Hoffmann, Solids and Surfaces, VCH, New York, 1988
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Basis Set Expansion of Bloch Functions

> Plane waves (PW)
i(k+g)r ikr igr
Yji(r) § Giege“TE =" " g ge®
g

Universal, orthonormal, complete (in principle), basis adapts itself to
lattice changes, but practically it always requires pseudopotentials (even
for H) and cutoffs at both low and high energy (i. e., magnitude of k)

> Localized functions x,(r) containing exp (—ar?)
(spherical /Cartesian/Hermite Gauss-type functions, GTFs)

Pi(r Z%m%k(ﬂ Dk (¥ Zsﬂm —s)e’,

(r—s) ZCHX;L("*S

Very compact, hence efficient representatlon of electronic structure, but

this type of basis is incomplete, valence shell exponents need be chosen

with care to avoid linear dependence, general systematic way of basis set
improvement is still not known
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A thought experiment on H, and sc-H

Variation of internuclear distance R within a minimal-basis-set
description: v(r) = Nexp(—(r) (r = |r|) at each nucleus

R/R.=0 R/R.=1=R./R Re/R =0
He — H, — 2H

Copt =2 —5/16 2> (Gopt > 1 Copt = 1
[ — sc-H — oo H

Copt = 400 Copt >1 Copt =1

Is there a bifurcation point? What about basis set completeness in
the periodic case? How to improve basis sets for periodic
calculations systematically?

Note: Improvement of the minimal-basis-set description (only s-function) of sc-H
crystal requires g-functions (/ = 4) for k = 0 (I" point), see FE Harris et al, Int J
Quantum Chem Symp 5 (1971) 527
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A particle in a one-dimensional box

Hamiltonian: H = —h2/(2m) (d/dx)?, with 0 < x < L.
Boundary conditions: (0) = (L) = 0.
Eigenfunctions and eigenvalues (n=1,2,3,...):

2. o (kR
w,,(x)—\/:sm(k,,x), k,,—T, E,= =gm2™

2m

Use of the orthonormal set {¢,} for Fourier series expansions, e. g.:

30 x X < h? 10
6(x) = LL<1_L>:;bnw”(X)’ (E) = iz 2 ~ B

44/15 L

L
b = (Yal) = /0 Un()o(x) dx = 21— (<17 ~ n

Probability to detect ground-state energy E; in a measurement:

960
wy = |by > = —5 ~0.9986.
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The periodic situation

Primitive period: L.
Periodic functions: ¢(x + L) = ¢(x).
Definition of ¢(x) over interval of length L is sufficient: 0 < x < L.

The Fourier series expansion technique now requires an extended
(modified) orthonormal basis set (n =1,2,3,...):

{f Xnlx \fcoskx ), )—\fsm(knx)},knzz’f.

Two simple cases:

> (0) = ¢(L) =0, ¢'(0) = ¢'(L) > 0, e. g-:

> $(0) = ¢(L) >0, ¢(0) = ¢(L) =0, e. g::

o =n (5= (1) (i2) )= & Bt e



The periodic situation (contd)

Alternatively, Fourier series expansion in terms of complex-valued
basis (k, = 2nm/L):

_ ﬂ+§:{ \/>cos (knx) + bn \/Esin(k,,x)}

n=1

Z c,, exp (iknx)

n=-—oo
as=c¢, ap=I(chn+c_n)/2, by=I(cn—c_n)/(2).
Fourier series expansion in 3D:
1
r)= Z a.—— exp (ikr)
vV

i. e., superposition of plane waves (k direction of propagation)
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