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Introduction: Schrodinger equation

Basic problem of quantum chemistry (electronic structure):

HU = EU

with
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where A, B and ¢,5 are nuclear and electronic indices, respectively.
stands for nuclear charge, r for the distance of the particles.




Introduction: Schrodinger equation

Basic problem of quantum chemistry (electronic structure):

HU = EU

Important properties of the wave functions:
® spin

e spatial symmetry




Introduction: Schrodinger equation

Basic problem of quantum chemistry (electronic structure):

HU = EU

e spin: HS, = S,H and HS? = S2H
e spatial symmetry: HR =RH
Therefore:

e U will also be eigenfunction of spin and spatial symmetry

e U can be labeled by spin quantum number and properties associated
with spatial symmetry




Introduction: How to construct wave function?

1) Product wave function (antisymmetrized by A):

\II(L 2,3, 7n) — A(le(l) ) ¢2(2) ) ¢3(3> T ¢n(n))

To construct products which have the correct spin and spatial properties,
we need to know:

e spin properties of products of spin functions

e spatial symmetry of products of spatial functions




Introduction: How to construct wave function?

2) Wave function by linear combinations:

o= > ¢

1

There are two ways to construct linear combinations with the correct spin
and spatial properties:

e obtain coefficients which results in proper spin and spatial properties

e use basis functions which have already proper spin and spatial properties
(CSF: Configuration State Function)




Introduction: Block structure of the Hamiltonian
Advantage of using eigenfunctions of a commuting operator A as a basis:

If [H, A] = 0, and the basis {®;} consists of the eigenfunctions of A:

A(I);LZ =  Qy (I);Ll

then the matrix of H is block diagonal in this basis:

H% 0 0
a
e
0 0 --- Ho

with H% is the block belonging to functions {<I>;“} with eigenvalue a;.
The wave function in this block:

ph = ZCJ'(I);-%

J




Introduction: Calculation of matrix elements

Hi; = (O;|H|®;)

One can simplify the calculations if we know the spin and spatial
properties of the matrix elements.




Introduction: Second quantization

The Hamiltonian:

H Z hrsErs + = Z rt|su ErsEtu _ 5stEA'ru]

’I“St”u,

where

hrs = /¢r )d?}( )
(rt]su) = / / b:(1)7 (2 2¢8<1>¢u<2>dv<1> dv(2)
T

A
A

Ers — Q,,05« =+ arﬁasﬁ

with @™ and & being creation and annihilation operators.

An important property of the basic operators:

[Er& Etu] — 5stEru — 5ruEts




Introduction: Second quantization

Matrix element:

Hi; = (®;|H|®;)
- 1 A~ A n
= Z hrs (Pi| Ers|®j) + 9 Z<Tt|3u>[<@i|ErsEtU|q)j> — 051(Pi| Eru| @)
TS rstu

All we need for the matrix elements are the

e integrals h,s and (rt|su)

e matrix elements of the basic operators (coupling coefficients).

The latter is a very sparse matrix.




Summary of introduction

Spin and spatial symmetry properties will be useful:

e to obtain spin and symmetry labels of atomic/molecular states
e to construct proper spin and symmetry eigenstates

e to calculate matrix elements




Introduction: plan of my talks

basic group theory

spatial symmetry and corresponding group theoretical terms
permutation symmetry and the corresponding groups
unitary group

construction of spin eigenfunctions

calculation of matrix elements

symmetry properties of different wave functions




Recommended books/chapters

1. F. A. Cotton, Chemical Application of Group Theory, 2nd Edition,
Wiley-Interscience, New York, 1973.

2. R. Pauncz, Spin Eigenfunctions, Plenum Press, New York, 1979.

3. |. Shavitt, The Graphical Unitary Group Approach and Its Application to
Direct Configuration Interaction Calculations The Unitary Group for the
Evaluation of Electronic Energy Matrix Elements, Ed. J. Hinze, Lecture
Notes in Chemistry, Vol. 12, pg. 51-99, Springer, 1981.
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Basic Terms of Group Theory




Basic Terms of Group Theory

A group is a collection of elements which are interrelated by an operation:

A-B = C
The following rules must be obeyed:

e set G is closed under the operation:
if A, BeGthen(C eg

e there must be a unit element (F, identity) such that:
E-A=A-FE=A

e multiplication is associative:

A-(B-C)=(A-B)-C

e all elements must have its reciprocal (A1) in the group:
A-S5=5-A=F S=A"1




Basic Terms of Group Theory

Multiplication is not necessarily commutative:

A-B + B-A

Abelian group: If multiplication of any pair of elements is commutative.

13



Basic Terms of Group Theory

Multiplication is not necessarily commutative:

A-B + B-A

Abelian group: If multiplication of any pair of elements is commutative.

Dimension of the group (h):
e finite group: h < oo

e infinite group: h = oo

13



Basic Terms of Group Theory

Group multiplication table:

N>

o0 w > >
N O > Wm
W >0 N0
> N OO0

Properties:

e ecach element appears only once in each row and column

e multiplication is single valued

14



Basic Terms of Group Theory

Group multiplication table:

A B C D
AlA B C D
B|/B A D C
c|C D A B
DD C B A

Properties:

e ecach element appears only once in each row and column

e multiplication is single valued

Subgroup: if a subset of elements obey the definition of a group, i.e.
multiplication does not leed out of the group.

It must always include E, and of course the invers of all elements.

14



Basic Terms of Group Theory

Conjugate elements: A and B are conjugate to each oder, if
e A B, X €¢G and
e B=X"1.4.-X

Properties:

o If A is conjugate to B than B must be conjugate to A, i.e. the group
must have an element Y such that:

A=Y1.B.Y
e If A is conjugate to B and C then B and C' are also conjugate to A.

Class: the complete set of elements which are conjugate to each other.

15



Basic Terms of Group Theory

Representation of a group

Remember the definitions: the group is defined by the multiplication
table (relation of the elements) and not the individual property of the
elements.

The same group can be also represented by:

e operators (e.g. symmetry operation — symmetry groups)

e permutations (permutation groups)

e matrices

16



Basic Terms of Group Theory

Assume a group with the following multiplication table:

E B C D
E|E B C D
B|/B E D C
C|C D E B
DD C B E

1 0 0 -1 0 O

E=1 01 0 B = 0O -1 0

0 0 1 0O 0 1
1 0 0 -1 0 0
C=10 -1 0 D = 0 1 0
0 0 1 0 0 1

17



Basic Terms of Group Theory

Assume a group with the following multiplication table:

Cow | E Cy o, o)
E | E Cy o, o
CQ CQ E 0';) Ov
o, | 0, o E Oy
o, | o, o, Cy FE

The following matrices obey the same multiplication table:

1 0 0 -1 0 0

E=| 01 0 Cy = 0 -1 0

0 0 1 0 0 1
1 0 O -1 0 0
opb=1 0 -1 0 ol = 0 1 0
0O 0 1 0 0 1

18



Basic Terms of Group Theory

Representation of a group |

How many matrix representations can a group have?
— As many as you just generatel!!!

For example, by similarity transformation we get new set of matrices
which also form a representation:

A =L 1AL B' = L 'BL
A'B = L['AL-L 'BL=L"'A.-BL=L"'CL=C

Character of a representation:

By similarity transformation the character of a matrix'| does not change
— the character will be characteristic to the representation.

1Sum of the diagonal elements; also called “spur” or “trace”.

19



Basic Terms of Group Theory

Representation of a group Il

Are there special ones among the representations?
— Yes, these are the so called irreducible representations.

Irreducible representations:

e basic building blocks of representations

e any representation can be build up from these basic elements

20



Basic Terms of Group Theory

Representation of a group Il
However, the name comes from a procedure starting at large matrices:
— assume we have a group represented by matrices E, B, C, D, ...
— we perform the same similarity transformation on all of them:
E = L 'EL

B = L 'BL
C = L'CcL

— similarity transformation does not change the multiplication rules
— transformed matrices still give a representation (same character).

21



— Special transformation can lead to block diagonal matrices, e.g.:

B’ = L 'BL

A

0 B,

— 0 0
0 0

\

0
0

0

0
B, 0
0 B,

— Block diagonal matrices can be multiplied block-wise:

B,-C, = D
B,-C, — Dj

obeying the same multiplication rules

— each block is a new representation.

22



Therefore:

If there exists a transformation which brings all matrices of a group to
the same block structure, the representation can be split into “smaller”
representations — i.e. the original representation reducible.

Note:

e the character of the representation is changed when it is splited into
smaller pieces

e the sum of the character of new representations equals the character of
the original representations

Notation: ' =Ty @I B I'sPH---

Irreducible representation:

e transformation leading simultaneously to block structure of the matrices
does not exist

23



Basic Terms of Group Theory

How many irreducible representations of a group are there?

— One can show that the number of all irreducible representations equals
to the number of the classes of the group.

24



Basic Terms of Group Theory

How many irreducible representations of a group are there?

— One can show that the number of all irreducible representations equals
to the number of the classes of the group.

Character table:

Example: Character table of the (5, point group

Cop | B Co ou(xz)  0u(yz)
Ay 1 1 1 1

Ao 1 1 -1 -1

B 1 -1 1 -1

Bs 1 -1 -1 1

Rows correspond to the irreps and show the character of the elements
(precisely: that of the classes).

24



Basic Terms of Group Theory

Basis of a representation
We know the relation between operators and matrices:

Consider a set of (linearly independent) functions {¢;} such that the
space spanned is an invariant space with respect to all operators of the

group. E.g.:
Ap; = ) Ayo;
J
Bo; = > B¢,
J

(jqbz‘ = Z Cij®;
J

25



Basic Terms of Group Theory
Basis of a representation

The matrix representation of an operator in this basis can be given as:

Aij = (¢ Alg;)
The matrices defined this way from operators belonging to a group,

form also a group with the same multiplication table. It is said that the
matrices A, B, ... are the matrix representation of operators A, B, ... on the

basis {¢;}.
Notes:

e when transforming the matrices, in fact we transform the basis

e when finding the block diagonal form of the matrices and splitting
up the representation accordingly, we divide up the space into smaller

subspaces. Now the elements of subspaces will be used as basis of the
representations.

26



Basic Terms of Group Theory

Reducing reducible representations

To split up reducible representations into irreducible ones, one can use
the following formula:

meo= 730 Nexi(h) x(k)
k=1

with:
h: order of the group
Ny: order of the class
x'(k): character of kth class corresponding to irrep i

X (k): character of kth class corresponding to the reducible representation




Basic Terms of Group Theory

To find the subspace spanning the irreducible representations, the following
operator can be used, which projects into the space of the ith irrep:

Pi = ZXZ(R) R
R

A

with R being the element of the group, XZ(}A%) being its character
corresponding to the ith irrep.

28



Basic Terms of Group Theory

Reducing reducible representations
Example: Consider the water molecule in minimal basis.
Basis functions: H: 1s,, 1sy, O: 1s, 2s, 2py, 2py, 2p,

Character table for (5, point group with the characters of the above
representation:

Cop | E Co ou(x2)  0u(yz)
Ay 1 1 1 1

As 1 1 -1 -1

By 1 -1 1 -1

By 1 -1 -1 1
Fbaszs [ 1 3 5

29



Basic Terms of Group Theory

Cop | B Co ou(xz)  0u(yz)
Aq 1 1 1 1

Ao 1 1 -1 -1

By 1 -1 1 -1

B 1 -1 -1 1
Fbasis [ 1 3 5

ni = 5 2 per Nk X' (K) X (k)

na1=+(1-17+ 1114113+ 1.1.5) =4

na2= +(1- 17+ 111+ 1-(=1):3+1:(—1):5) =0
np1= +(1-174+1-(— 1)1+ 113+ 1-(—1):5) =1
npe= $(1-1-74+1-(—1)-1+1:(—1)-3+1.1:5) = 2

Thus: Fbasis:4 A1 D Bl Pd 2 BQ

This means, there are four ay, one b; and two b, orbitals.

30



Basic Terms of Group Theory

Direct product representations

Consider two bases of representation {¢;} and {v;}:

Ags = ALo, Ay = ) | Al
j J

Then:

Apap; = D> AL ALy
k l

i.e. {¥i;} also form a basis for the representation, that of the outer
product of the two matrices:

APRY  — AP o AY

with A®®¥ having a dimension as product of the dimensions of the two
representations.




Basic Terms of Group Theory

Direct product representations

Notation:

ooy — F(b@Iﬂb

Character of the direct product representation:

The characters of the direct product representation are the products of
the character of the representations forming the original representations.
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Spatial Symmetry of
Molecules




Symmetry operations

A

e (), — proper rotation (around the proper axis) by 27 /n

120°
Ca-i-

120°
g Cs
S — =

m—n
m—n

" %,

F

e o — reflection (special cases: 6, 6, 64)

34



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Symmetry operations

e S, — improper rotation: rotation (C),) followed by reflection in a plane
perpendicular to the rotation axis (o)

© 0 e g @ @

rotate by 90° : reflect throwgh plane

e i — inversion (% = 32)

A

e I/ — unity: maps the object on itself (required only for mathematical
purposes)

Eotvos Lordand University, Institute of Chemistry 35



Point groups
Symmetry operations leaving an object (molecule) unchanged, form a group.

E.g. water (see next page):

A

Operators: Cy, 6,, 6 E

v’

Multiplication table:

Cow | E Cy 6, &,
E|E C, 6, ¢
é 2 é 2 E o ; Oy
6, | 6, 6, E C,
& o 6, Co E

The group formed by the symmetry operations is called the point group.

36



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Point groups

- YA 5
Water: Cy, 0y, 0,,, &

Mirror Plane Mirror Plane

GFZI U'p'!

2-Fold Rotational Axis
Cs

Eotvos Lordand University, Institute of Chemistry 37



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Point groups

A

Ammonia: C’g, 3 times 6, E

Mirror planes

T @

&

H

C; rotation axis

© 2007 Thomson Higher Education

Eotvos Lordand University, Institute of Chemistry 38



Point groups

Benzene: CA*6, 6 times ég, o, (horizontal, perpendicular to the main
axis), 6 times &, (including the main axis), i, etc.

39



Generators of a group

Set of elements (S) of the group G are called generators if all elements of
G can be generated by multiplication of the elements of S.

Example: benzene
Elements of the point group Dgp:
E, 2Cs, 2Cs, Cy, 3Cy, 3Cs, 4, 256, 253, 64, 364, 364
Three generators are able to produce these elements.
Set 1: Cg, C} and .
C3=Cs-Cs, Cy=0C5-Cs-Cs, Co" =Cg-Ch, 6, =0CY-1i etc.
Set 2: C, Gy, 0

Set 3:..... several others

40



Point groups

Symmetry of molecules are represented by the collection of symmetry
operations leaving it unchanged, i.e. by the point group.

Point groups are represented by the so called Schoenflies-symboles:

AN

e (,: groups including proper rotation C,, only

e (,,. groups including proper rotation C,, and reflection to a plain
including the axis o,

e C,n: groups including proper rotation C,, and reflection to a plain
perpendicular to the axis gy,

e D, : groups including proper rotation C,, and n additional proper rotation

A

C5 perpendicular to the main axis

e D,;: same as D,, with and additional reflection to a plane perpendicular
to the main axis.




Point groups

D,,q: same as D,, with and additional reflection to a plane including the
main axis.

Sp: includes improper rotation S,

Ty: tetrahedral point group

Clsou: proper rotation with arbitrary angle (Cs) and reflection to a plane
including this axis (6,)

Dop: proper rotation with arbitrary angle (C’oo) and reflection to a plane
perpendicular to this axis ()

O3 : spherical symmetry

42



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016
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Figure 3.15 N
Shriver, Atkins, and Langford: INORGANIC CHEAISTRY, second adition

£1990, 1984 D. F Shriver, B WW. Atkins. and C. H. Langford
W. H. Freeman and Company

" Eétvés Lorand University, Institute of Chemistry 43



Molecular examples:

Point groups

molecule symmetry operations point group
water Cs, 6y, 0., E Cay
ammonia ég(Z) 3x 6, E C'30
benzene 6'6, 6 x C’g, op, 6 X 0, i, etc. Degy,
formaldehyde Cy(2), 64, 6, F Ca
ethene Doy,
acetylene Doy,

carbon monoxide

44



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

H,0,: H,0: NH,;: SFCl: ?CN E B{OH),:
c, G, Z, <, Coo &,
CyHg: Ci(CgHy)y: CH,: SFg: Cpy:
Pad Dy 4 9 L
1_ -
C,H,: C,H,: [PdC1, ] Fe(C H,),: CHe H,:
LD ! Qﬁ 'Qﬁ ij! Qﬂ, D 00k

ry/Molecules. html

@
5 |

http://newton.ex.ac.uk/research/gsystems/people/goss/symm

45




Symmetry and quantum
mechanics




Symmetry and quantum mechanics

Symmetry operations are represented by operators (R).

What does it mean mathematically that the operation leaves the
molecule unchanged?

It does not change the properties — The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):

47



Symmetry and quantum mechanics

A

Symmetry operations are represented by operators (R).

What does it mean mathematically that the operation leaves the
molecule unchanged?

It does not change the properties — The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):

Figure 10.2: Transformation of functions

o4t
Action of a symmetry operator on a function: 0 f

G, !




Symmetry and quantum mechanics

Commuting operators have a common set of eigenfunctions?]

4

The eigenfunction of the Hamiltonian must also be eigenfunction of the
symmetry operators.

2For easier understanding we disregard degeneracy for a while.

48



Symmetry and quantum mechanics

What are the eigenvalues?

e Like the object (molecule), the wave function is unchanged under the
symmetry operation: r =1

e The wave function can also change sign under the symmetry operation,
since in this case the density |¥|? is still unchanged: r = —1

This eigenvalue will be representative for the wave function ( “good quantum
numbers”):

e r = 1. symmetric

e r = —1: antisymmetric

@ 49



Symmetry and quantum mechanics

RU = rU

What about the eigenfunctions?
e They form a basis for a representation

Symmetry axiom: the eigenfunctions of the Hamiltonian form an irreducible
representation of the symmetry operations.

50



Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.
For water, this means 2° possibilities (£ has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

CQU i) CZ Ozx Ozy
A 1 1 1 1

Ay 1 1 -1 -1
B 1 -1 1 -1
By, 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, wave functions can be classified according to the rows of the
character table, i.e. according to the irreps.

51



Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.
For water, this means 23 possibilities (£ has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

CQU E CZ Ozx O 2y
A 1 1 1 1

Ay 1 1 -1 -1
B 1 -1 1 -1
By 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, the wave function of water can be classified as A;, Ay, By or Bs.
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Symmetry and quantum mechanics

Other example: ammonia

Cgv E 203 3030
A 1 1 1
Ay 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

e there are two eigenfunctions of the Hamiltonian which have the same
symmetry property

e any combination of these two functions still define a representation of
the group (with the same character)

52



Symmetry and quantum mechanics

Other example: ammonia

Cgv E 203 3030
A 1 1 1
Ay 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

e there are two eigenfunctions of the Hamiltonian which have the same

symmetry property

e any combination of these two functions still define a representation of

the group (with the same character)

= it is logical that these functions belong to the same eigenvalue of the

Hamiltonian, i.e. degenerate!




Symmetry and quantum mechanics

In summary:

It is worth to use symmetry:

e to classify states

e to speed up calculations

53



Permutation symmetry:
Symmetric group




Permutation symmetry: Symmetric group

n objects can be arranged in n! different ways.

Permutation operator:

meaning that 1 is replaced by 71, 2 by 9, etc.

Action on a function:

A

PF(ZUl,ZCQ,...,ZCn) — F($i1,$i2,---7$in)

55



Permutation symmetry: Symmetric group

S, group: formed by the permutations of n objects

Multiplication defined by:
ki ko - ky 11 Tg o inp - ki ko

Unit element:

Inverse:

56



Permutation symmetry: Symmetric group

Cyclic permutations:

Each number is replaced by the one standing after the number.

Any arbitrary permutation can be decomposed into the product of
independent cycles, e.g.

(3i321746)= (1352007

Cyclyc structure: The above permutation has a cyclic structure of 3 22,
l.e. it is composed of a 3 and two 2 element cycles.

57



Permutation symmetry: Symmetric group

Transposition: cycle of order 2

An arbitrary permutation can be decomposed as a product of
transpositions:

1 2 3 4 5 6 7
(3133 058) = (13)(s5)(24)(07)
It was used that

(1 35) =(13)(3 5)

58



Permutation symmetry: Symmetric group

Conjugate elements:

Ty and T, are conjugate, if there exists an S in the group that:
Ty, = STp,S57!

e Conjugate elements form classes

e Conjugate elements have the same cyclic structure.

Therefore,

e classes can be characterized by their cyclic structure

e the number of classes of the symmetric group is given by the number of
possible cyclic structures.

59



Permutation symmetry: Symmetric group

Table 6.1. Classes, Partitions, and Permutations of S,

Class Partition Permutation

C]_ 14 e

C, 2 12 12 @13 14
23 24 34

Cs 31 123 @124 @134 (234
(132 (142 (143 (243)

Ca 4 1234 (1243 (1324
1342 (1423 (1432

Cs 22 12 34 1324 14223

60



Permutation symmetry: Symmetric group

Young frames: visualizations of different partitions

For a partition A1, A2, A3, ..., A, (increasing order) the Young frame is a
diagram with A\ boxes in the first row, Ay boxes in the second row, etc.

For the previous example:

(TTT] (4]
| | [3,1]

[22]

7 [27]

[14]

LT [




Permutation symmetry: Symmetric group

Young tableau:

e Young frame filled up with numbers 1 to n (n! possibilities).

4]:
1234 11243 1324
134 2 114123 1143 2
3, 1]:
1123 1124 134 2 34
4 3 2 1
113]2 114]2 11413 2143
4 3 2 1

62



Permutation symmetry: Symmetric group

Standard tableau:

e Those Young tableaux where the elements increase in each row from left
to right and in each column from top to bottom.

63



Permutation symmetry: Symmetric group

Standard tableau:

e Those Young tableaux where the elements increase in each row from left
to right and in each column from top to bottom.

4];
11234
3, 1]:
112 3 1124 134
4 3 2

There are simple rules to calculate the number of standard tableaux (see
Paunz).




Generators of the symmetric group
The generators of the symmetric group are the basic transpositions:
6 = (1 i+1)
i.e. n-1 generators: (1 2), (2 3), ... (n-1 n).

We have seen that a permutation can be obtained as product of
transpositions. Now we have to show that any transposition can be given
as products of basic transpositions.

Demonstration:

(1 3)123 = 321
(1 2)(2 3)(1 2)123 = (1 2)(2 3)213
= (1 2)231
= 321

64



Representations of the symmetric group

The number of classes equals the number of partitions, i.e. the number of
Young shapes.

The number of irreducible representations equals the number classes
— the symmetric group has as many irreps as Young shapes are there.

According to Young theory:

e the irreps of the symmetric group are also characterized by Young shapes;
e the dimension of the irreps is given by the number of standard tableaux;
e the irreps are generated by the subgroup chain: S,, O S,_1 D ... D Sq;

e the standard tableaux can be used calculate the matrix elements of the

basic transposition (k-1, k)
— all matrices can be obtained by matrix multiplication.
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Unitary Group




Unitary Group

Unitary matrices:

Unitary matrices form a group:

e product of unitary matrices are unitary matrices
e unit matrix is unitary — unit element

e inverse of unitary matrix (the adjoint) is unitary — inverse element

This group is called unitary group U(n).
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Unitary Group

Parametrization of unitary matrices:

U = exp(tA)

with A being a Hermitian matrix, which can be written as:
A = Z aijeij
i,j=

*

with Qj = Q;

e;;: basic matrix unit, with all elements 0, except {¢,j}, which is one.

Properties:

€5, ex1] = ke — 0ji€k;

68



Unitary Group

Generators of the unitary group

ejj is practically the generator of A. But we need a generator for the
unitary matrices U.

One-parameter subgroup:
U(t) = exp(itH)
where H is a fixed matrix, and ¢ is varied continuously.
e multiplication: U(t)U(t') = U(t +t')
e unit element: U(0) = E

o inverse: U(t)~! = U(~t)

W 60



Unitary Group

Generators of the unitary group

Now we can define a basic set of one-parameter subgroups with the
basic matrix units as H:

Ukk(t) = exp(itekk)
Ukl(t) = exp [it(ekl + elk)/Q] k<l
U]k(t) = exp [it(ekl — elk)/Zi] k>

These matrices can be considered as a basis since an arbitrary unitary matrix
can be given as a product of these matrices.

Note that the size of this basis sets is n2.




Unitary Group

Generators of the unitary group

Now we need the generators independent of t. These can be given as:

Err — _inr
Ers = —i)A(TS + )A(ST r < § ralsing generator
EAST = —iX'TS — XST r < s lowering generator
with
; dOp;
X, = |—==
kl p
t=0

where Okl IS an operator corresponding to the unitary matrix Uy.
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Unitary Group

Generators of the unitary group

Now we need the generators independent of t. These can be given as:

Err — _inr
Ers = —i)A(TS + )A(ST r < § ralsing generator
EAST = —iXTS — XST r < s lowering generator
with
; dOp;
X, = |—==
kl p
t=0

where Okl IS an operator corresponding to the unitary matrix Uy.

{F,} are the generators (or infinitesimal operators) of the representation.
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Unitary Group

Generators of the unitary group

Important property of the generators of the unitary group:

[ETS7 Etu] — 5stEru — 5ruEt5

Note that these commutation relations are the same as that of the basic
excitation operators used to define the second quantized Hamiltonian.
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Unitary Group

Irreducible representations of the unitary group

Gel'fand and Tsetlin introduced a way to label the vectors spanning the
space of the irreducible representation. It is based on hierarchical procedure
using the sequence of subgroups:

Un)DU(mn—-1)>..2U0((2) >U(Q)

The vectors are given by the following symbol (Gel'fand pattern):

(m), =

A

What is important that the matrix elements of the generators E,.s could be
given by Gel'fand and Tsetlin using the parameters labeling these vectors.
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Unitary Group

Weyl tableau

This is an alternative reresentation of the Gel'fand-Tsetlin basis, in
particular useful for electronic structure calculations. It resembles the
Young tableau, but the meaning of the boxes and their content is different.

Refraining again from going into details, here is an example of this

Sy Py PR B
K By BB
B E

relationship:
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Paldus tableau

Unitary Group

This is an alternative reresentation of the Gel'fand-Tsetlin basis, in
particular useful for electronic structure calculations.

Refraining again from going into details, here is an example of this

relationship:

1
1
1

AV
\/
\/

1
1
0

1
0
0

1
0

1
1
0 0

2 1 1
V4
1
2)

2 1
NS
0
5)

2 1
W4
0
8

1
1,
0

1
1
0

1 1
0

0

0

1
0
0

1 11
1 01
1 00

’\/°
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Construction of spin functions

76



Construction of spin functions

z component of the spin:
N
S. = > &)

[=1

I.e. sum of one-electron components, so that its eigenfunctions are products:

with 6(l) being o or 5.

The 2N—din)ensional subspace can be decomposed according to the
eigenvalues of S.:

S.0(uv) = 5(u— 1))

©;(u, v) is the primitive spin function with u o functions and v 3 functions.




Construction of spin functions

S2 is not a sum of individual components, so eigenfunctions can not be
given as product of the individual components.

Two useful expressions of the S2 operator:

2 _ —N(N—4)+Z[3ij (1)

4 —
1<J

with f’ij being the permutation operator of electrons ¢ and j.

§?2 = 8.8 _+5%2-5, (2)

with §+ and S_ as step-up and step-dow spin operators, respectively.




Construction of spin functions

There are several methods for constructing 52 eigenfunctions:

1. Diagonalization -
One can use the fact that: [S?%,5,] =0

i.e. S? and S, have common eigenvectors.

2. Genealogical construction
Stepwise construction by adding one more spin function at a time

3. Using projection operators

4. Using spin pair functions
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Construction of spin functions

Method 1: diagonalization in the subspace corresponding to the M =
+(p — v) eigenvalues of S..

Example: N =3, M = %

01 = aaf O = afa O3 = fa«r
12 1 1
2 3
s? = 112 1
11 12
Eigenvectors: 4
—1/2 3
X: = 3 (aaf + afa + Baa) S = 5
1
Xy, = 6_1/2(204045 — afa — Baa) S = 5
_1/2 1
X1 = 2 (aBa — Baa) S = 5

This is a straightforward procedure but can be tedious for lots of electrons.
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Construction of spin functions

Method 2: Genealogical construction of spin eigenfunctions

Possible eigenstates: azal

| =

e Single electron:
I72F
1 1 1 /
S—§W|thM—§OrM——§ L 3_ll_l'..l

e [wo electron case:

— S =1 triplet state by increasing the spin of single electron case
— S = 0 singlet state by decreasing the spin of single electron case

5 S
3EF kL Prd o

I F | F

I/2F IaF
M 4 N 1/.\ ., N
i 2 .| | 3
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Construction of spin functions

Method 2: Genealogical construction of spin eigenfunctions

Possible eigenstates:

e [ hree electron case:

We can get S = % states from both two electron cases:

S
372

i72r

1

| X (3,172,172;1)

1

N

2

3

372

172

S
X(3, 1/2,1/2;2)

! , N

| 2 3

Figure 2.1. Branching-diagram functions for N =3, § = 1
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Construction of spin functions
Method 2: Genealogical construction of spin eigenfunctions
How can we construct the eigenfunctions along the branching diagram?

First a notation:
X(N, S, M;l)

denotes the [th eigenfunction of the NN electron spin function with S and
M quantum numbers.

Single electron:




Construction of spin functions

Method 2: Genealogical construction of spin eigenfunctions

How can we construct the eigenfunctions along the branching

Recursive formula for constructing N electron eigenfunction from N — 1 eigenfunction:

e Addition, i.e. S from S — % function:

X(N,S,M;l) = L [(S+M)% X(N-1,8 i V- k) a(N)
. J— - _ - . Qo
Y ) Y \/ﬁ Y 27 27

H(S = M)} X(N = 1,8 = 2, M + ;) B(N)]

e Substruction, i.e. S from S + % function:

1 1 1 1
X(N, S, M;l) = m[—(S—M—{—lP X(N = 1,8+, M — _3k) a(N)

1 1 1
+(S+M+1)2 X(N = 1,8+, M+ k) B(N)]
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Construction of spin functions

Branching diagram: J .
172+ i

3r ] 7
5/2f I 6

S 2 | 5 20,
3/2F | 4 14

e | 3 9 28
2k (i 2 5 (!

O O O G

1 2 3 4 . 5 6 7 8

Figure 2.2. Branching diagram.

e vertices specify the values N and S

e spin functions can be created along the graph leading to the desired N and S value
e number in the circles indicate the number of independent spin states

N N
N,S)=f(N—-1,S+1/2)+ f(N—-1,8-1/2) = _
£V, 8) = £ /2)+ £ /2) (%N_S> <%N_S_1>
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Symmetric group and spin

Permutation commute with spin operators since these are symmetric in
electronic coordinates:

[P,S.]=0 [P,5%] =0

Therefore spin eigenfunctions (X (N, S, M;k)) belonging to the same
eigenvalues form a basis for representation of P:

PX(N,S,M;k) = > X(N,S,M;l)Py
l

with

Py, = (X(N,S,M;)|P|X(N,S,M;k))

Spin functions form an irreducible representation of the symmetric group!




Symmetric group and spin

There is one-to-one correspondance between branching-diagram functions
and standard Young tableau:

e the space is spanned by functions of a given M = u — v, i.e. the u «
and v (3 functions are there.

e this corresponds to a partition 1 v = Young tableau includes 1 boxes in
the first row and v boxes in the second row.

e for branching-diagram functions a standard Young tableaux should be
created.

Moreover, one can show that the matrix elements are the same as the
ones obtained with Young orthogonal representation — group theoretical
methods can be used to calculate the spin-related matrix elements.
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Symmetric group and spin

There is one-to-one correspondence between branching-diagram functions
and standard Young tableau:

Example for the correspondence: N =3, S =

/e

(Frd

S
(%3, w2, w2 0)

afd

1
2

S
(X(3, v2,1/2:2)
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Symmetric group and spin

There is one-to-one correspondence between branching-diagram functions
and standard Young tableau:

Example for the correspondence: N =3, S =

/e

(Frd

S

(%3, w2, w2 0)

7Fa(1)a(2)B8(3)

afd

1
2

S
(X(3, v2,1/2:2)

#a(1)B8(2)a(3)

88



Symmetric group and spin

There is one-to-one correspondence between branching-diagram functions
and standard Young tableau:

1

Example for the correspondence: N =3, S = 3

S S
32

/e

[ xi3, 12,102;1) X3, w2, 1/2;2)

(Frd

=a(1)a(2)B(3)—a(1)B(2)a(3)—B(1)a(2)x(3) =a(1)B(2)a(3)—B(1)a(2)(3)

88



Symmetric group and spin

N S M spin function standard Young tabl.
1 1/2 1)2 a(l) 1
1 1/2 -1/2 B(1) X
2 1 1 a(l)a(2) 112
2 1 1 8(1)8(2) X
2 1 0 B(1)a(2) + a(1)8(2) X
1]
0 0 —B(Da(2) + a(1)8(2) 2]
3/2  3/2 a(l)a(2)a(3) 112]3
12
3 1/2 172 a(l)a(2)B(3) — a(1)B(2)a(3) — B(1)a(2)a(3) 3
13
3 1/2 1)2 —B(1)a(2)a(3) + a(1)B(2)a(3) 2
1 1
Addition: X (N, S, M;1) = \/%_S [(S—i—M)QX (N 1,85 ML k:) a(N)+(S—M)2 X (N 1,5 -5 M+ k:) B(N)}
Substruction: X (N, S, M;1) = \/Qé,ﬁ [ (S — M+ 1)%){ (N ~ 1,5+ M- 5L k) a(N)

1
+(S+M+1)2X(N—1,S+%,M+%;k)B(N)}
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Symmetric group and spin

B -
N=3 | [
S z1/2
112 121
Il2 1E
3] (2]
N=5 | - -
S=172 [ 3
| | | L i 1 1 J 1 [ | )]
1112 11212 12112
1]2]3 1[2]4] 1|34
4|5 35 30
- -
1122 | 12121
1|2]5 1{3]5]
3|4 214

Figure 7.3. Diagrams, branching-diagram symbols, and Young
tableauxfor N =3,§=3and N =5,§ = 1.




Spatial part of the wave function

To fullfil global anti-symmetry, not all spatial functions can be paired with
a given spin function:

®(r; N, S, I")X (N, S, M;l)

One can show, that such wave function can be represented by the so
called dual shapes:

X
Spatial part Spin part

Spin can be integrated out and we are left with:

(®(r; N, S,1)|H|®(r; N, S, m))
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Occupation graph and branching diagram

Fig.1 Occupation
graph with 5 electrons
in S orbitals

4t I
721 i
3r ! 7
5/2f [ 6
2 1 5 20,
3/2F ! 4 14
- | 3 9 28
e+ (1 2 5 ~ (e
o——{ )=~ )——19
1 2 3 4 5 6 T 8
N

Figure 2.2. Branching diagram.
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Representation of CSF’s as Gel’fand-Tsetlin basis

Remember the second quantized form of the Hamiltonian:

A 1 L .
H = Z hrsETs + 5 Z <’f’t|8u> [ETSEtu - 5stE'ru]

rstu

A

The basic operators E,.;, commute with the spin operators:
Ay 2
[S E} —0
l.e. to construct spin-adapted wave function, the space spanned by the

eigenfunctions of E,.; should be sufficient.

It was also shown that E,. is a generator of the unitary group, thus to
find the space we can follow the theory of unitary group and construct the
corresponding Gel'fand-Tsetlin basis.




Representation of CSF’s as Gel’fand-Tsetlin basis

The carrier space for the representation could be the determinants, and we should find the
appropriate combinations.

The representative quantities for the functions are the following:

e number of electrons IV;

® spin quantum number S;

e number of orbitals n;

e number of paired electrons a;

e number of unpaired electrons b;
e number of empty orbitals c.

The first three are global variables, they specify the system and the state we are looking
for, therefore equal for all functions (CSFs).

The following relationships must be satisfied:

20 + b= N b=2S a+b+c=n
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Representation of CSF’s as Gel’fand-Tsetlin basis

Similarly to the generation of spin-eigenfunctions, we have to distribute
N electrons. Still, the procedure is different:

Young tableau

Weyl tableau

1t box for « electrons

v box for 3 electrons

uw+v=N

w—v =28
13 4
215

numbers refer to electrons

a rows with double boxes (paired electrons)
b rows with single box (unpaired electrons)
20+b=N

b=25

1
2|3
3

numbers refer to orbitals

—t
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Representation of CSF’s as Gel’fand-Tsetlin basis

Gel'fand-Tsetlin basis is built up hierarchically:
Un)DUMn—-1)D..0U0(2) DU(1)

i.e. we add orbitals (and electrons) one by one.

We will use the Paldus tableu representation which uses the three
numbers a, b, c defined above, and also will draw the Weyl tableau.

The procedure starts from the vacuum: N =0, S =0, n = 0:

|CL0=O bOZO C():O|
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Representation of CSF’s as Gel’fand-Tsetlin basis
|CL0:O boZO C():O|

We add one orbital and one electron, N =1, S =1/2, n = 1. In this case
the only possibility for the values:

a1:0 b1:1 01:() 1
CL():O b():() C():O
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Representation of CSF’s as Gel’fand-Tsetlin basis
|CL0:O boZO C():O|

We add one orbital and one electron, N =1, S =1/2, n = 1. In this case
the only possibility for the values:

a1:0 b1:1 01:() 1
CL():O b():() C():O

We also could have added two electrons to this orbital, N = 2, § = 0,
n = 1.

CL1:1 b1:O (31:0 111
CLOZO b():() C():O

We see that already here we have branching of different constructions.
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Representation of CSF’s as Gel’fand-Tsetlin basis

Continue from the second one and add one more orbital (n=2). Now we
can add zero, one or two electrons.

98



Representation of CSF’s as Gel’fand-Tsetlin basis

Continue from the second one and add one more orbital (n=2). Now we
can add zero, one or two electrons.

In the first case nothing changes.

Adding two electrons (N = 4), we get:

which means S = 0.

a2:2 b2:O
a1:1 b1:O
CL():O b():O

[ —

[ —
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Representation of CSF’s as Gel’fand-Tsetlin basis

Continue from the second one and add one more orbital (n=2). Now we
can add zero, one or two electrons.

In the first case nothing changes.

Adding two electrons (N = 4), we get:

which means S = 0.

a2:2 b2:O
a1:1 b1:O
CL():O b():O

CQ—O
C1 —
CQ_O

p—

p—t

Adding instead one electron (N = 3) which implies also S = 1/2, that is

the spin increased:

a2:1 b2:1
CL1:1 b1:O
CL():O b():O

CQZO
6120
C():O

—_
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Representation of CSF’s as Gel’fand-Tsetlin basis
Assume we have built up this Paldus tableau up to the itth row:
a; bz C;

az by co
ap b1
ao bo Co

According to the rules, here N; = 2a; + b;, n; = a; + b; + ¢;, and §; = 2b;.
When adding the next orbital (n;11 = n; + 1), we have four possibilities:

— adding no electrons: N;y1 = N, and S;11 = 5;

— adding two electrons: N;11 = N; +2 and S;11 = 5;

— one electron and increasing the spin: N;1 1 = N;+1and S;41 =5;+1/2
— one electron and decreasing the spin: N;;1 = N;+1and S;.1 = 5;—1/2




Representation of CSF’s as Gel’fand-Tsetlin basis

Case 0, Ni—l—l = N,L and Sz'_|_1 = SZ

a; bz C; —|— 1
a; b; C;
ao 52 C2
ai 51 C1
ag bo Co

Case 3, N'L’—I—l = Nz + 2 and Si_|_1 = Sz

a; —|— 1 bz C;
a; bi Cj
an b2 C2
a1 b1 c1
ao bo Co
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Representation of CSF’s as Gel’fand-Tsetlin basis

Case ]., Ni—l—l = N,L + 1 and Sz’—i—l — Sz -+ 1/2

a; bz +1 C;
a; bz C;
a2 ba Cao
ai b1 C1
ao bo Co

Case 2, Njy1 = N;+2and S;11=5;—1/2

a; —|— 1 bz — 1 C;
a; b; C;
ao b2 C2
ai b1 C1
ag bo Co
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Representation of CSF’s as Gel’fand-Tsetlin basis

There are only four cases when adding an orbital:

Aa; =0,Ab; =0,Ac;, =1 — d;=0
Aa; =0,Ab; =1,A¢c; =0 — d;=1
Aa; =1,Ab; =—1,Ac; =0 — d; =2
Aa; =1,Ab; =0,Ac; =0 — d;=3

with d; = 2Aa; — Ac; + 1 = 3Aa; + Ab;.

Thus, the (a; b; ¢;) triplets can be replaced by d;, the step number:

a;+1  biy1  cir1 | dixq
a; b; C; d;
az b2 C2 d2
aj b1 C1 Cl1
ag bo o
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Representation of CSF’s as Gel’fand-Tsetlin basis

Gelfand-Tsetlin basis is built up hierarchically:

The last step of the procedure: when adding the last orbital, we have to
arrive at the desired number of electrons, N and spin, S.

aj bl C1 dl
ao bo Co

with N = 2a,, +b,,, S = 2b,, and n = a,, + b,, + ¢,,.




Representation of CSF’s as Gel’fand-Tsetlin basis:
the step vector

According to the above discussion, the step number (dy) uniquely defines
the change of the triplets of numbers (Aayg, Abg, Acg), thus when knowing
(ag—1,bk—1,Cx—_1), the values (ag, b, cx) can be obtained.

This means that the Paldus tableau can be reproduced by the so called
step vector:

— ‘dl, dg, cees di, ceey Cln>
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Meaning of the step vector
|dy1,do,...idiy ..y dp)

In the step vector there is an entry for every orbital:

e d;, = 0 means the orbital is empty;

e d; = 1 means the orbital is singly occupied, spin increases;
e d;, = 2 means the orbital is singly occupied, spin decreases;

e d;, = 3 means the orbital is doubly occupied.

Note, that this vector is very similar to an occupation number vector,
and is very attempting to call d; =1 as a and d; = 2 as 3, but this is not
true in general.

The definition above rather means that there always must be an
“unpaired” d; = 1 precede a d = 2 (since S > 0).
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Graphical representation of Gel’fand-Tsetlin basis:
Shavitt graph

Shavitt suggested a graphical representation to the step vectors. The
idea is that the four different values of the step number are represented by
lines of different slopes:

= = = O
s B . B i B

The slopes are chosen such that the vertical move by d = 3 equals that
of d =1 plus d = 2, i.e. whatever way we add two electrons, the vertical
move is the same.




Graphical representation of Gel’fand-Tsetlin basis:
Shavitt graph

The step vectors representing CSFs can be put into a graph:

each CSF is represented by a path thru the graph
orbitals are represented by the rows of the graph

elements of the step vector are represented by arcs of different
slope

number of electrons and value of the spin is given by the vertical
position in the graph

bottom right corresponds to zero electrons (S = 0).

top left corresponds to a given number of electrons and a given
spin.

therefore all CSFs representing a system with given number of
electrons and given spin end in the same point.
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The Multireference Problem

Example: ozone (Oj3) S —
- —
e

(1) $(2)

Both determinants are important for a qualitative description!
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The Multireference Problem
Example: ozone (Oj3) S —
—H—
e
(1) ¥ (2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!
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The Multireference Problem

Example: ozone (Oj3) S —
- —
e

(1) $(2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!

PMR—CISD = c(1)y(1) + c(2)9(2)

109



The Multireference Problem

Example: ozone (Oj3) S —
- —
e

(1) $(2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!

PMR—CISD = c(1)y(1) + c(2)9(2)
+ 2 cv); Y e@)v(2);
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The Multireference Problem

Example: ozone (Oj3) S —
- —
e

(1) $(2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!

PMR—CISD = c(1)y(1) + 0(2)¢(2)

+ > e(D)iyp(1)y +Z

1a

+ ) )iy +Z

1>7 a>b 1>7 a>b
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The Multireference Problem

orbital type reference Cl space
—  virtual empty empty, +1,+2
— active varying occupation reference 41,£2

or open shell

double occupied
or closed shell

double occupied reference —1,—2

frozen core

double occupied double occupied
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The Multireference Problem

Shavitt graph for MR-CISD wave
function:

e Thick lines: reference CSFs

— run together in the double occupied
and virtual space
— diverge in the “active” space

e both double occupied (inactive) and
virtual (external) part of the graph has
simple structure

IIIIIIIII

L;,;; '

{IL ILli/Z"

[
—

[
ol
Wim = = O

111



112

E =
=] \ =] _
= =
2 g
=) ﬂ _
= ©
_ 2
e}
Q
_ 3

=/ L .

o o o O

[SEEY w0
ad444




P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016
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Calculation of the Hamiltonian matrix elements

Hi; = (®;|H|®;)
- 1 A~ A n
= Z hrs (P3| Ers|®j) + 9 Z<Tt|3u>[<@i|ErsEtU|q)j> — 051(Pi| Eru| @)
TS rstu

All we need for the matrix elements are the

e integrals h,s and (rt|su)

e coupling coefficients: matrix elements of the generators of the unitary group

— these can be calculated in the Gel'fand-Tsetlin basis using
x Paldus tableau or
x Shavitt graph.
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Calculation of the one-electron matrix elements

The matrix elements between two walks on the Shavitt graph are needed:
(@i|Ers|®5) = (®i]a] 450 + @) 5iasp|®))

The creation and annihilation operators cause a change of occupation only
on the rth and sth orbital:
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Calculation of the one-electron matrix elements

The matrix elements between two walks on the Shavitt graph are needed:
(@i|Ers|®5) = (®i]a] 450 + @) 5iasp|®))

The creation and annihilation operators cause a change of occupation only
on the rth and sth orbital:

— walks can differ only between these two orbitals
— walks have to define a loop between levels r and s

— otherwise the walks run together
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Calculation of the one-electron matrix elements

— walks of two CSFs diverge only for the range
where their orbital occupations differ

— matrix elements depend only on the shape of
the loop

Upper
Walk

— matrix element are calculated from the segment
values R, R and R.

Calculation of the matrix elements:

Shavitt
Loop

e identification of the loops

e identification of the segment values

116



Calculation of the two-electron matrix elements

The matrix elements between two walks on the
Shavitt graph are needed:

(i Ers B @) = (®4|(af gasa + &) 5058) (G aua + @) 0us)|®5)

The creation and annihilation operators cause a change of occupation on
rth, sth, tth and uth orbital:
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Calculation of the two-electron matrix elements

The matrix elements between two walks on the
Shavitt graph are needed:

(D] ErsErl®) = (@] afisa + @) 508) (fabua + iup)|D5)

The creation and annihilation operators cause a change of occupation on
rth, sth, tth and uth orbital:

— walks can differ only between these orbitals
— walks have to define loop(s) between these levels

— otherwise the walks run together
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Calculation of the Hamiltonian matrix elements

Two-electron matrix elements:
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