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Introduction: Schrödinger equation

Basic problem of quantum chemistry (electronic structure):

Ĥ Ψ = E Ψ

with
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where A,B and i, j are nuclear and electronic indices, respectively. Z
stands for nuclear charge, r for the distance of the particles.
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Introduction: Schrödinger equation

Basic problem of quantum chemistry (electronic structure):

Ĥ Ψ = E Ψ

Important properties of the wave functions:

• spin

• spatial symmetry
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Introduction: Schrödinger equation

Basic problem of quantum chemistry (electronic structure):

Ĥ Ψ = E Ψ

• spin: ĤŜz = ŜzĤ and ĤŜ2 = Ŝ2Ĥ

• spatial symmetry: ĤR̂ = R̂Ĥ

Therefore:

• Ψ will also be eigenfunction of spin and spatial symmetry

• Ψ can be labeled by spin quantum number and properties associated
with spatial symmetry
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Introduction: How to construct wave function?

1) Product wave function (antisymmetrized by A):

Ψ(1, 2, 3, ..., n) = A(φ1(1) · φ2(2) · φ3(3) · ... · φn(n))

To construct products which have the correct spin and spatial properties,
we need to know:

• spin properties of products of spin functions

• spatial symmetry of products of spatial functions
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Introduction: How to construct wave function?

2) Wave function by linear combinations:

Ψ =
∑
i

ciΦi

There are two ways to construct linear combinations with the correct spin
and spatial properties:

• obtain coefficients which results in proper spin and spatial properties

• use basis functions which have already proper spin and spatial properties
(CSF: Configuration State Function)
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Introduction: Block structure of the Hamiltonian

Advantage of using eigenfunctions of a commuting operator Â as a basis:

If [Ĥ, Â] = 0, and the basis {Φi} consists of the eigenfunctions of Â:

ÂΦaij = aiΦ
ai
j

then the matrix of Ĥ is block diagonal in this basis:

H =


Ha1 0 0 ...

0 Ha2 0 ...
... ... ... ...
0 0 · · · Han


with Hai is the block belonging to functions {Φaij } with eigenvalue ai.

The wave function in this block:

Ψai =
∑
j

cjΦ
ai
j
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Introduction: Calculation of matrix elements

Hij = 〈Φi|Ĥ|Φj〉

One can simplify the calculations if we know the spin and spatial
properties of the matrix elements.
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Introduction: Second quantization

The Hamiltonian:

Ĥ =
∑
rs

hrsÊrs +
1

2

∑
rstu

〈rt|su〉[ÊrsÊtu − δstÊru]

where

hrs =

∫
φr(1)ĥ(1)φs(1)dv(1)

〈rt|su〉 =

∫ ∫
φ∗r(1)φ∗t (2)

1

r12
φs(1)φu(2)dv(1) dv(2)

Êrs = â†rαâsα + â†rβâsβ

with â† and â being creation and annihilation operators.

An important property of the basic operators:

[Êrs, Êtu] = δstÊru − δruÊts
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Introduction: Second quantization

Matrix element:

Hij = 〈Φi|Ĥ|Φj〉

=
∑
rs

hrs〈Φi|Êrs|Φj〉+
1

2

∑
rstu

〈rt|su〉[〈Φi|ÊrsÊtu|Φj〉 − δst〈Φi|Êru|Φj〉]

All we need for the matrix elements are the

• integrals hrs and 〈rt|su〉

• matrix elements of the basic operators (coupling coefficients).

The latter is a very sparse matrix.
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Summary of introduction

Spin and spatial symmetry properties will be useful:

• to obtain spin and symmetry labels of atomic/molecular states

• to construct proper spin and symmetry eigenstates

• to calculate matrix elements
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Introduction: plan of my talks

• basic group theory

• spatial symmetry and corresponding group theoretical terms

• permutation symmetry and the corresponding groups

• unitary group

• construction of spin eigenfunctions

• calculation of matrix elements

• symmetry properties of different wave functions
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Recommended books/chapters

1. F. A. Cotton, Chemical Application of Group Theory, 2nd Edition,
Wiley-Interscience, New York, 1973.

2. R. Pauncz, Spin Eigenfunctions, Plenum Press, New York, 1979.

3. I. Shavitt, The Graphical Unitary Group Approach and Its Application to
Direct Configuration Interaction Calculations The Unitary Group for the
Evaluation of Electronic Energy Matrix Elements, Ed. J. Hinze, Lecture
Notes in Chemistry, Vol. 12, pg. 51-99, Springer, 1981.
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.

Basic Terms of Group Theory
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Basic Terms of Group Theory

A group is a collection of elements which are interrelated by an operation:

A ·B = C

The following rules must be obeyed:

• set G is closed under the operation:
if A,B ∈ G then C ∈ G

• there must be a unit element (E, identity) such that:
E ·A = A · E = A

• multiplication is associative:
A · (B · C) = (A ·B) · C

• all elements must have its reciprocal (A−1) in the group:
A · S = S ·A = E S ≡ A−1

Eötvös Loránd University, Institute of Chemistry 12
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Basic Terms of Group Theory

Multiplication is not necessarily commutative:

A ·B 6= B ·A

Abelian group: If multiplication of any pair of elements is commutative.

Eötvös Loránd University, Institute of Chemistry 13
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Basic Terms of Group Theory

Multiplication is not necessarily commutative:

A ·B 6= B ·A

Abelian group: If multiplication of any pair of elements is commutative.

Dimension of the group (h):

• finite group: h <∞

• infinite group: h =∞
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Basic Terms of Group Theory

Group multiplication table:

A B C D
A A B C D
B B A D C
C C D A B
D D C B A

Properties:

• each element appears only once in each row and column

• multiplication is single valued

Eötvös Loránd University, Institute of Chemistry 14
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Basic Terms of Group Theory

Group multiplication table:

A B C D
A A B C D
B B A D C
C C D A B
D D C B A

Properties:

• each element appears only once in each row and column

• multiplication is single valued

Subgroup: if a subset of elements obey the definition of a group, i.e.
multiplication does not leed out of the group.

It must always include E, and of course the invers of all elements.
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Basic Terms of Group Theory

Conjugate elements: A and B are conjugate to each oder, if

• A,B,X ∈ G and

• B = X−1 ·A ·X

Properties:

• If A is conjugate to B than B must be conjugate to A, i.e. the group
must have an element Y such that:
A = Y −1 ·B · Y

• If A is conjugate to B and C then B and C are also conjugate to A.

Class: the complete set of elements which are conjugate to each other.
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Basic Terms of Group Theory

Representation of a group

Remember the definitions: the group is defined by the multiplication
table (relation of the elements) and not the individual property of the
elements.

The same group can be also represented by:

• operators (e.g. symmetry operation – symmetry groups)

• permutations (permutation groups)

• ...

• matrices

Eötvös Loránd University, Institute of Chemistry 16



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Basic Terms of Group Theory

Assume a group with the following multiplication table:

E B C D
E E B C D
B B E D C
C C D E B
D D C B E

The following matrices obey the same multiplication table:

E =

 1 0 0
0 1 0
0 0 1

 B =

 −1 0 0
0 −1 0
0 0 1


C =

 1 0 0
0 −1 0
0 0 1

 D =

 −1 0 0
0 1 0
0 0 1
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Basic Terms of Group Theory

Assume a group with the following multiplication table:

C2v E C2 σv σ′v
E E C2 σv σ′v
C2 C2 E σ′v σv
σv σv σ′v E C2

σ′v σ′v σv C2 E

The following matrices obey the same multiplication table:

E =

 1 0 0
0 1 0
0 0 1

 C2 =

 −1 0 0
0 −1 0
0 0 1


σv =

 1 0 0
0 −1 0
0 0 1

 σ′v =

 −1 0 0
0 1 0
0 0 1
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Basic Terms of Group Theory

Representation of a group I

How many matrix representations can a group have?
. – As many as you just generate!!!

For example, by similarity transformation we get new set of matrices
which also form a representation:

A′ = L−1AL B′ = L−1BL

A′ ·B′ = L−1AL · L−1BL = L−1A ·BL = L−1CL = C ′

Character of a representation:

By similarity transformation the character of a matrix1 does not change
. → the character will be characteristic to the representation.

1Sum of the diagonal elements; also called “spur” or “trace”.
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Basic Terms of Group Theory

Representation of a group II

Are there special ones among the representations?
. – Yes, these are the so called irreducible representations.

Irreducible representations:

• basic building blocks of representations

• any representation can be build up from these basic elements

Eötvös Loránd University, Institute of Chemistry 20
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Basic Terms of Group Theory

Representation of a group III

However, the name comes from a procedure starting at large matrices:

– assume we have a group represented by matrices E,B,C,D, ...

– we perform the same similarity transformation on all of them:

E′ = L−1 E L

B′ = L−1 B L

C′ = L−1 C L

– similarity transformation does not change the multiplication rules
. → transformed matrices still give a representation (same character).
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– Special transformation can lead to block diagonal matrices, e.g.:

B′ = L−1BL =


B′1 0 0 0 · · ·
0 B′2 0 0 · · ·
0 0 B′3 0 · · ·
0 0 0 B′4 · · ·
... ... ... ...



– Block diagonal matrices can be multiplied block-wise:

B′1 ·C′1 = D′1

B′2 ·C′2 = D′2
...

obeying the same multiplication rules

→ each block is a new representation.

Eötvös Loránd University, Institute of Chemistry 22
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Therefore:

If there exists a transformation which brings all matrices of a group to
the same block structure, the representation can be split into “smaller”
representations → i.e. the original representation reducible.

Note:

• the character of the representation is changed when it is splited into
smaller pieces

• the sum of the character of new representations equals the character of
the original representations

Notation: Γ = Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ · · ·

Irreducible representation:

• transformation leading simultaneously to block structure of the matrices
does not exist
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Basic Terms of Group Theory

How many irreducible representations of a group are there?

– One can show that the number of all irreducible representations equals
to the number of the classes of the group.

Eötvös Loránd University, Institute of Chemistry 24
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Basic Terms of Group Theory

How many irreducible representations of a group are there?

– One can show that the number of all irreducible representations equals
to the number of the classes of the group.

Character table:

Example: Character table of the C2v point group

C2v E C2 σv(xz) σv(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

Rows correspond to the irreps and show the character of the elements
(precisely: that of the classes).
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Basic Terms of Group Theory

Basis of a representation

We know the relation between operators and matrices:

Consider a set of (linearly independent) functions {φi} such that the
space spanned is an invariant space with respect to all operators of the
group. E.g.:

Âφi =
∑
j

Aijφj

B̂φi =
∑
j

Bijφj

Ĉφi =
∑
j

Cijφj

...

Eötvös Loránd University, Institute of Chemistry 25
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Basic Terms of Group Theory

Basis of a representation

The matrix representation of an operator in this basis can be given as:

Aij = 〈φi|Â|φj〉
The matrices defined this way from operators belonging to a group,

form also a group with the same multiplication table. It is said that the
matrices A,B, ... are the matrix representation of operators Â, B̂, ... on the
basis {φi}.

Notes:

• when transforming the matrices, in fact we transform the basis

• when finding the block diagonal form of the matrices and splitting
up the representation accordingly, we divide up the space into smaller
subspaces. Now the elements of subspaces will be used as basis of the
representations.
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Basic Terms of Group Theory

Reducing reducible representations

To split up reducible representations into irreducible ones, one can use
the following formula:

ni =
1

h

r∑
k=1

Nk χ
i(k) χ(k)

with:

h: order of the group

Nk: order of the class

χi(k): character of kth class corresponding to irrep i

χ(k): character of kth class corresponding to the reducible representation
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Basic Terms of Group Theory

To find the subspace spanning the irreducible representations, the following
operator can be used, which projects into the space of the ith irrep:

P̂i =
∑
R̂

χi(R̂) R̂

with R̂ being the element of the group, χi(R̂) being its character
corresponding to the ith irrep.
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Basic Terms of Group Theory

Reducing reducible representations

Example: Consider the water molecule in minimal basis.

Basis functions: H: 1sa, 1sb, O: 1s, 2s, 2px, 2py, 2pz

Character table for C2v point group with the characters of the above
representation:

C2v E C2 σv(xz) σv(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1
Γbasis 7 1 3 5

Eötvös Loránd University, Institute of Chemistry 29
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Basic Terms of Group Theory

C2v E C2 σv(xz) σv(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1
Γbasis 7 1 3 5

ni = 1
h

∑r
k=1Nk χ

i(k) χ(k)

nA1= 1
4(1·1·7 + 1·1·1 + 1·1·3 + 1·1·5) = 4

nA2= 1
4(1·1·7 + 1·1·1 + 1·(− 1)·3 + 1·(− 1)·5) = 0

nB1= 1
4(1·1·7 + 1·(− 1)·1 + 1·1·3 + 1·(− 1)·5) = 1

nB2= 1
4(1·1·7 + 1·(− 1)·1 + 1·(− 1)·3 + 1·1·5) = 2

Thus: Γbasis=4 A1 ⊕ B1 ⊕ 2 B2

This means, there are four a1, one b1 and two b2 orbitals.
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Basic Terms of Group Theory

Direct product representations

Consider two bases of representation {φi} and {ψi}:

Âφi =
∑
j

Aφijφj Âψi =
∑
j

Aψijψj

Then:

Âφiψj =
∑
k

∑
l

AφikA
ψ
jlψkφl

i.e. {ψiψj} also form a basis for the representation, that of the outer
product of the two matrices:

Aφ⊗ψ = Aφ ⊗Aψ

with Aφ⊗ψ having a dimension as product of the dimensions of the two
representations.
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Basic Terms of Group Theory

Direct product representations

Notation:

Γφ⊗ψ = Γφ ⊗ Γψ

Character of the direct product representation:

The characters of the direct product representation are the products of
the character of the representations forming the original representations.
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.

Spatial Symmetry of
Molecules
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Symmetry operations

• Ĉn – proper rotation (around the proper axis) by 2π/n

• σ̂ – reflection (special cases: σ̂v, σ̂h, σ̂d)

Eötvös Loránd University, Institute of Chemistry 34
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Symmetry operations

• Ŝn – improper rotation: rotation (Ĉn) followed by reflection in a plane
perpendicular to the rotation axis (σh)

• î – inversion (̂i = Ŝ2)

• Ê – unity: maps the object on itself (required only for mathematical
purposes)

Eötvös Loránd University, Institute of Chemistry 35
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Point groups

Symmetry operations leaving an object (molecule) unchanged, form a group.

E.g. water (see next page):

Operators: Ĉ2, σ̂v, σ̂′v, Ê

Multiplication table:

Ĉ2v Ê Ĉ2 σ̂v σ̂′v
Ê Ê Ĉ2 σ̂v σ̂′v
Ĉ2 Ĉ2 Ê σ̂′v σv
σ̂v σ̂v σ̂′v Ê Ĉ2

σ̂′v σ̂′v σ̂v Ĉ2 Ê

The group formed by the symmetry operations is called the point group.

Eötvös Loránd University, Institute of Chemistry 36
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Point groups

Water: Ĉ2, σ̂v, σ̂′v, Ê
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Point groups

Ammonia: Ĉ3, 3 times σ̂v, Ê
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Point groups

Benzene: Ĉ6, 6 times Ĉ2, σ̂h (horizontal, perpendicular to the main
axis), 6 times σ̂v (including the main axis), î, etc.

Eötvös Loránd University, Institute of Chemistry 39
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Generators of a group

Set of elements (S) of the group G are called generators if all elements of
G can be generated by multiplication of the elements of S.

Example: benzene

Elements of the point group D6h:

Ê, 2Ĉ6, 2Ĉ3, Ĉ2, 3Ĉ2, 3Ĉ2, î, 2Ŝ6, 2Ŝ3, σ̂h, 3σ̂v, 3σ̂d

Three generators are able to produce these elements.

Set 1: Ĉ6, Ĉ
′
2 and î.

Ĉ3 = Ĉ6 · Ĉ6, Ĉ2 = Ĉ6 · Ĉ6 · Ĉ6, Ĉ2” = Ĉ6 · Ĉ ′2, σ̂v = Ĉ ′2 · î etc.

Set 2: Ĉ6, σ̂v, σ̂v

Set 3:..... several others

Eötvös Loránd University, Institute of Chemistry 40
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Point groups

Symmetry of molecules are represented by the collection of symmetry
operations leaving it unchanged, i.e. by the point group.

Point groups are represented by the so called Schoenflies-symboles:

• Cn: groups including proper rotation Ĉn only

• Cnv: groups including proper rotation Ĉn and reflection to a plain
including the axis σ̂v

• Cnh: groups including proper rotation Ĉn and reflection to a plain
perpendicular to the axis σ̂h

• Dn: groups including proper rotation Ĉn and n additional proper rotation
Ĉ2 perpendicular to the main axis

• Dnh: same as Dn with and additional reflection to a plane perpendicular
to the main axis.

Eötvös Loránd University, Institute of Chemistry 41
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Point groups

• Dnd: same as Dn with and additional reflection to a plane including the
main axis.

• Sn: includes improper rotation Ŝn

• Td: tetrahedral point group

• ...

• C∞v: proper rotation with arbitrary angle (Ĉ∞) and reflection to a plane
including this axis (σ̂v)

• D∞h: proper rotation with arbitrary angle (Ĉ∞) and reflection to a plane
perpendicular to this axis (σ̂h)

• O+
3 : spherical symmetry

Eötvös Loránd University, Institute of Chemistry 42
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Point groups

Molecular examples:

molecule symmetry operations point group

water Ĉ2, σ̂v, σ̂′v, Ê C2v

ammonia Ĉ3(z), 3 x σ̂v, Ê C3v

benzene Ĉ6, 6 x Ĉ2, σ̂h, 6 x σ̂v, î, etc. D6h

formaldehyde Ĉ2(z), σ̂v, σ̂′v, Ê C2v

ethene D2h

acetylene D∞h
carbon monoxide C∞v
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.

Symmetry and quantum
mechanics
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Symmetry and quantum mechanics

Symmetry operations are represented by operators (R̂).

What does it mean mathematically that the operation leaves the
molecule unchanged?

It does not change the properties → The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):

R̂Ĥ = ĤR̂

Eötvös Loránd University, Institute of Chemistry 47



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Symmetry and quantum mechanics

Symmetry operations are represented by operators (R̂).

What does it mean mathematically that the operation leaves the
molecule unchanged?

It does not change the properties → The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):

R̂Ĥ = ĤR̂

Action of a symmetry operator on a function:

R̂f(x) = f(R̂−1x)

Eötvös Loránd University, Institute of Chemistry 47
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Symmetry and quantum mechanics

R̂Ĥ = ĤR̂

Commuting operators have a common set of eigenfunctions2

⇓
The eigenfunction of the Hamiltonian must also be eigenfunction of the

symmetry operators.

R̂Ψ = rΨ

2For easier understanding we disregard degeneracy for a while.

Eötvös Loránd University, Institute of Chemistry 48



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Symmetry and quantum mechanics

R̂Ψ = rΨ

What are the eigenvalues?

• Like the object (molecule), the wave function is unchanged under the
symmetry operation: r = 1

• The wave function can also change sign under the symmetry operation,
since in this case the density |Ψ|2 is still unchanged: r = −1

This eigenvalue will be representative for the wave function (“good quantum
numbers”):

• r = 1: symmetric

• r = −1: antisymmetric
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Symmetry and quantum mechanics

R̂Ψ = rΨ

What about the eigenfunctions?

• They form a basis for a representation

Symmetry axiom: the eigenfunctions of the Hamiltonian form an irreducible
representation of the symmetry operations.
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Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.

For water, this means 23 possibilities (Ê has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

C2v E C2 σzx σzy
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, wave functions can be classified according to the rows of the
character table, i.e. according to the irreps.
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Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.

For water, this means 23 possibilities (Ê has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

C2v E C2 σzx σzy
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, the wave function of water can be classified as A1, A2, B1 or B2.
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Symmetry and quantum mechanics

Other example: ammonia

C3v E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

• there are two eigenfunctions of the Hamiltonian which have the same
symmetry property

• any combination of these two functions still define a representation of
the group (with the same character)
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Symmetry and quantum mechanics

Other example: ammonia

C3v E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

• there are two eigenfunctions of the Hamiltonian which have the same
symmetry property

• any combination of these two functions still define a representation of
the group (with the same character)

⇒ it is logical that these functions belong to the same eigenvalue of the
Hamiltonian, i.e. degenerate!
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Symmetry and quantum mechanics

In summary:

It is worth to use symmetry:

• to classify states

• to speed up calculations
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.

Permutation symmetry:
Symmetric group
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Permutation symmetry: Symmetric group

n objects can be arranged in n! different ways.

Permutation operator:

P̂ =

(
1 2 · · · n
i1 i2 · · · in

)
meaning that 1 is replaced by i1, 2 by i2, etc.

Action on a function:

P̂F (x1, x2, ..., xn) = F (xi1, xi2, ..., xin)
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Permutation symmetry: Symmetric group

Sn group: formed by the permutations of n objects

Multiplication defined by:(
i1 i2 · · · in
k1 k2 · · · kn

)(
1 2 · · · n
i1 i2 · · · in

)
=

(
1 2 · · · n
k1 k2 · · · kn

)

Unit element:

P̂E =

(
1 2 · · · n
1 2 · · · n

)

Inverse:

P̂−1 =

(
i1 i2 · · · in
1 2 · · · n

)
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Permutation symmetry: Symmetric group

Cyclic permutations:(
i1 i2 · · · in
i2 i3 · · · i1

)
=

(
i1 i2 · · · in

)
Each number is replaced by the one standing after the number.

Any arbitrary permutation can be decomposed into the product of
independent cycles, e.g.(

1 2 3 4 5 6 7
3 4 5 2 1 7 6

)
=

(
1 3 5

) (
2 4

) (
6 7

)

Cyclyc structure: The above permutation has a cyclic structure of 3 22,
i.e. it is composed of a 3 and two 2 element cycles.
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Permutation symmetry: Symmetric group

Transposition: cycle of order 2

An arbitrary permutation can be decomposed as a product of
transpositions:(

1 2 3 4 5 6 7
3 4 5 2 1 7 6

)
=

(
1 3

) (
3 5

) (
2 4

) (
6 7

)
it was used that (

1 3 5
)

=
(

1 3
) (

3 5
)
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Permutation symmetry: Symmetric group

Conjugate elements:

T̂1 and T̂2 are conjugate, if there exists an Ŝ in the group that:

T̂1 = Ŝ T̂2 Ŝ
−1

• Conjugate elements form classes

• Conjugate elements have the same cyclic structure.

Therefore,

• classes can be characterized by their cyclic structure

• the number of classes of the symmetric group is given by the number of
possible cyclic structures.
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Permutation symmetry: Symmetric group
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Permutation symmetry: Symmetric group

Young frames: visualizations of different partitions

For a partition λ1, λ2, λ3, ..., λn (increasing order) the Young frame is a
diagram with λ1 boxes in the first row, λ2 boxes in the second row, etc.

For the previous example:
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Permutation symmetry: Symmetric group

Young tableau:

• Young frame filled up with numbers 1 to n (n! possibilities).

[4]:

1 2 3 4 1 2 4 3 1 3 2 4

1 3 4 2 1 4 2 3 1 4 3 2

[3, 1]:

1 2 3
4

1 2 4
3

1 3 4
2

2 3 4
1

1 3 2
4

1 4 2
3

1 4 3
2

2 4 3
1
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Permutation symmetry: Symmetric group

Standard tableau:

• Those Young tableaux where the elements increase in each row from left
to right and in each column from top to bottom.
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Permutation symmetry: Symmetric group

Standard tableau:

• Those Young tableaux where the elements increase in each row from left
to right and in each column from top to bottom.

[4]:

1 2 3 4

[3, 1]:

1 2 3
4

1 2 4
3

1 3 4
2

There are simple rules to calculate the number of standard tableaux (see
Paunz).
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Generators of the symmetric group

The generators of the symmetric group are the basic transpositions:

σ̂i =
(
i i+ 1

)
i.e. n-1 generators: (1 2), (2 3), ... (n-1 n).

We have seen that a permutation can be obtained as product of
transpositions. Now we have to show that any transposition can be given
as products of basic transpositions.

Demonstration: (
1 3

)
1 2 3 = 3 2 1

(
1 2

) (
2 3

) (
1 2

)
1 2 3 =

(
1 2

) (
2 3

)
2 1 3

=
(

1 2
)

2 3 1

= 3 2 1
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Representations of the symmetric group

The number of classes equals the number of partitions, i.e. the number of
Young shapes.

The number of irreducible representations equals the number classes
→ the symmetric group has as many irreps as Young shapes are there.

According to Young theory:

• the irreps of the symmetric group are also characterized by Young shapes;

• the dimension of the irreps is given by the number of standard tableaux;

• the irreps are generated by the subgroup chain: Sn ⊃ Sn−1 ⊃ ... ⊃ S2;

• the standard tableaux can be used calculate the matrix elements of the
basic transposition (k-1, k)
→ all matrices can be obtained by matrix multiplication.
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.

Unitary Group
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Unitary Group

Unitary matrices:

U† = U−1

Unitary matrices form a group:

• product of unitary matrices are unitary matrices

• unit matrix is unitary → unit element

• inverse of unitary matrix (the adjoint) is unitary → inverse element

This group is called unitary group U(n).
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Unitary Group

Parametrization of unitary matrices:

U = exp(iA)

with A being a Hermitian matrix, which can be written as:

A =
∑
i,j=1

αijeij

with αij = α∗ij.

eij: basic matrix unit, with all elements 0, except {i, j}, which is one.

Properties:

[eij, ekl] = δjkeil − δliekj
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Unitary Group

Generators of the unitary group

eij is practically the generator of A. But we need a generator for the
unitary matrices U.

One-parameter subgroup:

U(t) = exp(itH)

where H is a fixed matrix, and t is varied continuously.

• multiplication: U(t)U(t′) = U(t+ t′)

• unit element: U(0) = E

• inverse: U(t)−1 = U(−t)
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Unitary Group

Generators of the unitary group

Now we can define a basic set of one-parameter subgroups with the
basic matrix units as H:

Ukk(t) = exp(itekk)

Ukl(t) = exp[it(ekl + elk)/2] k < l

Ulk(t) = exp[it(ekl − elk)/2i] k > l

These matrices can be considered as a basis since an arbitrary unitary matrix
can be given as a product of these matrices.

Note that the size of this basis sets is n2.
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Unitary Group

Generators of the unitary group

Now we need the generators independent of t. These can be given as:

Êrr = −iX̂rr

Êrs = −iX̂rs + X̂sr r < s raising generator

Êsr = −iX̂rs − X̂sr r < s lowering generator

with

X̂kl =

[
dÔkl
dt

]
t=0

where Ôkl is an operator corresponding to the unitary matrix Ukl.
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Unitary Group

Generators of the unitary group

Now we need the generators independent of t. These can be given as:

Êrr = −iX̂rr

Êrs = −iX̂rs + X̂sr r < s raising generator

Êsr = −iX̂rs − X̂sr r < s lowering generator

with

X̂kl =

[
dÔkl
dt

]
t=0

where Ôkl is an operator corresponding to the unitary matrix Ukl.

{Êrs} are the generators (or infinitesimal operators) of the representation.
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Unitary Group

Generators of the unitary group

Important property of the generators of the unitary group:

[Êrs, Êtu] = δstÊru − δruÊts

Note that these commutation relations are the same as that of the basic
excitation operators used to define the second quantized Hamiltonian.
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Unitary Group

Irreducible representations of the unitary group

Gel’fand and Tsetlin introduced a way to label the vectors spanning the
space of the irreducible representation. It is based on hierarchical procedure
using the sequence of subgroups:

U(n) ⊃ U(n− 1) ⊃ ... ⊃ U(2) ⊃ U(1)

The vectors are given by the following symbol (Gel’fand pattern):

What is important that the matrix elements of the generators Êrs could be
given by Gel’fand and Tsetlin using the parameters labeling these vectors.
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Unitary Group

Weyl tableau

This is an alternative reresentation of the Gel’fand-Tsetlin basis, in
particular useful for electronic structure calculations. It resembles the
Young tableau, but the meaning of the boxes and their content is different.

Refraining again from going into details, here is an example of this
relationship:
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Unitary Group

Paldus tableau

This is an alternative reresentation of the Gel’fand-Tsetlin basis, in
particular useful for electronic structure calculations.

Refraining again from going into details, here is an example of this
relationship:
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.

Construction of spin functions
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Construction of spin functions

z component of the spin:

Ŝz =

N∑
l=1

ŝz(l)

i.e. sum of one-electron components, so that its eigenfunctions are products:

Θi = θ(1)θ(2)...θ(N)

with θ(l) being α or β.

The 2N-dimensional subspace can be decomposed according to the
eigenvalues of Ŝz:

ŜzΘl(µ, ν) =
1

2
(µ− ν)Θi(µ, ν)

Θi(µ, ν) is the primitive spin function with µ α functions and ν β functions.

Eötvös Loránd University, Institute of Chemistry 77



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Construction of spin functions

Ŝ2 is not a sum of individual components, so eigenfunctions can not be
given as product of the individual components.

Two useful expressions of the Ŝ2 operator:

Ŝ2 =
−N(N − 4)

4
+
∑
i<j

P̂ij (1)

with P̂ij being the permutation operator of electrons i and j.

Ŝ2 = Ŝ+Ŝ− + Ŝ2
z − Ŝz (2)

with Ŝ+ and Ŝ− as step-up and step-dow spin operators, respectively.
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Construction of spin functions

There are several methods for constructing Ŝ2 eigenfunctions:

1. Diagonalization
One can use the fact that: [Ŝ2, Ŝz] = 0

i.e. Ŝ2 and Ŝz have common eigenvectors.

2. Genealogical construction
Stepwise construction by adding one more spin function at a time

3. Using projection operators

4. Using spin pair functions

5. ....
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Construction of spin functions

Method 1: diagonalization in the subspace corresponding to the M =
1
2(µ− ν) eigenvalues of Ŝz.

Example: N = 3,M = 1
2

Θ1 = ααβ Θ2 = αβα Θ3 = βαα

S
2

=

 13
4 1 1

1 13
4 1

1 1 13
4


Eigenvectors:

X1 = 3
−1/2

(ααβ + αβα+ βαα) S =
3

2

X2 = 6
−1/2

(2ααβ − αβα− βαα) S =
1

2

X1 = 2
−1/2

(αβα− βαα) S =
1

2

This is a straightforward procedure but can be tedious for lots of electrons.
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Construction of spin functions

Method 2: Genealogical construction of spin eigenfunctions

Possible eigenstates:

• Single electron:

S = 1
2 with M = 1

2 or M = −1
2

• Two electron case:

– S = 1 triplet state by increasing the spin of single electron case
– S = 0 singlet state by decreasing the spin of single electron case
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Construction of spin functions

Method 2: Genealogical construction of spin eigenfunctions

Possible eigenstates:

• Three electron case:

We can get S = 1
2 states from both two electron cases:
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Construction of spin functions

Method 2: Genealogical construction of spin eigenfunctions

How can we construct the eigenfunctions along the branching diagram?

First a notation:

X(N,S,M ; l)

denotes the lth eigenfunction of the N electron spin function with S and
M quantum numbers.

Single electron:

X

(
1,

1

2
,
1

2
; 1

)
= α

X

(
1,

1

2
,−1

2
; 1

)
= β
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Construction of spin functions

Method 2: Genealogical construction of spin eigenfunctions

How can we construct the eigenfunctions along the branching

Recursive formula for constructing N electron eigenfunction from N − 1 eigenfunction:

• Addition, i.e. S from S − 1
2 function:

X(N,S,M ; l) =
1
√

2S

[
(S +M)

1
2 X(N − 1, S −

1

2
,M −

1

2
; k) α(N)

+(S −M)
1
2 X(N − 1, S −

1

2
,M +

1

2
; k) β(N)

]
• Substruction, i.e. S from S + 1

2 function:

X(N,S,M ; l) =
1

√
2S + 2

[
− (S −M + 1)

1
2 X(N − 1, S +

1

2
,M −

1

2
; k) α(N)

+(S +M + 1)
1
2 X(N − 1, S +

1

2
,M +

1

2
; k) β(N)

]
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Construction of spin functions

Branching diagram:

• vertices specify the values N and S

• spin functions can be created along the graph leading to the desired N and S value
• number in the circles indicate the number of independent spin states

f(N,S) = f(N − 1, S + 1/2) + f(N − 1, S − 1/2) =

(
N

1
2N − S

)
−
(

N
1
2N − S − 1

)
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Symmetric group and spin

Permutation commute with spin operators since these are symmetric in
electronic coordinates:

[P̂ , Ŝz] = 0 [P̂ , Ŝ2] = 0

Therefore spin eigenfunctions (X(N,S,M ; k)) belonging to the same
eigenvalues form a basis for representation of P̂ :

P̂X(N,S,M ; k) =
∑
l

X(N,S,M ; l)Plk

with

Plk = 〈X(N,S,M ; l)|P̂ |X(N,S,M ; k)〉

Spin functions form an irreducible representation of the symmetric group!
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Symmetric group and spin

There is one-to-one correspondance between branching-diagram functions
and standard Young tableau:

• the space is spanned by functions of a given M = µ − ν, i.e. the µ α
and ν β functions are there.

• this corresponds to a partition µ ν ⇒ Young tableau includes µ boxes in
the first row and ν boxes in the second row.

• for branching-diagram functions a standard Young tableaux should be
created.

Moreover, one can show that the matrix elements are the same as the
ones obtained with Young orthogonal representation → group theoretical
methods can be used to calculate the spin-related matrix elements.
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Symmetric group and spin

There is one-to-one correspondence between branching-diagram functions
and standard Young tableau:

Example for the correspondence: N = 3, S = 1
2

1 2
3

1 3
2
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Symmetric group and spin

There is one-to-one correspondence between branching-diagram functions
and standard Young tableau:

Example for the correspondence: N = 3, S = 1
2

1 2
3

1 3
2

6=α(1)α(2)β(3) 6=α(1)β(2)α(3)
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Symmetric group and spin

There is one-to-one correspondence between branching-diagram functions
and standard Young tableau:

Example for the correspondence: N = 3, S = 1
2

1 2
3

1 3
2

=α(1)α(2)β(3)−α(1)β(2)α(3)−β(1)α(2)α(3) =α(1)β(2)α(3)−β(1)α(2)α(3)
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Symmetric group and spin

N S M spin function standard Young tableau

1 1/2 1/2 α(1) 1

1 1/2 -1/2 β(1) X

2 1 1 α(1)α(2) 1 2

2 1 -1 β(1)β(2) X

2 1 0 β(1)α(2) + α(1)β(2) X

2 0 0 −β(1)α(2) + α(1)β(2)

1
2

3 3/2 3/2 α(1)α(2)α(3) 1 2 3

3 1/2 1/2 α(1)α(2)β(3)− α(1)β(2)α(3)− β(1)α(2)α(3)

1 2
3

3 1/2 1/2 −β(1)α(2)α(3) + α(1)β(2)α(3)

1 3
2

Addition: X(N,S,M ; l) = 1√
2S

[
(S+M)

1
2X

(
N − 1, S − 1

2,M −
1
2; k

)
α(N)+(S−M)

1
2X

(
N − 1, S − 1

2,M + 1
2; k

)
β(N)

]
Substruction: X(N,S,M ; l) = 1√

2S+2

[
− (S −M + 1)

1
2X

(
N − 1, S + 1

2,M −
1
2; k

)
α(N)

+ (S +M + 1)
1
2X

(
N − 1, S + 1

2,M + 1
2; k

)
β(N)

]
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Symmetric group and spin
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Spatial part of the wave function

To fullfil global anti-symmetry, not all spatial functions can be paired with
a given spin function:

Φ(r;N,S, l′)X(N,S,M ; l)

One can show, that such wave function can be represented by the so
called dual shapes:

X
Spatial part Spin part

Spin can be integrated out and we are left with:

〈Φ(r;N,S, l)|Ĥ|Φ(r;N,S,m)〉
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Occupation graph and branching diagram
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Representation of CSF’s as Gel’fand-Tsetlin basis

Remember the second quantized form of the Hamiltonian:

Ĥ =
∑
rs

hrsÊrs +
1

2

∑
rstu

〈rt|su〉[ÊrsÊtu − δstÊru]

The basic operators Êrs commute with the spin operators:[
Ŝ2, Êrs

]
= 0

i.e. to construct spin-adapted wave function, the space spanned by the
eigenfunctions of Êrs should be sufficient.

It was also shown that Êrs is a generator of the unitary group, thus to
find the space we can follow the theory of unitary group and construct the
corresponding Gel’fand-Tsetlin basis.
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Representation of CSF’s as Gel’fand-Tsetlin basis

The carrier space for the representation could be the determinants, and we should find the

appropriate combinations.

The representative quantities for the functions are the following:

• number of electrons N ;

• spin quantum number S;

• number of orbitals n;

• number of paired electrons a;

• number of unpaired electrons b;

• number of empty orbitals c.

The first three are global variables, they specify the system and the state we are looking

for, therefore equal for all functions (CSFs).

The following relationships must be satisfied:

2a+ b = N b = 2S a+ b+ c = n
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Representation of CSF’s as Gel’fand-Tsetlin basis
Similarly to the generation of spin-eigenfunctions, we have to distribute

N electrons. Still, the procedure is different:

Young tableau Weyl tableau

µ box for α electrons a rows with double boxes (paired electrons)

ν box for β electrons b rows with single box (unpaired electrons)

µ+ ν = N 2a+ b = N

µ− ν = 2S b = 2S

1 3 4
2 5

1 1
2 3
3

numbers refer to electrons numbers refer to orbitals
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Representation of CSF’s as Gel’fand-Tsetlin basis

Gel’fand-Tsetlin basis is built up hierarchically:

U(n) ⊃ U(n− 1) ⊃ ... ⊃ U(2) ⊃ U(1)

i.e. we add orbitals (and electrons) one by one.

We will use the Paldus tableu representation which uses the three
numbers a, b, c defined above, and also will draw the Weyl tableau.

The procedure starts from the vacuum: N = 0, S = 0, n = 0:

a0 = 0 b0 = 0 c0 = 0
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Representation of CSF’s as Gel’fand-Tsetlin basis

a0 = 0 b0 = 0 c0 = 0

We add one orbital and one electron, N = 1, S = 1/2, n = 1. In this case
the only possibility for the values:

a1 = 0 b1 = 1 c1 = 0
a0 = 0 b0 = 0 c0 = 0

1
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Representation of CSF’s as Gel’fand-Tsetlin basis

a0 = 0 b0 = 0 c0 = 0

We add one orbital and one electron, N = 1, S = 1/2, n = 1. In this case
the only possibility for the values:

a1 = 0 b1 = 1 c1 = 0
a0 = 0 b0 = 0 c0 = 0

1

We also could have added two electrons to this orbital, N = 2, S = 0,
n = 1.

a1 = 1 b1 = 0 c1 = 0
a0 = 0 b0 = 0 c0 = 0

1 1

We see that already here we have branching of different constructions.
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Representation of CSF’s as Gel’fand-Tsetlin basis

Continue from the second one and add one more orbital (n=2). Now we
can add zero, one or two electrons.
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Representation of CSF’s as Gel’fand-Tsetlin basis

Continue from the second one and add one more orbital (n=2). Now we
can add zero, one or two electrons.

In the first case nothing changes.

Adding two electrons (N = 4), we get:

a2 = 2 b2 = 0 c2 = 0
a1 = 1 b1 = 0 c1 = 0
a0 = 0 b0 = 0 c0 = 0

1 1
2 2

which means S = 0.
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Representation of CSF’s as Gel’fand-Tsetlin basis

Continue from the second one and add one more orbital (n=2). Now we
can add zero, one or two electrons.

In the first case nothing changes.

Adding two electrons (N = 4), we get:

a2 = 2 b2 = 0 c2 = 0
a1 = 1 b1 = 0 c1 = 0
a0 = 0 b0 = 0 c0 = 0

1 1
2 2

which means S = 0.

Adding instead one electron (N = 3) which implies also S = 1/2, that is
the spin increased:

a2 = 1 b2 = 1 c2 = 0
a1 = 1 b1 = 0 c1 = 0
a0 = 0 b0 = 0 c0 = 0

1 1
2
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Representation of CSF’s as Gel’fand-Tsetlin basis

Assume we have built up this Paldus tableau up to the itth row:

ai bi ci
... ... ...
a2 b2 c2
a1 b1 c1
a0 b0 c0

According to the rules, here Ni = 2ai + bi, ni = ai + bi + ci, and Si = 2bi.

When adding the next orbital (ni+1 = ni + 1), we have four possibilities:

– adding no electrons: Ni+1 = Ni and Si+1 = Si
– adding two electrons: Ni+1 = Ni + 2 and Si+1 = Si
– one electron and increasing the spin: Ni+1 = Ni+ 1 and Si+1 = Si+ 1/2
– one electron and decreasing the spin: Ni+1 = Ni+1 and Si+1 = Si−1/2
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Representation of CSF’s as Gel’fand-Tsetlin basis

Case 0, Ni+1 = Ni and Si+1 = Si

ai bi ci + 1
ai bi ci
... ... ...
a2 b2 c2
a1 b1 c1
a0 b0 c0

Case 3, Ni+1 = Ni + 2 and Si+1 = Si

ai + 1 bi ci
ai bi ci
... ... ...
a2 b2 c2
a1 b1 c1
a0 b0 c0
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Representation of CSF’s as Gel’fand-Tsetlin basis

Case 1, Ni+1 = Ni + 1 and Si+1 = Si + 1/2

ai bi + 1 ci
ai bi ci
... ... ...
a2 b2 c2
a1 b1 c1
a0 b0 c0

Case 2, Ni+1 = Ni + 2 and Si+1 = Si − 1/2

ai + 1 bi − 1 ci
ai bi ci
... ... ...
a2 b2 c2
a1 b1 c1
a0 b0 c0

Eötvös Loránd University, Institute of Chemistry 101



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Representation of CSF’s as Gel’fand-Tsetlin basis

There are only four cases when adding an orbital:

∆ai = 0,∆bi = 0,∆ci = 1 → di = 0

∆ai = 0,∆bi = 1,∆ci = 0 → di = 1

∆ai = 1,∆bi = −1,∆ci = 0 → di = 2

∆ai = 1,∆bi = 0,∆ci = 0 → di = 3

with di = 2∆ai −∆ci + 1 = 3∆ai + ∆bi.

Thus, the (ai bi ci) triplets can be replaced by di, the step number:

ai+1 bi+1 ci+1 di+1

ai bi ci di
... ... ... ...
a2 b2 c2 d2

a1 b1 c1 d1

a0 b0 c0
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Representation of CSF’s as Gel’fand-Tsetlin basis

Gelfand-Tsetlin basis is built up hierarchically:

The last step of the procedure: when adding the last orbital, we have to
arrive at the desired number of electrons, N and spin, S.

an bn cn dn
... ... ... ...
ai bi ci di
... ... ... ...
a2 b2 c2 d2

a1 b1 c1 d1

a0 b0 c0

with N = 2an + bn, S = 2bn and n = an + bn + cn.
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Representation of CSF’s as Gel’fand-Tsetlin basis:
the step vector

According to the above discussion, the step number (dk) uniquely defines
the change of the triplets of numbers (∆ak,∆bk,∆ck), thus when knowing
(ak−1, bk−1, ck−1), the values (ak, bk, ck) can be obtained.

This means that the Paldus tableau can be reproduced by the so called
step vector:

an bn cn
... ... ...
ai bi ci
... ... ... → |d1, d2, ..., di, ..., dn〉
a2 b2 c2
a1 b1 c1
a0 b0 c0

Eötvös Loránd University, Institute of Chemistry 104



P.G. Szalay: Symmetries of electronic wave functions Mariapfarr, 16-19th February, 2016

Meaning of the step vector

|d1, d2, ..., di, ..., dn〉

In the step vector there is an entry for every orbital:

• di = 0 means the orbital is empty;

• di = 1 means the orbital is singly occupied, spin increases;

• di = 2 means the orbital is singly occupied, spin decreases;

• di = 3 means the orbital is doubly occupied.

Note, that this vector is very similar to an occupation number vector,
and is very attempting to call di = 1 as α and di = 2 as β, but this is not
true in general.

The definition above rather means that there always must be an
“unpaired” di = 1 precede a dk = 2 (since S ≥ 0).
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Graphical representation of Gel’fand-Tsetlin basis:
Shavitt graph

Shavitt suggested a graphical representation to the step vectors. The
idea is that the four different values of the step number are represented by
lines of different slopes:

The slopes are chosen such that the vertical move by d = 3 equals that
of d = 1 plus d = 2, i.e. whatever way we add two electrons, the vertical
move is the same.
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Graphical representation of Gel’fand-Tsetlin basis:
Shavitt graph

The step vectors representing CSFs can be put into a graph:

• each CSF is represented by a path thru the graph

• orbitals are represented by the rows of the graph

• elements of the step vector are represented by arcs of different

slope

• number of electrons and value of the spin is given by the vertical

position in the graph

• bottom right corresponds to zero electrons (S = 0).

• top left corresponds to a given number of electrons and a given

spin.

• therefore all CSFs representing a system with given number of

electrons and given spin end in the same point.
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The Multireference Problem

Example: ozone (O3)

6
?

6
?

6
?

6
?

ψ(1) ψ(2)

Both determinants are important for a qualitative description!
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The Multireference Problem

Example: ozone (O3)

6
?

6
?

6
?

6
?

ψ(1) ψ(2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!
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The Multireference Problem

Example: ozone (O3)

6
?

6
?

6
?

6
?

ψ(1) ψ(2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!

ΦMR−CISD = c(1)ψ(1) + c(2)ψ(2)
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The Multireference Problem

Example: ozone (O3)

6
?

6
?

6
?

6
?

ψ(1) ψ(2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!

ΦMR−CISD = c(1)ψ(1) + c(2)ψ(2)

+
∑
ia

c(1)
a
iψ(1)

a
i +

∑
ia

c(2)
a
iψ(2)

a
i
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The Multireference Problem

Example: ozone (O3)

6
?

6
?

6
?

6
?

ψ(1) ψ(2)

Both determinants are important for a qualitative description!

Both determinants should be used as reference in the truncated scheme!

ΦMR−CISD = c(1)ψ(1) + c(2)ψ(2)

+
∑
ia

c(1)
a
iψ(1)

a
i +

∑
ia

c(2)
a
iψ(2)

a
i

+
∑

i>j a>b

c(1)
ab
ij ψ(1)

ab
ij +

∑
i>j a>b

c(2)
ab
ij ψ(2)

ab
ij
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The Multireference Problem

orbital type reference CI space

frozen core double occupied double occupied

double occupied

or closed shell

double occupied reference −1,−2

active

or open shell

varying occupation reference ±1,±2

virtual empty empty, +1,+2
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The Multireference Problem

Shavitt graph for MR-CISD wave
function:

• Thick lines: reference CSFs

– run together in the double occupied
and virtual space

– diverge in the “active” space

• both double occupied (inactive) and
virtual (external) part of the graph has
simple structure
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Calculation of the Hamiltonian matrix elements

Hij = 〈Φi|Ĥ|Φj〉

=
∑
rs

hrs〈Φi|Êrs|Φj〉+
1

2

∑
rstu

〈rt|su〉[〈Φi|ÊrsÊtu|Φj〉 − δst〈Φi|Êru|Φj〉]

All we need for the matrix elements are the

• integrals hrs and 〈rt|su〉

• coupling coefficients: matrix elements of the generators of the unitary group

– these can be calculated in the Gel’fand-Tsetlin basis using
∗ Paldus tableau or
∗ Shavitt graph.
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Calculation of the one-electron matrix elements

The matrix elements between two walks on the Shavitt graph are needed:

〈Φi|Êrs|Φj〉 = 〈Φi|â†rαâsα + â†rβâsβ|Φj〉

The creation and annihilation operators cause a change of occupation only
on the rth and sth orbital:
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Calculation of the one-electron matrix elements

The matrix elements between two walks on the Shavitt graph are needed:

〈Φi|Êrs|Φj〉 = 〈Φi|â†rαâsα + â†rβâsβ|Φj〉

The creation and annihilation operators cause a change of occupation only
on the rth and sth orbital:

→ walks can differ only between these two orbitals

→ walks have to define a loop between levels r and s

→ otherwise the walks run together
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Calculation of the one-electron matrix elements

– walks of two CSFs diverge only for the range
where their orbital occupations differ

– matrix elements depend only on the shape of
the loop

– matrix element are calculated from the segment
values R̄, R and R.

Calculation of the matrix elements:

• identification of the loops

• identification of the segment values
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Calculation of the two-electron matrix elements

The matrix elements between two walks on the
Shavitt graph are needed:

〈Φi|ÊrsÊtu|Φj〉 = 〈Φi|(â†rαâsα + â†rβâsβ)(â†tαâuα + â†tβâuβ)|Φj〉

The creation and annihilation operators cause a change of occupation on
rth, sth, tth and uth orbital:
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Calculation of the two-electron matrix elements

The matrix elements between two walks on the
Shavitt graph are needed:

〈Φi|ÊrsÊtu|Φj〉 = 〈Φi|(â†rαâsα + â†rβâsβ)(â†tαâuα + â†tβâuβ)|Φj〉

The creation and annihilation operators cause a change of occupation on
rth, sth, tth and uth orbital:

→ walks can differ only between these orbitals

→ walks have to define loop(s) between these levels

→ otherwise the walks run together
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Calculation of the Hamiltonian matrix elements

Two-electron matrix elements:
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