TU Graz Institut für Wasserbau und Wasserwirtschaft Stremayrgasse 10/II A-8010 Graz

BED LOAD ANALYZER

Software zur Berechnung von hydraulischen und sedimentologischen Parametern in gegliederten Querschnitten

REFERENZHANDBUCH

Version 2.0 Februar 2013

Entwickelt von:

Autor dieses Manuals:

Reinhard Fleißner Clemens Dorfmann Reinhard Fleißner Clemens Dorfmann

Baustein des SUSTAINICUM-Projekts

Gefördert vom BMWF

Das Kooperationsprojekt SUSTAINICUM

SUSTAINICUM¹ ist ein Kooperationsprojekt der Universität für Bodenkultur Wien, der Karl-Franzens-Universität Graz und der Technischen Universität Graz. Es zielt darauf ab, Themen der Nachhaltigkeit aus der Sicht verschiedener Fachgebiete in die universitäre Lehre einzubringen.

Unterschiedlichste Themen mit Nachhaltigkeitsbezug sollen mit Hilfe innovativer Lehrformen für Studierende aller Studienrichtungen erlebbar gemacht werden, um so ein systemisches und ganzheitliches Denken zu fördern. Die Hauptaufgabe besteht darin, einen offenen Pool an Inhalten und Materialien zur Erlebbarmachung der wesentlichen Begriffe, Systeme, Grundkonzepte und Prozesse von nachhaltiger Entwicklung (z.B. die Themenbereiche Klima, Energie, Ressourcen und Resilienz sowie auch Aspekte wie Bildung und Lebenslanges Lernen, nachhaltige Stadt- und Regionalentwicklung u.v.m.) aufzubauen. Diese Konzepte mit Nachhaltigkeitsbezug sollen in Form von kleinen Experimenten, Real- oder Computerspielen, Simulationen o.ä. im Unterricht eingesetzt werden können. Im Rahmen des SUSTAINICUM-Projekts sollen vorhandene Lehrveranstaltungs-Bausteine mit Nachhaltigkeitsbezug gesammelt und neue Bausteine geschaffen werden, und zukünftig allen Lehrenden zur Verfügung gestellt werden. Zentrale Sammelstelle ist die Internet-Plattform SUSTAINICUM, welche glossarartig, von Textbausteinen mit Querbezügen begleitet, aufgebaut ist und stetig anwächst.

Der Bed Load Analyzer stellt einen SUSTAINICUM-Baustein dar, mit welchem flussbauliche Berechnungen durchgeführt werden können, deren Ergebnisse als Grundlage für die Beurteilung oder die Verbesserung des ökologischen Zustands von Gewässern, z.B. Sedimenthaushalt oder Habitatverhältnisse, herangezogen werden können. Außerdem können verschiedene spannende Themen und Ansätze des Wasserbaus kennengelernt werden.

Das Kooperationsprojekt wird vom Bundesministerium für Wissenschaft und Forschung² im Rahmen der Budgetoffensive 2011/12 für den Hochschulbereich gefördert.

B**MMF**ª

¹ www.boku.ac.at/sustainicum² www.bmwf.gv.at

Inhaltsverzeichnis

Ve	erze	eichr	nis de	er Abkürzungen	vii
	Fo	rmel	zeich	nen	vii
	Inc	lizes			viii
1	I	Einleitung			1
2	(Grur	ndsät	zlicher Berechnungsvorgang	3
3	I	Hydr	aulis	che Grundlagen	5
	3.1	L	Geo	metrie eines Flussquerprofils	6
	3.2	2	Fließ	Sformeln	6
		3.2.1	L	Fließformel nach Manning-Strickler	6
		3.2.2	2	Fließformel nach Chezy	7
		3.2.3	3	Fließformel nach Darcy-Weisbach	8
	3.3	3	Umr	echnung der Rauigkeiten	9
		3.3.1	L	Rauigkeitsansatz nach Strickler	9
		3.3.2	2	Rauigkeitsansatz nach Chezy	9
		3.3.3	3	Rauigkeitsansatz nach Manning	9
		3.3.4	ŀ	Rauigkeitsansatz nach Nikuradse	9
	3.4	ļ	Hyd	raulische Berechnung	11
		3.4.1	L	Fließformel nach Manning-Strickler für gegliederte Flussquerprofile	11
		3.4.2	2	Hydraulische Berechnung bei bekanntem Reibungsgefälle	12
		3.4.3	3	Hydraulische Berechnung bei bekanntem Wasserspiegel	12
	3.5	5	Bere	echnung der kritischen Abflusshöhe	13
	3.6	5	Bere	echnung der mittleren Energiehöhe	13
	3.7	7	Wei	tere hydraulische Kennwerte	13
	3	3.7.1	L	Sohlschubspannung	13
	3	3.7.2	2	Sohlschubspannungsgeschwindigkeit	. 14
		3.7.3	3	Froude-Zahl	14
	3.8	3	Auft	pereitung der hydraulischen Ergebnisse	15
4	9	Sedi	ment	tologische Grundlagen	17

4.1	Korr	ngrößenverteilung	. 17
4.1	1	Charakteristische Korndurchmesser	. 19
4.2	Hidi	ng-Exposure-Korrektur	. 19
4.3	Allge	emeine sedimentologische Kennwerte	. 21
4.3	3.1	Korn-Reynolds-Zahl	.21
4.3	.2	Dimensionsloser Korndurchmesser	. 21
4.3	.3	Sinkgeschwindigkeit	. 22
4.3	3.4	Rouse-Zahl	. 22
4.3	.5	Kornrauigkeit und Korrektur der Kornschubspannung	. 22
4.3	.6	Dimensionsloser Shields-Parameter (Korn-Froude-Zahl)	. 23
4.3	5.7	Kritischer Shields-Parameter	. 24
4.3	.8	Kritische Schubspannung	. 24
4.4	Sedi	menttransport nach Meyer-Peter und Müller	. 25
4.5	Sedi	menttransport nach Van Rijn	. 25
4.6	Sedi	menttransport nach Wu et al	. 26
4.7	Sedi	menttransport nach Engelund-Hansen	. 26
4.8	Sedi	menttransport nach Yang	. 27
4.8	3.1	Transportformel nach Yang für Sand mit $\mathrm{d}_k < 2~\mathrm{mm}$. 27
4.8	3.2	Transportformel nach Yang für Kies mit $\mathbf{d}_k \geq 2 \; \mathbf{mm}$. 28
4.9	Umr	rechnung zwischen Einheiten der Transportkapazität	. 28
Literatu	rverze	ichnis	. 29
Abbildu	ngsver	rzeichnis	.31
Tabeller	۲abellenverzeichnis		

Verzeichnis der Abkürzungen

Formelzeichen

Symbol	Einheit	Bedeutung
Α	m^2	Durchflossener Querschnitt
b	т	Breite in Wasserspiegellage
С	$m^{1/2}/s$	Proportionalitätsfaktor nach Chezy
C_t	ppm	Sedimentkonzentration
d	m	Korndurchmesser
D_*	_	Dimensionsloser Korndurchmesser
d_{10}, d_{50}, d_{90}	т	Korndurchmesser bei 10 %, 50 %, 90 % Siebdurchgang
d_m	m	Mittlerer Korndurchmesser
Ε	т	Energiehöhe
Fr	_	Froude-Zahl
g	m/s^2	Erdbeschleunigung
Κ	m^3/s	Transportvermögen
k _s	т	Äquivalente Sandrauigkeit nach Nikuradse
k _{st}	$m^{1/3}/s$	Rauigkeit nach Strickler
k'_{st}	$m^{1/3}/s$	Kornrauigkeit nach Strickler
$k_{st}^{\prime\prime}$	$m^{1/3}/s$	Formrauigkeit nach Strickler
m	_	Parameter zur Bestimmung des Hiding-Exposure-Faktors
Μ	_	Faktor zur Bestimmung des Sedimenttransports nach Yang
n	_	Parameter zur Bestimmung der Sinkgeschwindigkeit
n	$s/m^{1/3}$	Rauigkeit nach Manning
n'	$s/m^{1/3}$	Kornrauigkeit nach Manning
Ν	_	Faktor zur Bestimmung des Sedimenttransports nach Yang
Р	_	Siebdurchgang einer Korngruppe in Massenprozent
p_b	-	Fraktion einer Korngruppe in Massenprozent
p_e	_	Exposure-Faktor einer Korngruppe
p_h	_	Hiding-Faktor einer Korngruppe
Q	m^3/s	Abfluss
q_b	m^2/s	Sedimentkapazität in Volumen pro Einheitsbreite und Zeit
q_{b^*}	N/m/s	Sedimentkapazität in Masse pro Einheitsbreite und Zeit
Q_s	kg/s	Gesamt-Sedimentkapazität in Masse pro Zeit
$Q_{s,b}$	kg/s	Sedimentkapazität der Korngruppe in Masse pro Zeit
R	т	Hydraulischer Radius
Re	_	Reynolds-Zahl
Re _*	_	Korn-Reynolds-Zahl
S ₀	_	Sohlgefälle
S_f	_	Reibungsgefälle
S	_	Gefälle bei Normalabfluss
t	т	Wassertiefe

Т	_	Transport-stage-Parameter
U	т	Benetzter Umfang
u_*	m/s	Sohlschubspannungsgeschwindigkeit
ν	m/s	Fließgeschwindigkeit
v_c	m/s	Kritische Fließgeschwindigkeit für Bewegungsbeginn
W	т	Absolute Wasserspiegelhöhe
W	m/s	Wellenausbreitungsgeschwindigkeit
x	m	Horizontale Koordinate des Flussquerprofils
Ζ	т	Vertikale Absolut-Koordinate des Flussquerprofils
α	_	Energiekorrekturkoeffizient
α	_	Faktor für Sedimenttransport nach Meyer-Peter und Müller
γ_s	N/m^3	Spezifische Wichte des Sediments
γ_w	N/m^3	Spezifische Wichte des Wassers
Δ_e	т	Scheiteldifferenz
ζ	_	Rouse-Zahl
η	_	Hiding-Exposure-Faktor
θ	_	Shields-Parameter
θ_c	_	Kritischer Shields-Parameter
κ	_	Von Karman-Konstante
λ	_	Reibungsbeiwert nach Darcy-Weisbach
μ	_	Korrekturfaktor der Kornschubspannung
ν	m^2/s	Kinematische Viskosität des Wassers
$ ho_s$	kg/m ³	Dichte des Sediments
$ ho_w$	kg/m ³	Dichte des Wassers
au'	N/m^2	Kornschubspannung
au''	N/m^2	Formschubspannung
$ au_0$	N/m^2	Sohlschubspannung
$ au_{c,k}$	N/m^2	Kritische Schubspannung
ω_s	m/s	Sinkgeschwindigkeit

Indizes

left	Linkes Vorland, LVL
channel	Hauptgerinne, HG
right	Rechtes Vorland, RVL
total	Gesamtes Flussquerprofil
gr	Grenzzustand
i	Laufindex für Rauigkeitsbereiche
j	Benachbarte Korngruppe im Oberwasser
k	Korngruppe

1 Einleitung

In diesem Handbuch werden allgemeine Grundlagen sowie hydraulische und sedimentologische Berechnungsgrundlagen vorgestellt, die im Bed Load Analyzer zur Anwendung kommen.

In Kapitel 2 wird der grundsätzliche Vorgang einer Berechnung vorgestellt. Man erhält einen Überblick über die Arbeitsweise des Bed Load Analyzers sowie über den Berechnungsvorgang für mehrere Lastfälle.

Die im Berechnungsvorgang herangezogenen hydraulischen Grundlagen, d. h. die Flussquerschnittsgeometrie, die Fließformel nach Manning-Strickler, die Umrechnung verschiedener Rauigkeiten auf die Strickler-Rauigkeit, die Berechnung des Wasserspiegels und der kritischen Abflusshöhe, die Berechnung der Energielinienhöhe sowie die Berechnung allgemeiner hydraulischer Parameter werden in Kapitel 3 erläutert.

Über die sedimentologischen Grundlagen gibt Kapitel 4 einen Überblick. Dort werden die Sieblinie eines Sedimentgemisches, die Hiding-Exposure-Korrektur und allgemeine sedimentologische Kennwerte beschrieben, und anschließend auf die implementierten Transportformeln, welche im Bed Load Analyzer zur Anwendung kommen, eingegangen.

2 Grundsätzlicher Berechnungsvorgang

Zur Veranschaulichung zeigt Abbildung 1 einen Pseudocode mit dem grundsätzlichen Berechnungsvorgang. Soll eine sedimentologische Berechnung durchgeführt werden, so werden zunächst die Kornfraktionen aus der eingegebenen Korngrößenverteilung sowie die Hiding-Exposure-Faktoren der einzelnen Korngruppen ermittelt. Bei der sedimentologischen Berechnung einer Korngrößenverteilung werden zusätzlich charakteristische Korndurchmesser wie d_m , d_{10} , d_{50} und d_{90} ermittelt. In weiterer Folge wird eine Schleife über alle Lastfälle durchlaufen. In einem Schleifendurchgang, also für einen Lastfall, wird zunächst die kritische Abflusshöhe mittels eines iterativen Prozesses ermittelt. Dann wird je nach eingegebenen Randbedingungen (Wasserspiegel oder Reibungsgefälle bekannt) die eigentliche hydraulische Berechnung durchgeführt und anschließend die Ergebnisse aufbereitet. Bei der sedimentologischen Berechnung werden für jede Korngruppe allgemeine sedimentologische Kennwerte sowie die Transportkapazität mittels der gewählten Transportformeln und schließlich die Gesamttransportkapazität ermittelt.

Wenn sedimentologische Berechnung:
Berechne Kornfraktionen
Berechne Hiding-Exposure-Faktoren
Wenn Korngrößenverteilung:
Berechne charakteristische Korndurchmesser
Schleife über alle Lastfälle:
Berechne kritische Abflusshöhe
Wenn Wasserspiegel W bekannt:
Hydraulische Berechnung über W
Wenn Reibungsgefälle S bekannt:
Hydraulische Berechnung über S
Aufbereitung der hydraulischen Ergebnisse
Wenn sedimentologische Berechnung:
Schleife über alle Korngruppen:
Berechne allgemeine sedimentologische Kennwerte
Berechne Transportkapazitäten über Transportformeln

Abbildung 1: Pseudocode des Berechnungsvorganges

3 Hydraulische Grundlagen

Das Datenschema der hydraulischen Berechnung ist in Abbildung 2 dargestellt. Werte für die Dichte von Wasser, die Erdbeschleunigung und die Von Karman-Konstante sind fest vorgegebene Größen. Vom Benutzer einzugeben sind die Koordinaten des Flussquerprofils als x/z-Wertepaare, die Grenzen des Hauptgerinnes, die hydraulischen Lastfälle, der Rauigkeitsansatz und die Rauigkeiten für das linke Vorland, das Hauptgerinne und das rechte Vorland.

Hydraulische Berechnung					
Eingangsgrößen					
Feste Größen: Di Er Vo	ichte des Wassers, $\rho_w = 1000 \ kg/m^3$ rdbeschleunigung, $g = 9.81 \ m/s^2$ on Karman-Konstante, $\kappa = 0.40$				
Eingabe der Geometrie: Koordinaten, x_i/z_i Grenzen des Hauptgerinn	Eingabe hydraulischer Parameter: Lastfälle: • Wasserspiegel, W • Abfluss, Q • Reibungsgefälle, S Rauigkeit für drei Bereiche nach: • Strickler, k _{st} • Chezy, C • Mikuradse, k _s				
Berechnungsvorgang					
★ Ergebnisse Grafiken, Tabelle, Protokoll					

Abbildung 2: Datenschema der hydraulischen Berechnung

Nach durchgeführter Berechnung stehen Ergebnisse in Form von Grafiken, einer Ergebnistabelle und einem Ergebnisprotokoll zur Verfügung. Die Ergebnisse der hydraulischen Berechnung dienen als Grundlage für die eventuell durchzuführende sedimentologische Berechnung.

3.1 Geometrie eines Flussquerprofils

Bei der Querprofilgeometrie handelt es sich um gegliederte Querschnitte, welche in die drei Rauigkeitsbereiche

- Linkes Vorland, LVL
- Hauptgerinne, HG
- Rechtes Vorland, RVL

unterteilt sind. Abbildung 3 zeigt schematisch ein Flussquerprofil mit den wichtigsten Parametern.

Abbildung 3: Gegliedertes Flussquerprofil

Die hydraulische Berechnung erfolgt unter Berücksichtigung der verschiedenen Rauigkeiten dieser drei Bereiche. Wenn möglich, werden auch Kennwerte bezogen auf den Gesamtquerschnitt (z. B. die Energielinienhöhe) ermittelt. Die sedimentologische Berechnung bezieht sich auf den sedimentführenden Bereich des Flussquerprofils, also auf das Hauptgerinne.

3.2 Fließformeln

Eine Fließformel beschreibt den Zusammenhang zwischen der Fließgeschwindigkeit, den geometrischen Bedingungen und dem Reibungsgefälle. Es existiert eine Vielzahl verschiedener empirischer Fließformeln. Die bedeutendsten sind jedoch die Fließformeln nach:

- Manning-Strickler
- Darcy-Weisbach
- Chezy

3.2.1 Fließformel nach Manning-Strickler

Die Fließformel nach Manning-Strickler³, benannt nach dem irischen Ingenieur Robert Manning (1816-1897) und dem schweizer Wasserbauer Albert Strickler (1887-1963), ist ein empirischer Ansatz, der sich durch eine Vielzahl von Feldmessungen bewährt hat:

³ Die Formel nach Manning-Strickler wird oft auch als Gauckler-Manning-Strickler-Formel bezeichnet. 6

$$v = k_{st} R^{2/3} S^{1/2}$$
 (1)

Der Strickler-Beiwert bzw. Manning's n (Kehrwert des Strickler-Beiwertes) hat den Vorteil, dass das Gerinne mit einem einzigen konstanten Wert beschrieben werden kann. Die Rauigkeit ist also unabhängig von der durchflussabhängigen Wassertiefe. Diese Tatsache bringt mit sich, dass der Ansatz nach Manning-Strickler auf den hydraulisch rauen Bereich limitiert ist, was allerdings in der Praxis meist der Fall ist.

Für die hydraulische Berechnung im Bed Load Analyzer wird unabhängig vom gewählten Rauigkeitsansatz die Fließformel nach Manning-Strickler herangezogen. Deshalb werden nachfolgend die wichtigsten geometrischen und hydraulischen Beziehungen erläutert.

Der hydraulische Radius R ergibt sich als Verhältnis zwischen dem durchflossenen Profilquerschnitt A und dem benetzten Umfang U:

$$R = \frac{A}{U}$$
(2)

Mit der Kontinuitätsgleichung

$$Q = v A \tag{3}$$

und dem Zusammenhang zwischen Abfluss Q und dem Reibungsgefälle S

$$Q = K\sqrt{S} \tag{4}$$

sowie der Fließformel nach Manning-Strickler nach Gl. (1) kann das hydraulische Transportvermögen K in Abhängigkeit der Rauigkeit k_{st} und der Geometrie (gegeben durch den hydraulischen Radius R und dem durchflossenen Profilquerschnitt A) hergeleitet werden:

$$K = k_{st} R^{2/3} A \tag{5}$$

Dieser Zusammenhang wird in Abschnitt 3.4.1 bei der hydraulischen Berechnung für gegliederte Flussquerprofile zur Anwendung kommen.

3.2.2 Fließformel nach Chezy

Antoine Chezy (1718-1798) war ein französischer Hydrauliker und entwickelte zusammen mit Albert Brahms (1692-1758) die nach ihm benannte Fließformel nach Chezy:

$$v = C R^{1/2} S^{1/2} \tag{6}$$

Dabei ist der Proportionalitätsfaktor C ein konstanter Wert in der Einheit $m^{1/2}/s$ und wird auch Chezy-Koeffizient genannt. Diese Fließformel ist von historischer Bedeutung und ist die Grundform der heutzutage hauptsächlich verwendeten Fließformel nach Manning-Strickler.

3.2.3 Fließformel nach Darcy-Weisbach

Die Fließformel nach Darcy-Weisbach wurde vom französischen Hydrauliker Henry Darcy (1803-1858) und dem deutschen Maschinenbauingenieur Julius Weisbach (1806-1871) entwickelt. Diese Fließformel kommt eigentlich aus der Rohrhydraulik, lässt sich aber mit Hilfe des hydraulischen Radius auch auf offene Gerinne näherungsweise anwenden:

$$v = \sqrt{\frac{8 g}{\lambda}} R^{1/2} S^{1/2}$$
⁽⁷⁾

Der Reibungsbeiwert λ ist abhängig von der Reynolds-Zahl Re und der äquivalenten Sandrauigkeit k_s nach Nikuradse und wird im Moody-Diagramm (Abbildung 4) dargestellt. Relevant für offene Gerinne ist der hydraulisch raue Bereich, in dem der Reibungsbeiwert mit der Formel nach Colebrook-White definiert ist:

$$\frac{1}{\sqrt{\lambda}} = 2.0 \log \left(\frac{3.71 \cdot 4 R}{k_s}\right) \tag{8}$$

Zu beachten ist, dass sich der Reibungsbeiwert λ mit der Wassertiefe ändert, also nicht konstant ist.

Abbildung 4: Moody-Diagramm (Jirka & Lang, 2009)

3.3 Umrechnung der Rauigkeiten

Die hydraulische Berechnung erfolgt mit der Fließformel nach Manning-Strickler laut Gl. (1), welche die Strickler-Rauigkeit verlangt. Wird ein von der Strickler-Rauigkeit abweichender Rauigkeitsansatz gewählt, wird die Rauigkeit von dem gewählten Rauigkeitsansatz in die Strickler-Rauigkeit umgerechnet.

3.3.1 Rauigkeitsansatz nach Strickler

In Tabelle 1 sind übliche Strickler-Beiwerte für offene Gerinne zusammengefasst, wobei das Hauptaugenmerk auf die Beiwerte von natürlichen Wasserläufen gelegt werden soll. Die in den Bed Load Analyzer eingegebenen Strickler-Beiwerte werden ohne Umrechnung direkt übernommen.

3.3.2 Rauigkeitsansatz nach Chezy

Die Umrechnung vom Chezy-Koeffizienten C in die Strickler-Rauigkeit erfolgt mit folgendem Zusammenhang:

$$k_{st} = C R^{-1/6}$$
 (9)

3.3.3 Rauigkeitsansatz nach Manning

Die Rauigkeit nach Manning (Manning's n) ist der Kehrwert der Strickler-Rauigkeit:

$$k_{st} = \frac{1}{n} \tag{10}$$

3.3.4 Rauigkeitsansatz nach Nikuradse

Die äquivalente Sandrauigkeit k_s nach Nikuradse wird folgendermaßen in die Strickler-Rauigkeit umgerechnet:

$$k_{st} = 2\sqrt{8 g} \log\left(\frac{3.71 \cdot 4 R}{k_s}\right) R^{-1/6}$$
(11)

Der Zusammenhang bezieht sich auf die Formel nach Colebrook-White für den hydraulisch rauen Bereich. Werte für die äquivalente Sandrauigkeit k_s sind in Tabelle 2 zusammenfassend dargestellt.

Erdkanäle	$k_{st}\left[m^{1/3}/s\right]$
Erdkanäle in festem Material, glatt	60
Erdkanäle in festem Sand mit etwas Ton oder Schotter	50
Erdkanäle mit Sohle aus Sand und Kies, gepflasterte Böschungen	45-50
Erdkanäle aus Feinkies, etwa 10/20/30 mm	45
Erdkanäle aus mittlerem Kies, etwa 20/40/60 mm	40
Erdkanäle aus Grobkies, etwa 50/100/150 mm	35
Erdkanäle aus scholligem Lehm	30
Erdkanäle, mit groben Steinen angelegt	25-30
Erdkanäle aus Sand, Lehm oder Kies, stark bewachsen	20-25
Felskanäle	$k_{st}\left[m^{1/3}/s\right]$
Mittelgrober Felsausbruch	25-30
Felsausbruch bei sorgfältiger Sprengung	20-25
Sehr grober Felsausbruch, große Unregelmäßigkeiten	15-20
Gemauerte Kanäle	$k_{st}\left[m^{1/3}/s\right]$
Kanäle aus Ziegelmauerwerk, auch Klinker, gut gefugt	80
Bruchsteinmauerwerk	70-80
Kanäle aus Mauerwerk (normal)	60
Normales (gutes) Bruchsteinmauerwerk, behauene Steine	60
Grobes Bruchsteinmauerwerk, Steine nur grob behauen	50
Bruchsteinwände mit Sohle aus Sand und Kies	45-50
Betonkanäle	$k_{st}\left[m^{1/3}/s\right]$
Zementglattstrich	100
Beton bei Verwendung von Stahlschalung	90-100
Glattverputz	90-95
Beton geglättet	90
Gute Verschalung, glatter unversehrter Zementputz, glatter Beton	80-90
Beton bei Verwendung von Holzschalung, ohne Verputz	65-70
Stampfbeton mit glatter Oberfläche	60-65
Alter Beton, unebene Flächen	60
Betonschalen mit 150-200 kg Zement je m ³ , je nach Zustand	50-60
Grobe Betonauskleidung	55
Ungleichmäßige Betonflächen	50
Natürliche Wasserläufe	$k_{st}\left[m^{1/3}/s\right]$
Natürliche Flussbetten mit fester Sohle, ohne Unregelmäßigkeiten	40
Natürliche Flussbetten mit mäßigem Geschiebe	33-35
Natürliche Flussbetten, verkrautet	30-35
Natürliche Flussbetten mit Geröll und Unregelmäßigkeiten	30
Natürliche Flussbetten, stark geschiebeführend	28
Wildbäche mit grobem Geröll, bei ruhendem Geschiebe	25-28
Wildbäche mit grobem Geröll, bei sich bewegendem Geschiebe	19-22

Tabelle 1: Strickler-Beiwert k_{st} für verschiedene Gerinnetypen (Naudascher, 1992)

Ebene Fließgewässersohle aus	k _s [mm]
Sand oder Kies	d_{90}
Grobkies bis Schotter	60-200
Schwere Steinschüttung	200-300
Sohlenpflasterung	30-50
(Grenzbedingung für Einzelrauigkeiten: k _s ≤ 0.45 R)	
Vorländer und Böschungen mit	k _s [mm]
Ackerboden	20-250
Ackerboden mit Kulturen	250-800
Waldboden	160-320
Rasen	60
Steinschüttung 80/450 mm mit Gras überwachsen	300
Gras	100-350
Gras und Stauden	130-400
Rasengittersteine	15-30
Wände aus	k _s [mm]
Ziegelmauerwerk	2-8
Beton glatt	1-6
Beton rau	6-20
Bruchstein	15-20
raue Natursteinmauer	80-100
Stahlspundwand je nach Profiltiefe	20-100

Tabelle 2: Äquivalente Sandrauigkeiten k_s für verschiedene Gerinnetypen (DVWK, 1991)

3.4 Hydraulische Berechnung

Die hydraulische Berechnung erfolgt für gleichförmig-stationären Abfluss (Normalabfluss). Dabei ist das Reibungsgefälle S_f parallel zum Sohlgefälle S_0 . In weiterer Folge wird nicht mehr zwischen Reibungs- und Sohlgefälle unterschieden, das Gefälle wird allgemein mit S bezeichnet.

3.4.1 Fließformel nach Manning-Strickler für gegliederte Flussquerprofile

Für ein gegliedertes Flussquerprofil mit drei Rauigkeitsbereichen ergeben sich mit der Fließformel nach Manning-Strickler folgende hydraulische Transportvermögen:

$$K_{left} = k_{st,left} R_{left}^{2/3} A_{left}$$
(12a)

$$K_{channel} = k_{st,channel} R_{channel}^{2/3} A_{channel}$$
(12b)

$$K_{right} = k_{st,right} R_{right}^{2/3} A_{right}$$
(12c)

Das hydraulische Transportvermögen des gesamten Flussquerprofils K_{total} ergibt sich aus der Summe der Transportvermögen der drei Rauigkeitsbereiche:

$$K_{total} = \sum K_i = K_{left} + K_{channel} + K_{right}$$
(13)

Aus dem hydraulischen Transportvermögen des gesamten Flussquerprofils K_{total} kann nun der Abfluss des Gesamtprofils Q_{total} nach Gl. (14) errechnet werden. Dabei wird angenommen, dass die drei Rauigkeitsbereiche das gleiche Reibungsgefälle aufweisen.

$$Q_{total} = K_{total} \sqrt{S} \tag{14}$$

Somit ist der förderbare Abfluss des gesamten Flussquerprofils bekannt. Durch Anwenden von Gl. (4) können die Abflüsse der einzelnen Rauigkeitsbereiche ermittelt werden. In weiterer Folge können weitere hydraulische Kennwerte, wie z. B. die Energiehöhe oder die Froude-Zahl, berechnet werden.

3.4.2 Hydraulische Berechnung bei bekanntem Reibungsgefälle

Bei der Berechnung des Wasserspiegels für Normalabfluss bei bekanntem Reibungsgefälle handelt es sich um einen iterativen Prozess. Die Iteration erfolgt mit dem Verfahren nach Newton-Raphson, mit welchem aufgrund des quadratischen Konvergenzverhaltens nur wenige Iterationsschritte erforderlich sind, um das Berechnungsergebnis in ausreichender Genauigkeit zu erreichen. Ausgehend vom tiefsten Profilpunkt als Ausgangswasserspiegel werden in einem Iterationsschritt zunächst die Transportvermögen K_i für die einzelnen Rauigkeitsbereiche nach Gl. (12a) bis (12c) berechnet. Durch Summation der Transportvermögen nach Gl. (13) ergibt sich das Gesamttransportvermögen K_{total} , womit zusammen mit dem Reibungsgefälle S die Gesamtwassermenge Q_{total} nach Gl. (14) und somit ein neuer Wasserspiegel berechnet werden. Das Newton-Raphson-Verfahren wird abgebrochen, wenn ein vordefiniertes Abbruchkriterium in Form einer Abflussdifferenz zwischen berechnetem und eingegebenem Abfluss unterschritten wird.

3.4.3 Hydraulische Berechnung bei bekanntem Wasserspiegel

Bei bekanntem Wasserspiegel ist keine Iteration erforderlich. Die geometrischen Größen A_i , U_i und R_i können direkt ermittelt werden. Daraus können die Transportvermögen K_i nach Gl. (12a) bis (12c) errechnet werden. Durch Summation der Transportvermögen erhält man das Transportvermögen des Gesamtquerprofils K_{total} , mit welchem man gemeinsam mit dem Gesamtabfluss Q_{total} das Reibungsgefälle S nach Gl. (14) berechnen kann. Nun sind alle Werte bekannt und es können weitere Strömungskennwerte des Querprofils ausgewertet werden.

3.5 Berechnung der kritischen Abflusshöhe

Die kritische Abflusstiefe wird mittels eines iterativen Prozesses berechnet. Der iterative Prozess ist eine gewöhnliche Schleife, bei welcher in jedem Schleifendurchgang der Wasserspiegel vom tiefsten Profilpunkt ausgehend um einen vordefinierten Wert von 0.001 *m* erhöht wird. Zu jedem dieser Wasserspiegel wird die Froude-Zahl berechnet. Erreicht die Froude-Zahl den Wert Eins, so wird der Schleifendurchgang abgebrochen und der zuletzt iterierte Wasserspiegel der kritischen Abflusshöhe zugewiesen.

3.6 Berechnung der mittleren Energiehöhe

Die mittlere kinetische Energiehöhe des Gesamtquerprofils wird als abflussgewichtete Energie der drei Rauigkeitsbereiche über den Energiekorrekturkoeffizienten α nach Gl. (15) berechnet. Die Berechnung des Koeffizienten basiert auf der Gewichtung der Abflüsse Q_i bzw. der Transportvermögen K_i der drei Rauigkeitsbereiche.

$$\alpha = \frac{\sum Q_i v_i^2}{Q_{total} v_{total}^2} = \frac{A_{total} \sum K_i^3 / A_i^2}{K_{total}^3}$$
(15)

Dabei ist v_{total} die mittlere Fließgeschwindigkeit des gesamten Querprofils und kann mit der Kontinuitätsgleichung nach Gl. (3) berechnet werden. Die mittlere Energiehöhe des Gesamtquerprofils ergibt sich nach Gleichung (16) aus dem Wasserspiegel addiert mit der um den Energiekorrekturkoeffizienten α gewichteten kinetischen Energiehöhe des Gesamtquerprofils.

$$E = W + \alpha \, \frac{v_{total}^2}{2 \, g} \tag{16}$$

3.7 Weitere hydraulische Kennwerte

3.7.1 Sohlschubspannung

Eine gleichförmige Gerinneströmung ist durch das Kräftegleichgewicht zwischen der Gewichtskomponente in Fließrichtung und der Schubspannungskraft an der Sohle gegeben. Aus diesem Gleichgewicht kann man die Schubspannung an der Sohle ableiten und ergibt sich zu:

$$\tau_0 = \rho_w \, g \, R_{channel} \, S \tag{17}$$

3.7.2 Sohlschubspannungsgeschwindigkeit

Die Sohlschubspannungsgeschwindigkeit ist von der Sohlschubspannung abhängig und errechnet sich aus:

$$u_* = \sqrt{\frac{\tau_0}{\rho_w}} \tag{18}$$

3.7.3 Froude-Zahl

Die Froude-Zahl Fr ist das Verhältnis zwischen der Fließgeschwindigkeit v und der Wellenausbreitungsgeschwindigkeit w:

$$Fr = \frac{v}{w}$$
(19)

Dabei ist die Wellenausbreitungsgeschwindigkeit näherungsweise gegeben durch:

$$w \approx \sqrt{g t}$$
 (20)

Hier ist t die mittlere Abflusstiefe des jeweiligen Rauigkeitsbereichs und errechnet sich aus dem Verhältnis zwischen dem durchflossenen Profilquerschnitt A und der Breite in Wasserspiegellage b:

$$t = \frac{A}{b} \tag{21}$$

Die Froude-Zahl Fr ermöglicht eine Aussage darüber, in welchem Fließzustand sich das Gewässer befindet (Tabelle 3).

	Schießen	Grenzzustand	Strömen
Fr	> 1	= 1	< 1
ν	$> v_{gr}$	$= v_{gr}$	$< v_{gr}$
t	$< t_{gr}$	$= t_{gr}$	$> t_{gr}$

Im Grenzzustand, also wenn die Abflusstiefe t gleich der kritischen Abflusstiefe t_{gr} ist und die Fließgeschwindigkeit v gleich der kritischen Fließgeschwindigkeit v_{gr} ist, gilt Fr = 1. Der Grenzzustand ist durch den Extremwert der Energiekurve (Abbildung 5) definiert.

Abbildung 5: Energiekurve

3.8 Aufbereitung der hydraulischen Ergebnisse

Nach abgeschlossener hydraulischer Berechnung wird der Wasserspiegel bzw. die Abflusstiefe in 20 Inkremente gleicher Schrittweite geteilt. Für jedes Wasserspiegelinkrement wird ähnlich wie in Abschnitt 3.4.3 eine Berechnung bei bekanntem Wasserspiegel durchgeführt und die wichtigsten Ergebnisse gespeichert. Am Ende der Berechnung stehen hydraulische Kennwerte für 20 Wasserspiegellagen zur Verfügung, welche die Datenreihen des Pegelschlüssels darstellen.

4 Sedimentologische Grundlagen

Die sedimentologische Berechnung beinhaltet die Auswertung allgemeiner sedimentologischer Kennwerte sowie die Ermittlung der Geschiebemenge im Hauptgerinne über ausgewählte Sedimenttransportformeln. Als Eingangsgrößen dienen die Ergebnisse der hydraulischen Berechnung sowie Eigenschaften des Sediments wie Dichte und die Korngrößenverteilung (Abbildung 7).

4.1 Korngrößenverteilung

Die Berechnung des Geschiebetransports kann für einen charakteristischen Korndurchmesser oder für alle Durchmesser einer Korngrößenverteilung durchgeführt werden. Bei der Berechnung für einen charakteristischen Korndurchmesser wird eine Sedimenttransportformel (Abschnitte 4.4 bis 4.8) herangezogen und man erhält direkt die Sedimentkapazität für diesen Korndurchmesser. Will man hingegen die Sedimentkapazität einer Korngrößenverteilung ermitteln, muss für jede einzelne Korngruppe eine Sedimenttransportformel angewendet werden und die Gesamtkapazität aufsummiert werden.

Abbildung 6: Korngrößenverteilung

Abbildung 6 zeigt eine Korngrößenverteilung für Sand/Kies. Dabei ist der Siebdurchgang P_k in Massenprozent gegenüber dem Korndurchmesser d_k aufgetragen. Aus dieser Kurve erhält man für jeden Korndurchmesser die zugehörige Kornfraktion $p_{b,k}$ in Massenprozent:

$$p_{b,k} = P_{k-1} - P_k \tag{22}$$

Berechnung der Sedimenttransportkapazität					
Eingangsgrößen					
Ergebnisse der hydraulischen BerechnWasserspiegel, WKritische AbflusshöheEnergiehöhe, EReibungsgefälle, SStrickler-Rauigkeit, k_{st} Durchflossener Profilquerschnitt, ABenetzter Umfang, UHydraulischer Radius, RHydraulisches Transportvermögen, KAbfluss, QBreite in Wasserspiegellage, bMittlere Fließgeschwindigkeit, v Maximale AbflusstiefeEnergiekorrekturkoeffizient, α Mittlere Abflusstiefe, tSohlschubspannung, τ_0 Sohlschubspannung, τ_0 Sohlschubspannungsgeschwindigkeit, r	wahl der Se • Mey (Me • Wu (Wu • Wu (Wu • Van (Var • Eng (Eng • Yan (Yar Eingabe der Dichte des S Kinematisch Korndurchn bei Korngrö Hiding-Ex Korndurch	 Wahl der Sedimenttransportformel: Meyer-Peter Müller (Meyer-Peter & Müller, 1948) Wu et al (Wu, Wang, & Jia, 2000b) Van Rijn (Van Rijn, 1984a) Engelund-Hansen (Engelund & Hansen, 1967) Yang (Yang, 1973, 1979, 1984) Eingabe der Sedimentparameter: Dichte des Sediments, <i>ρ_s</i> Kinematische Viskosität des Wassers, <i>ν</i> Korrektur der Kornrauigkeit, Ein/Aus Korndurchmesser <i>d</i> oder Korngrößenverteilung bei Korngrößenverteilung: Hiding-Exposure-Korrektur, Ein/Aus Korndurchmesser, <i>d_k</i> Siebdurchgang, <i>P_k</i> 			
	•				
	Berechnungsvorgang				
ErgebnisseKornfraktion, $p_{b,k}$ Korn-Reynolds-Zahl, Re_* Hiding-Faktor, $p_{h,k}$ Sinkgeschwindigkeit, ω_s Exposure-Faktor, $p_{e,k}$ Rouse-Zahl, ζ					
Geschiebetransportformeln	Gesamtfeststofftransportformeln				
Meyer-Peter Müller, Wu et al, Van RijnKritischer Shields-Parameter, θ_c Shields-Parameter, θ Kritische Schubspannung, τ_c Kornschubspannung, τ' Transportkapazität, Q_s	Engelund-Hansen Shields-Parameter, θ Sohlschubspannung, τ_0 Transportkapazität, Q_s	Yang Kritische Fließgeschwindigkeit, v_c Fließgeschwindigkeit, v Sedimentkonzentration, C_t Transportkapazität, Q_s			

Abbildung 7: Datenschema der sedimentologischen Berechnung

Die über eine Sedimenttransportformel ermittelte Sedimentkapazität $Q_{s,k}$ für eine Korngruppe wird mit der zugehörigen Kornfraktion $p_{b,k}$ multipliziert:

$$Q_{s,b} = Q_{s,k} p_{b,k} \tag{23}$$

Die gesamte Sedimentkapazität Q_s ergibt sich aus der Summe der einzelnen Sedimentkapazitäten der Kornfraktionen $Q_{s,b}$:

$$Q_s = \sum Q_{s,b} \tag{24}$$

4.1.1 Charakteristische Korndurchmesser

Aus der Korngrößenverteilung lassen sich charakteristische Korndurchmesser herauslesen bzw. ableiten. Der charakteristische Korndurchmesser d_{10} ist jener Durchmesser bei 10 % Siebdurchgang. Dies gilt sinngemäß gleich für die charakteristischen Korndurchmesser d_{50} und d_{90} . Ein weiterer charakteristischer Korndurchmesser ist der "effektive Korndurchmesser" d_m (Meyer-Peter & Müller, 1948), welcher der arithmetische Mittelwert aller Korngrößen ist und wie folgt definiert ist:

$$d_m = \frac{\sum d_k \, p_{b,k}}{\sum p_{b,k}} \tag{25}$$

4.2 Hiding-Exposure-Korrektur

Die Tatsache, dass größere Körner eher der Strömung ausgesetzt sind als kleinere, wird mit der Methode nach Wu berücksichtigt (Wu, Wang, & Jia, 2000b).

Betrachtet man ein Gemenge von kugelförmigen Sedimentkörnern mit verschiedenen Durchmessern, hängen die Abhebe- und Schleppkräfte eines Sedimentkornes davon ab, wie es an der Sohle gelagert ist, d. h. ob es von anderen Körnern verdeckt ist oder der Strömung ausgesetzt ist. Die Position eines Kornes d_k kann durch den Höhenunterschied Δ_e (Abbildung 8) zwischen dem eigenen Scheitel und dem Scheitel des benachbarten Kornes d_j im Oberwasser beschrieben werden. Ist $\Delta_e > 0$, ist das Korn d_k exponiert, bei $\Delta_e < 0$ ist es verdeckt. Die Scheiteldifferenz Δ_e kann einen Wert zwischen $-d_j$ und d_k annehmen. Da die Körner zufällig an der Sohle verteilt sind, ist die Scheiteldifferenz eine Zufallsvariable, für die eine gleichmäßige Wahrscheinlichkeitsverteilung angenommen wird.

Abbildung 8: Definition der Scheiteldifferenz Δ_e

Es wird vorausgesetzt, dass die Wahrscheinlichkeit eines Kornes d_j vor einem Korn d_k zu bleiben, der Kornfraktion $p_{b,j}$ entspricht. Daraus lassen sich die Wahrscheinlichkeiten der Exposition der Körner d_k gegenüber der Körner d_j folgend beschreiben:

$$p_{hk,j} = p_{b,j} \frac{d_j}{d_k + d_j} \tag{26a}$$

$$p_{ek,j} = p_{b,j} \frac{d_k}{d_k + d_j}$$
(26b)

Die gesamten Hiding- und Exposure-Wahrscheinlichkeiten p_{hk} und p_{ek} eines Kornes d_k erhält man durch Aufsummierung über alle Korngruppen:

$$p_{hk} = \sum_{j=1}^{N} p_{b,j} \frac{d_j}{d_k + d_j}$$
(27a)

$$p_{ek} = \sum_{j=1}^{N} p_{b,j} \frac{d_k}{d_k + d_j}$$
(27b)

Dabei ist N die Gesamtanzahl der Korngruppen. Es gilt die Beziehung $p_{hk} + p_{ek} = 1$. Für einheitliche Körner ist $p_{hk} = p_{ek} = 0.5$. In einem ungleichkörnigen Sedimentgemisch gilt $p_{ek} \ge p_{hk}$ für grobe Körner und $p_{ek} \le p_{hk}$ für feine Körner. Aus den Hiding- und Exposure-Wahrscheinlichkeiten p_{hk} und p_{ek} ergibt sich der Hiding-Exposure-Faktor zu

$$\eta_k = \left(\frac{p_{ek}}{p_{hk}}\right)^{-m} \tag{28}$$

wobei m ein empirischer Parameter ist und sich aus Labor- und Feldversuchen zu m = -0.6 ergeben hat (Wu, Wang, & Jia, 2000b).

Beispielhaft werden für die Korngrößen $d_4 = 8 mm$ und $d_7 = 1 mm$ aus der Korngrößenverteilung in Abbildung 6 die Hiding- und Exposure-Faktoren berechnet (Tabelle 4). Die Faktoren $p_{h4,j}$ und $p_{h7,j}$ werden mit Gl. (26a), die Faktoren $p_{e4,j}$ und p_{e7} , j mit Gl. (26b) berechnet. Schließlich werden die Einzelfaktoren mit Gl. (27a) und (27b) ermittelt.

k	$d_k [mm]$	P _k [%]	p _{b,k} [%]	$p_{h4,j}$	$p_{e4,j}$	р _{h7,j}	$p_{e7,j}$
1	64	99.0	1.0	0.009	0.001	0.010	0.000
2	32	97.0	2.0	0.016	0.004	0.019	0.001
3	16	90.0	7.0	0.047	0.023	0.066	0.004
4	8	70.0	20.0	0.100	0.100	0.178	0.022
5	4	42.0	28.0	0.093	0.187	0.224	0.056
6	2	27.0	15.0	0.030	0.120	0.100	0.050
7	1	18.0	9.0	0.010	0.080	0.045	0.045
8	0.5	11.0	7.0	0.004	0.066	0.023	0.047
9	0.25	6.0	5.0	0.002	0.048	0.010	0.040
10	0.125	2.0	4.0	0.001	0.039	0.004	0.036
11	0.063	0.0	2.0	0.000	0.020	0.001	0.019
				p_{h4}	p_{e4}	p_{h7}	p_{e7}
Σ			100	0.311	0.689	0.681	0.319

Tabelle 4: Berechnung von Hiding-Exposure-Faktoren

Auch hier zeigt sich, dass bei groben Körnern ($d_4 = 8 mm$) der Exposure-Faktor größer ist als der Hiding-Faktor ($p_{e4} = 0.689 \ge p_{h4} = 0.311$), und bei feineren Körnern ($d_7 = 1 mm$) der Exposure-Faktor kleiner ist ($p_{e7} = 0.319 \le p_{h7} = 0.681$). Die Beziehungen $p_{e4} + p_{h4} = 0.689 + 0.311 = 1$ und $p_{e7} + p_{h7} = 0.319 + 0.681 = 1$ werden erfüllt.

4.3 Allgemeine sedimentologische Kennwerte

Unabhängig von der gewählten Sedimenttransportformel werden zunächst allgemeine sedimentologische Kennwerte ermittelt. Diese werden folgend erläutert.

4.3.1 Korn-Reynolds-Zahl

Die Korn-Reynolds-Zahl *Re*_{*} gibt im Zusammenhang mit der Korn-Froude-Zahl (Shields-Parameter, siehe Abschnitt 4.3.6) Aussagen über den Beginn der Sedimentbewegung und ist definiert durch:

$$Re_* = \frac{u_* d_k}{v} \tag{29}$$

4.3.2 Dimensionsloser Korndurchmesser

Oft wird im Shields-Diagramm (Abbildung 9) der dimensionslose Korndurchmesser D_* anstatt der Korn-Reynolds-Zahl Re_* aufgetragen, um das Diagramm einfacher handhaben zu können:

$$D_* = d_k \left[\left(\frac{\rho_s}{\rho_w} - 1 \right) \frac{g}{\nu^2} \right]^{1/3}$$
(30)

Der kritische Shields-Parameter θ_c (siehe Abschnitt 4.3.7) hängt vom dimensionslosen Korndurchmesser ab.

4.3.3 Sinkgeschwindigkeit

Die Sinkgeschwindigkeit des Sedimentpartikels errechnet sich mit den Koeffizienten N = 0.98, M = 33.9 und n = 1.33 für natürlich geformte Sedimentpartikel mit dem Corey-Formfaktor von 0.7 zu (Wu & Wang, 2006):

$$\omega_{s} = \frac{M \nu}{N d_{k}} \left[\sqrt{\frac{1}{4} + \left(\frac{4 N}{3 M^{2}} D_{*}^{3}\right)^{1/n}} - \frac{1}{2} \right]^{n}$$
(31)

4.3.4 Rouse-Zahl

Die Rouse-Zahl ζ ist das Verhältnis zwischen Sinkgeschwindigkeit ω_s und Sohlschubspannungsgeschwindigkeit u_* und ist ein Maß für die Art der Sedimentbewegung:

$$\zeta = \frac{\omega_s}{\kappa \, u_*} \tag{32}$$

Dabei ist κ die Von Karman-Konstante und wird mit einem Wert von 0.40 (hängt vom logarithmischen Geschwindigkeitsprofil ab) eingesetzt. Man kann die Rouse-Zahl ζ auch als Relation zwischen der Sinkkraft und der Stärke der Turbulenz, die auf das schwebende Partikel wirkt, betrachten. Dieser Kennwert gibt eine Abschätzung, ob das Sediment tendenziell als Geschiebe oder als Schwebstoff bzw. als Kombination aus beiden transportiert wird. Tabelle 5 zeigt Bereiche der Rouse-Zahl ζ mit der zugehörigen Tendenz des Sedimenttransports (Whipple, 2004).

Tabelle 5: Bereiche	der Rouse-Zahl	(Whipple, 2004)
---------------------	----------------	-----------------

Bereich der Rouse-Zahl	Art der Bewegung
≥ 2.5	Geschiebetransport
$1.2 \leq \zeta < 2.5$	50 % gemischter Transport
$0.8 \le \zeta < 1.2$	100 % gemischter Transport
< 0.8	Schwebstofftransport

4.3.5 Kornrauigkeit und Korrektur der Kornschubspannung

Für Flusssohlen mit Sandsedimenten und Sohlformen (alluviale Flussbette) wird zwischen der Kornrauigkeit k'_{st} und der Formrauigkeit k''_{st} bzw. zwischen Kornschubspannung τ' und Formschubspannung τ'' unterschieden. Für sandige Flussbette ist für den lokalen Sedimenttransport nur die Kornschubspannung τ' wirksam. Aus der hydraulischen Sohlrauigkeit k_{st} kann die vom Korndurchmesser d_{50} abhängige Kornrauigkeit k'_{st} berechnet werden (Wu, Wang, & Jia, 2000b), wobei im Bed Load Analyzer anstatt d_{50} der Korndurchmesser d_k herangezogen wird:

$$k_{st}' = \frac{20}{(d_{50})^{1/6}} \tag{33}$$

Anzumerken ist, dass es verschiedene Methoden gibt, die Kornrauigkeit k'_{st} zu berechnen. Ein anderer Ansatz, der im Bed Load Analyzer aber nicht verwendet wird, wäre (Meyer-Peter & Müller, 1948):

$$k_{st}' = \frac{26}{(d_{90})^{1/6}} \tag{34}$$

Mit der Kornrauigkeit k'_{st} aus Gl. (33) kann nun der Korrekturfaktor μ der Kornschubspannung bestimmt werden (Meyer-Peter & Müller, 1948):

$$\mu = \left(\frac{k_{st}}{k'_{st}}\right)^{3/2} = \left(\frac{n'}{n}\right)^{3/2} \tag{35}$$

Für die Berechnung der Kornschubspannung τ' wird die aus der hydraulischen Berechnung ermittelte Sohlschubspannung τ_0 mit dem Korrekturfaktor μ korrigiert:

$$\tau' = \mu \tau_0 = \mu \rho_w g R S \tag{36}$$

Die dargestellte Korrektur der Kornschubspannung kann für die Geschiebetransportformeln nach Meyer-Peter Müller und Van Rijn angewendet werden. In der Geschiebetransportformel nach Wu et al ist diese Korrektur fest implementiert.

4.3.6 Dimensionsloser Shields-Parameter (Korn-Froude-Zahl)

Der Nachweis der Sohlstabilität nach Shields basiert auf dem Konzept der kritischen Schleppspannungen (Shields, 1936). Von Shields wurden umfangreiche empirische Untersuchungen durchgeführt, um die dimensionslose kritische Sohlschubspannung zu bestimmen. Die Ergebnisse können in einem einzigen Diagramm dargestellt werden (Abbildung 9). In diesem Diagramm ist der Shields-Parameter θ (auch Korn-Froude-Zahl) in Abhängigkeit von der Korn-Reynolds-Zahl Re_* aufgetragen. Der Shields-Parameter ergibt sich aus

$$\theta = \frac{\tau}{(\rho_s - \rho_w) g \, d_k} \tag{37}$$

wobei $\tau = \tau_0$ bzw. $\tau = \tau'$ ist.

Abbildung 9: Sohlstabilität (Shields, 1936)

4.3.7 Kritischer Shields-Parameter

Allgemein gesehen ist der von der Korn-Reynolds-Zahl Re_* abhängige kritische Shields-Parameter θ_c jener Wert, bei dem Bewegungsbeginn eintritt.

Die Sedimenttransportformel nach Meyer-Peter Müller verwendet einen konstanten kritischen Shields-Parameter mit einem Wert von 0.047 (Meyer-Peter & Müller, 1948), Wu et al rechnet mit einem konstanten Wert von 0.03 (Wu, Wang, & Jia, 2000b). In der Sedimenttransportformel nach Van Rijn sind die kritischen Shields-Parameter abhängig vom dimensionslosen Korndurchmesser D_* und sind wie folgt definiert (Van Rijn, 1984a):

$$\theta_{c} = \begin{cases} 0.24 D_{*}^{-1}, & D_{*} \leq 4\\ 0.14 D_{*}^{-0.64}, & 4 < D_{*} \leq 10\\ 0.04 D_{*}^{-0.1}, & 10 < D_{*} \leq 20\\ 0.013 D_{*}^{0.29}, & 20 < D_{*} \leq 150\\ 0.055, & D_{*} > 150 \end{cases}$$
(38)

4.3.8 Kritische Schubspannung

Durch Umformen von Gl. (37) und Einführen des Hiding-Exposure-Effekts kann die kritische Schubspannung ermittelt werden (Wu, Wang, & Jia, 2000b):

$$\tau_{c,k} = \theta_c \,\eta_k \,(\rho_s - \rho_w) \,g \,d_k \tag{39}$$

Übersteigt die Kornschubspannung τ' die kritische Schubspannung τ_c , kommt es zur Sedimentbewegung.

4.4 Sedimenttransport nach Meyer-Peter und Müller

Diese Sedimenttransportformel entstand auf Grundlage von zahlreichen experimentellen Versuchen in Flüssen mit relativ groben Sedimenten und Bereichen mit voll entwickelter Turbulenz (Meyer-Peter & Müller, 1948):

$$q_{b,k^*} = \alpha \left[\frac{\mu \tau_0}{(\gamma_s - \gamma_w) d_k} - \theta_c \right]^{3/2} \gamma_s \left[\left(\frac{\gamma_s}{\gamma_w} - 1 \right) g d_k^3 \right]^{1/2}$$
(40)

Die Transportkapazität ist dabei proportional zur Differenz zwischen der mittleren Kornschubspannung und der kritischen Schubspannung $\tau_{c,k}$. Die Versuche wurden bei folgenden Bedingungen durchgeführt:

- Sohlneigung: $0.4 \div 20 \%_0$
- Korngrößen (d bzw. d_m): $0.4 \div 30 mm$
- Mittlere Fließgeschwindigkeit: $0.37 \div 2.87 \ m/s$

Es stellte sich heraus, dass eine Transportformel im Allgemeinen von der Schubspannung als maßgebende Größe abhängig ist. Die empirische Transportformel nach Gl. (40) und die experimentellen Versuche, welche in verschiedenen Maßstäben durchgeführt wurden, zeigten, dass das Gesetz der Ähnlichkeit gilt und der Ansatz somit unter natürlichen Bedingungen mit ausreichender Genauigkeit für praktische Verwendungszwecke angewendet werden kann (Meyer-Peter & Müller, 1948).

Der kritische Shields-Parameter θ_c wird konstant mit 0.047 eingesetzt, da die Korn-Reynolds-Zahl Re_* bei allen durchgeführten Versuchen hoch war ($Re_* > 100$) und sich der kritische Shields-Parameter in diesem Bereich kaum noch ändert. Der Faktor α wird mit folgender Beziehung definiert (Wiberg & Smith, 1989):

$$\alpha = 9.64 \left[\frac{\mu \tau_0}{(\gamma_s - \gamma_w) d_k} \right]^{5/3}$$
(41)

4.5 Sedimenttransport nach Van Rijn

Die Transportformel von Van Rijn basiert auf physikalischen Modellversuchen, bei denen die Geschiebefracht von Korndurchmessern im Größenbereich von 0.2 bis 2 mm untersucht wurden. Die Transportkapazität ergibt sich aus dem dimensionslosen Korndurchmesser D_* aus Gl. (30), dem Parameter T aus Gl. (43) zu (Van Rijn, 1984a):

$$q_{b,k} = 0.053 \ \frac{d_k^{1.5} \ T^{2.1}}{D_*^{0.3}} \sqrt{\left(\frac{\rho_s}{\rho_w} - 1\right) g}$$
(42)

Der Parameter *T* (Transport-stage) ist ein Zusammenhang zwischen der Kornschubspannung $\tau' = \mu \tau_0$ nach Gl. (36) und der kritischen Schubspannung $\tau_{c,k}$ aus Gl. (39):

$$T = \frac{\mu \tau_0}{\tau_{c,k}} - 1 \tag{43}$$

4.6 Sedimenttransport nach Wu et al

Wu et al führen die Fähigkeit eines Kornes ein, sich der Strömung auszusetzen oder ihr zu entgehen. So kommt ein kleines Korn eher nicht in Bewegung, da es sich hinter einem größeren Korn befindet (siehe Abschnitt 4.2). Dieser Effekt wird bei der Berechnung der kritischen Schubspannung $\tau_{c,k}$ nach Gl. (39) berücksichtigt. Die Transportformel nach Wu ist demnach ein Ansatz, der den Sedimenttransport eines ungleichkörnigen Sediments ermittelt (Wu, Wang, & Jia, 2000b):

$$q_{b,k} = 0.0053 \left[\left(\frac{n'}{n} \right)^{3/2} \frac{\tau_0}{\tau_{c,k}} - 1 \right]^{2.2} p_{b,k} \left[\left(\frac{\gamma_s}{\gamma_w} - 1 \right) g \, d_k^{-3} \right]^{1/2}$$
(44)

Dabei errechnet sich die die kritische Schubspannung τ_c laut Gl. (39) mit $\theta_c = 0.03$. Die Korrektur der Kornrauigkeit nach Abschnitt 4.3.5 ist in der Formel bereits fest enthalten. Die Transportformel ist für folgende Bereiche geeignet:

- Sohlneigung: $0.11 \div 16.2 \%_0$
- Korngrößen (d_k) : 0.088 ÷ 28.7 mm
- Mittlere Fließgeschwindigkeit: $0.14 \div 2.88 \ m/s$

4.7 Sedimenttransport nach Engelund-Hansen

Die Transportformel nach Engelund-Hansen basiert auf Energiebetrachtungen und berechnet hinreichend genaue Ergebnisse für sandige Flüsse mit beträchtlichem Schwebstofftransport. Die Formel wurde durch etwa 100 Versuche kalibriert und mit umfangreichen Felduntersuchungen verifiziert (Engelund & Hansen, 1967):

$$q_{b,k^*} = 0.05 \,\rho_w \, \frac{v^2}{\tau_0} \Big[\frac{\tau_0}{(\gamma_s - \gamma_w) \, d_k} \Big]^{5/2} \,\gamma_s \, \left[\left(\frac{\gamma_s}{\gamma_w} - 1 \right) \, g \, {d_k}^3 \right]^{1/2} \tag{45}$$

Die Transportformel ist für folgende Bereiche geeignet:

- Sohlneigung: $0.055 \div 19 \%_0$
- Korngrößen (d_k): 0.19 ÷ 0.93 mm
- Mittlere Fließgeschwindigkeit: $0.20 \div 1.90 \ m/s$

4.8 Sedimenttransport nach Yang

Bei dieser Transportformel wird die Strömungsleistung für die Bestimmung der Sedimentkonzentration herangezogen, ein Kriterium für den Beginn der Sedimentbewegung wird hier nicht verwendet. Die mittlere kritische Fließgeschwindigkeit bei Beginn der Sedimentbewegung errechnet sich aus (Yang, 1973):

$$\frac{v_c}{\omega_s} = \begin{cases} 0.66 + 2.5/\log\left(\frac{u_* d_k}{v}\right) - 0.06, & \frac{u_* d_k}{v} < 70\\ 2.05, & \frac{u_* d_k}{v} \ge 70 \end{cases}$$
(46)

Die Transportformel nach Yang kann für sandige und kiesige Sedimente angewendet werden. Die Gültigkeit dieser Methode wird durch Daten aus Modellversuchen und Ergebnissen aus Feldversuchen unter einer Vielzahl von Bedingungen in alluvialen Flüssen gestützt und ist für folgende Bedingungen anwendbar:

- Sohlneigung: $0.043 \div 29 \%_0$
- Korngrößen (d_k): 0.062 ÷ 7 mm
- Mittlere Fließgeschwindigkeit: $0.24 \div 1.90 \ m/s$

4.8.1 Transportformel nach Yang für Sand mit $d_k < 2 \text{ mm}$

Die Gesamtsedimentkonzentration C_t in der Einheit ppm wird über folgende Beziehung ermittelt (Yang, 1973):

$$\log(C_t) = M + N \log\left(\frac{v S}{\omega_s} - \frac{v_c S}{\omega_s}\right)$$
(47)

Die Koeffizienten sind:

$$M = 5.435 - 0.286 \log\left(\frac{\omega_s d_k}{\nu}\right) - 0.457 \log\left(\frac{u_*}{\omega_s}\right)$$
(48a)

$$N = 1.799 - 0.409 \log\left(\frac{\omega_s d_k}{\nu}\right) - 0.314 \log\left(\frac{u_*}{\omega_s}\right)$$
(48b)

Für den Fall $C_t > 100 \, ppm$ gilt folgende Formel mit den Koeffizienten nach Gl. (50a) und (50b) (Yang, 1979):

$$\log(C_t) = M + N \log\left(\frac{v S}{\omega_s}\right)$$
(49)

Die Koeffizienten sind:

$$M = 5.165 - 0.153 \log\left(\frac{\omega_s \, d_k}{\nu}\right) - 0.297 \log\left(\frac{u_*}{\omega_s}\right) \tag{50a}$$

$$N = 1.780 - 0.360 \log\left(\frac{\omega_s d_k}{\nu}\right) - 0.480 \log\left(\frac{u_*}{\omega_s}\right)$$
(50b)

$\mbox{4.8.2} \qquad \mbox{Transportformel nach Yang für Kies mit } d_k \geq 2 \ mm \label{eq:alpha}$

Die Gesamtsedimentkonzentration C_t für Kies wird mit derselben allgemeinen Transportformel wie für Sand ermittelt:

$$\log(C_t) = M + N \log\left(\frac{v S}{\omega_s} - \frac{v_c S}{\omega_s}\right)$$
(51)

Jedoch lauten hier die Koeffizienten (Yang, 1984):

$$M = 6.681 - 0.633 \log\left(\frac{\omega_s d_k}{\nu}\right) - 4.816 \log\left(\frac{u_*}{\omega_s}\right)$$
(52a)

$$N = 2.784 - 0.305 \log\left(\frac{\omega_s d_k}{\nu}\right) - 0.282 \log\left(\frac{u_*}{\omega_s}\right)$$
(52b)

4.9 Umrechnung zwischen Einheiten der Transportkapazität

Anschließend werden einige Formeln angeführt, um die Sedimenttransportkapazität in andere Einheiten umzurechnen:

• Von $q_{b,k^*} [N/m/s]$ in $q_{b,k} [m^2/s]$

$$q_{b,k} = \frac{q_{b,k^*}}{g \,\rho_s} \tag{53}$$

• Von $C_t [ppm]$ in $q_{b,k} [m^2/s]$

$$q_{b,k} = \frac{C_t \, Q_{channel}}{10^6 \, \frac{\rho_s}{\rho_w} \, b_{channel}} \tag{54}$$

• Von $q_{b,k}$ $[m^2/s]$ in Q_s [kg/s]

 $Q_s = q_{b,k} \rho_s b_{channel}$

Literaturverzeichnis

- DVWK. (1991). Hydraulische Berechnung von Fließgewässern. *Merkblätter zur Wasserwirtschaft, Heft 220.*
- Engelund, F., & Hansen, E. (1967). A Monograph on Sediment Transport in Alluvial Streams. Copenhagen, Denmark: Teknisk Verlag.
- Jirka, G. H., & Lang, C. (2009). *Einführung in die Gerinnehydraulik*. Universitätsverlag Karlsruhe: Karlsruhe.
- Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. *Rept 2nd Meeting Int. Assoc. Hydraul. Struct. Res.*, (S. 39-64). Stockholm.
- Naudascher, E. (1992). *Hydraulik der Gerinne und Gerinnebauwerke*. Wien, New York: Springer-Verlag.
- Shields, A. (1936). Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau und Schiffbau, Heft 26. Berlin: Eigenverlag der Preußischen Versuchsanstalt für Wasserbau und Schiffbau.
- Van Rijn, L. C. (1984a). Sediment transport, Part I: Bed load transport. *ASCE Journal of Hydraulic Engineering*, *110(10)*, (S. 1431-1456).
- Whipple, K. (2004). *Surface Processes and Landscape Evolution*. Massachusetts: Massachusetts Institute of Technology.
- Wiberg, P. L., & Smith, J. D. (1989). Model for calculating bed load transport of sediment. *ASCE Journal of Hydraulic Engineering*, *115(1)*, (S. 101-123).
- Wu, W. (2008). Computational river dynamics. London, UK: Taylor and Francis.
- Wu, W., & Wang, S. (2006). Formulas for sediment porosity and settling velocity. ASCE Journal of Hydraulic Engineering, 132(8), (S. 858-862).
- Wu, W., Wang, S., & Jia, Y. (2000b). Nonuniform sediment transport in alluvial rivers. *IAHR Journal of Hydraulic Research*, *38(6)*, (S. 427-434).
- Yang, C. T. (1973). Incipient motion and sediment transport. *ASCE Journal of Hydraulic Division*, 99(HY10), (S. 1679-1704).

- Yang, C. T. (1979). Unit stream power equations for total load. *Journal of Hydrology, 40*, (S. 123-138).
- Yang, C. T. (1984). Unit stream power equation for gravel. *ASCE Journal of Hydraulic Engineering*, *110(12)*, (S. 1783-1797).

Abbildungsverzeichnis

Abbildung 1: Pseudocode des Berechnungsvorganges	
Abbildung 2: Datenschema der hydraulischen Berechnung	5
Abbildung 3: Gegliedertes Flussquerprofil	6
Abbildung 4: Moody-Diagramm (Jirka & Lang, 2009)	
Abbildung 5: Energiekurve	
Abbildung 7: Korngrößenverteilung	
Abbildung 6: Datenschema der sedimentologischen Berechnung	
Abbildung 8: Definition der Scheiteldifferenz Δ_e	20
Abbildung 9: Sohlstabilität (Shields, 1936)	

Tabellenverzeichnis

Tabelle 1: Strickler-Beiwert k_{st} für verschiedene Gerinnetypen (Naudascher, 1992)	10
Tabelle 2: Äquivalente Sandrauigkeiten k_s für verschiedene Gerinnetypen (DVWK, 1991)	11
Tabelle 3: Zustände in Fließgewässern	14
Tabelle 4: Berechnung von Hiding-Exposure-Faktoren	21
Tabelle 5: Bereiche der Rouse-Zahl (Whipple, 2004)	22