
ADCPtool
A postprocessing framework for ADCP measurements

Reference Manual

Jakob Steidl
Clemens Dorfmann

Institute of Hydraulic Engineering and Water Resources Management

Graz University of Technology



Abstract

Accoustic Doppler Current Profiler allows measuring discharges and velocities in fuids. However
the software used for prostprocessing this data is specialized for the area of initial usage of the
ADCP method.

This project aims to bypass this problem by creating a framework (you could also call it a Swiss
army knife) for postprocessing ADCP measuring data.

ii



Contents

1 Introduction to ADCPtool 1
1.1 What is it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 How to use it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basics of Acoustic Doppler Current Profiler 3
2.1 ADCP Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Conventions and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Program description 5
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 In-Depth Module Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Initial Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 Outlier Detection and Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Velocity Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.4 Roughness and Shear Stress Estimation . . . . . . . . . . . . . . . . . . . . . 11
3.2.5 Extrapolation of cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.6 Profile Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.7 Export Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Tutorial 19
4.1 Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Geo-Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Outlier Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Roughness and Shear Stress Estimation . . . . . . . . . . . . . . . . . . . . . 23
4.2.4 Velocity Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Recommended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Profile Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Export in other Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



1 Introduction to ADCPtool

1.1 What is it?

ADCPtool is as piece of software to post process discharge data produced with an ADCP, written in
Python. It can read measurement files exported from WinRiver in ASCII format and represent the
data as a Python object. This Python object can then be processed and exported to other formats.
Currently the following features are available for postprocessing:

• geo mapping: add geographical coordinates to the profile

• projection: define how cells are being aligned on a profile

• velocity component rotation: align coordinate system for velocities to profile, or to global coor-
dinates

• compute depth averaged velocities

• outliers: automatic detection and removal of outliers

• interpolation: smooth data

• roughness and shear stress estimation

• velocity extrapolation

Currently the following output formats are supported:

• freely configurable ASCII output

• BlueKenue

• Paraview

• DXF

1.2 Getting Started

1.2.1 Requirements

Before using ADCPtool, the following software packages are required:

• Python 2.7 or 3.x 1

• matplotlib 2

1It was tested with version 2.7.3 and 3.2.3
2Tested with version 1.1.1 and 1.2.0

1



1.3 How to use it

• NumPy and SciPy 3

Python and the extra modules should run on any Operating System. Users of other Operating
Systems than Windows should consult the corresponding manual on how to install Python and
Python packages4.

Windows users new to Python could use a pre-packaged Python distribution, which includes all the
required software5.

1.2.2 Installing

Extract the provided ZIP file to a folder of your choice.

1.3 How to use it

ADCPtool doesnt have a GUI (yet), nor is it a command line program which one has to pass dozens
of parameters to it. Instead it has to be imagined like a toolbox that can be used with Python.

To actually use ADCPtool one can either create a python script like in the tutorial in Chapter 4 or for
experimenting, run it from the interactive Python console.

3Tested with 1.6.2 and 1.7.0-beta2
4Its much easier actually than on Windows
5A list of such distributions can be found on http://www.python.org/download/

ADCPtool Reference Manual 2

http://www.python.org/download/


2 Basics of Acoustic Doppler Current Profiler

2.1 ADCP Basics

The Acoustic Doppler Current Profiler is a device developed to measure currents in open waters. It
relies on the Doppler-Effect, which describes the change of wavelengths when waves are reflected
by a body with a relative velocity to the receiver:

∆f =
∆v

c
f0

where

∆f observed frequency shift
∆v relative velocity between sender and reflector
f0 emitted frequency
c speed of wave propagation

If the emitter and the receiver are on the same location, the relative movement of objects reflecting
the waves can be determined.

With the assumption that all particles (reflecting objects) are moving in the same direction, one can
emit waves (beams) in three different directions to compute their three-dimensional movement in
space. Most ADCP devices use four beams to detect deviations and to allow a report of quality of
the measurement.

When further assuming a constant wave propagation velocity, the distance of the reflecting object
to the emitter can also be recorded by measuring the signal reflection time. This allows the ADCP
device to measure velocities in (almost) all depths. However there are limits for the time measuring
method, which is why the water column under the ADCP device is divided into cells (also bins).

A much deeper introduction can be found in “ADCP: Principles of Operation - A Practical Primer”
[5].

2.2 Conventions and Definitions

Profile

Profile is a virtual line over a river (or similar) spanning from reach to reach. It is where the ADCP
measurement boat ideally should cruise.

3



2.2 Conventions and Definitions

Ensemble

The ADCP continously takes measurements on different positions. All measurements on the same
position are summarized in one ensemble.

Cell (or Bin)

In practice the device can not measure infinitesimal areas, so cubic areas are summarized (aver-
aged, etc) into one cell.

Profile
Ensemble
Cell

Figure 2.1: Definition of Profile, Ensemble, Cell

ADCPtool Reference Manual 4



3 Program description

3.1 Overview

ADCPTOOL is to be understood as a set of functions and objects written in Python that can be either
called from the interactive Python shell or from within a control file. The tool introduces two main
objects:

1. RawProfileObj: represents data in the raw form and in the same units as in the WinRiver
ASCII file.

2. ProcessedRawObj: represents the measurement data in a processed form.

These two contain other objects:

1. ProcessedEnsembleObj: holds data typically linked to an ensemble

2. ProcessedCellObj: holds data typically linked in a cell (eg. velocities)

3. Vector: whenever possible, this is used to store vector data. allows basic vector operations,
but does’nt require NumPy

Functions can be classified into three groups:

1. import function: import the WinRiver ASCII file (there is only one of this)

2. processing functions: manipulate the profile’s data

3. output functions: produce graphical output or convert data into a specific file format.

Consistency in processing function (and if applicable, others too):

• All processing functions return ProcessedRawObj which the specific processing applied.

• All processing functions follow the schema: updated profile = some useful function(profile,

config dictionary)

A Note on Units

It should also be noted, that in the ProcessedRawObj all values are in the base SI-Units. This
includes values that are usually given in other units, like the bed roughness which is stored in [m]
instead of the more common [mm].

5



3.2 In-Depth Module Description

3.2 In-Depth Module Description

3.2.1 Initial Processing

After the WinRiver ASCII file has been successfully imported, the data needs to be geo-referenced.
This includes the definition of a profile in global coordinates and how the measured data is positioned
on it.

Technically this is done by the following line of code:

profile_stage0 = adcpprocess.ProcessedProfileObj(raw_profile, processing_settings,

startingpoint)

While raw profile is self explaining, processing settings (it is a Python dictionary object) holds
configuration on how data is being converted. With startingpoint (also a Python dictionary) the
profile is being defined1.

startingpoint

The profile can be imagined as virtual cross section of a river. To geo-reference it, the user can
define one of the following options:

1. a start coordinate (and an optional offset)

2. a start coordinate and direction angle

3. a start coordinate and an end coordinate

In the first case the direction angle of the profile is taken from the first and last points of the measured
data.

The profile direction vector is computed like this:

profiledir =


xend−xstart

|xend−xstart| for options 1 and 3

[
cosα

sinα

]
for option 2

offset

In case where the first ensemble is too far away from from the ideal profile line, this approach would
give a wrong direction angle. Therefore one can define an offset, which -for computing the direction
angle- corrects the position of the first ensemble. See Fig. 3.1(b).

processing settings

Besides other things (see Table 3.2), the configuration variables inside processing settings con-
trol how the ensembles are ”glued” on the profile discussed above.

1One can also rename startingpoint to something that reflects its content more precise.

ADCPtool Reference Manual 6



3.2 In-Depth Module Description

X

Y

(a) Profile defini-
tion

offset vector

1

2

start

(b) Offset vector definition

Figure 3.1: Definition of profile and offset vector

Variable Type •/◦ Description

start Vector • Start of Profile in X/Y/Z-Coordinates.

end Vector ◦ End of Profile in X/Y/Z-Coordinates. (Z-Value is being ignored)

dir float ◦ Direction of Profile in [rad]

offset Vector ◦ Offset.
Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.1: Variables of startingpoint

Projection Method

There have been three ways been implemented for this:

1. put ensembles on the profile according to their distance made good.

2. ignore defined profile and put ensembles where they actually have been measured

3. make a planar projection of the ensembles on the defined profile

ADCPtool Reference Manual 7



3.2 In-Depth Module Description

1

3

2

S

1'

2'

3'

S

2

3

1

3

2

S
X

Y

projection method 1                     projection method 2                   projection method 3        

1

Figure 3.2: Available projection methods

Variable Type •/◦ Description

proj method int • Defines how measured ensemble are projected on the profile.
See 3.2.1

uv rot bool ◦ True, if coordinate system for velocities shall be parallel to profile
direction (first component will be parallel). Default: False

dimensions int ◦ If 2, only depth averaged velocities will be computed. With 3 depth
averaged velocities wont be computed. If undefined: averaged
and cell velocities will be computed

flip z bool ◦ True if z-axis shall point downwards. (affects
ProcessedCellObj.z position only). default: False

avg method int ◦ Decides how the depth averaged velocity shall be computed.
(currently only default method 0 is possible)

Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.2: Variables of processing settings

3.2.2 Outlier Detection and Removal

The automatic outlier removal can be called with:

profile_stage1 = outliers.interpolate_outliers(profile_stage0, cfg_outliers)

Algorithm Principle

The algorithm is based on analyzing the relative deviation of each velocity component in every cell.
For each velocity vi(ci) component in each cell ci the following procedure is performing:

1. make a collection of neighbouring cells that are closer or equal the horizontal and vertical
distance of rh and rv, which should describe a rectangle of the shape (2rh + 1)× (2rv + 1).

ADCPtool Reference Manual 8



3.2 In-Depth Module Description

2. compute mean value µi and standard deviation σi

3. compute relative deviation di with:

di =
|vi − µ|
σ

4. if di is greater than the defined limit α, the velocity component ci is spotted as outlier

5. mark this velocity component as void in a separate matrix which will be used for replacing the
outliers with values interpolated from its neighbors.

It should be mentioned, that in preparation for this algorithm, the velocity data are extracted to a
NumPy array with the size m× n× 3 (m. . . number of ensembles, n . . . maximum number of cells
in an ensemble)for optimized processing time.

Variable Type •/◦ Description

radius h int • Horizontal radius of the sampling box

radius v int ◦ Vertical radius of the sampling box (default: 0)

limit bool • limit of relative deviation, above which velocity components will
be marked as outliers

Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.3: Variables of cfg outliers

Advanced Outlier Algorithm

In a more sophisticated setup one could save computing time by reusing matrices that are required
for both outliers and data averaging. For that, the functions inside outliers.interpolate outliers()

are being called directly:

#

# outliers

import outliers, averaging, interpolation

# ProcessedCellObjs in a matrix

cm = outliers.get_cell_matrix(p)

# velocity components matrix, including a matrix that can be used to mask the first

one

vm, vgm = outliers.get_valuematrix_from_cellmatrix(cm, ’.velocity.v’)

# matrix with relative deviations inside

rdm = outliers.get_relative_deviation_simple(vm, vgm, cfg)

# outliers: boolean matrix

olm = outliers.get_outliers(rdm, vgm, cfg_outliers)

# interpolation

from interpolation import interpolate

# interpolated velocity matrix (olm has to be "flipped" (0-->1, 1-->0))

ivm = interpolation.interpolate(vm, ~olm)

ADCPtool Reference Manual 9



3.2 In-Depth Module Description

#

# averaging

vma = averaging.get_moving_average(ivm, vgm, dict(order=51))

# depth averaged velocities need to be updated as well

profile.update_velocities(vma, vgm)

3.2.3 Velocity Averaging

Data averaging can be useful to reduce the effect of random measurement errors, eg. when results
shall be compared to numerical analysis.

Algorithm principle

Similar to the outlier detection the algorithm walks through every velocity component:

1. if current velocity component is marked in the velocity matrix mask: create matrix of neigh-
bors with width defined in config parameter order

2. compute average of values in created matrix

3. assign this average as value of current velocity

Simple Usage

The simple way is as easy as the following:

import averaging

profile_averaged = averaging.get_averaged_profile(profile, cfg_averaging)

Advanced Usage

To use this, it is first required to create a velocity matrix, like mentioned in Chap. 3.2.2. It is longer
to type, but saves a few seconds of life time.

import outliers

velocity_matrix, velocity_matrix_mask = outliers.get_valuematrix_from_cellmatrix(cm,

’.velocity.v’)

vma = averaging.get_moving_average(velocity_matrix, velocity_matrix_mask,

cfg_averaging)

profile.update_velocities(vma, velocity_matrix_mask)

Variable Type •/◦ Description

order int • Horizontal number of cells in the sampling box.
Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.4: Variables of cfg average

ADCPtool Reference Manual 10



3.2 In-Depth Module Description

3.2.4 Roughness and Shear Stress Estimation

The estimation of bed roughness ks, bed shear stress τ0 and shear velocities v0 is based on following
formula, which describes a logarithmic velocity distribution in open channels (see [4]):

v(z)

v∗
=

1

κ
ln

z

z0

where

v(z) velocity
z depth of channel starting from river bed
z0 depth of channel where v = 0; for hydraulically rough flows: z0 = 1

30ks
v∗ shear velocity
κ VON KÁRMÁN constant: 0.40
ks bed roughness

With this formula and the measured velocities (magnitude of x and y component) the unknowns ks,
v∗ can be determined via the method of least squares.

Least Square Fit Algorithm

To achieve that, the logarithmic formula above needs to be linearized:

v(z)

v∗
=

1

κ
(ln z − ln z0)

ln z =
κ

v∗
v + ln z0

To finally get a least square solution, the NUMPY function linalg.lstsq() is used. It returns a, b
of the equation y = ax+ b. With these, the unknowns ks, v∗ can be determined:

v∗ =
κ

b
ks = 30ea

In addition, the shear stress can be back calculated with:

τ0 = v∗2ρwater

Usage

Roughness estimation can be invoked with:

profile2 = logfit.logfit_profile(profile1, cfg_logfit)

Afterwards, the ensembles in profile2 will have some extra properties:

ks equivalent bed roughness
tau shear τ0
v shear v∗

logfit debug a list containing a and b, r and p from pearson correlation test, no. of cells used

ADCPtool Reference Manual 11



3.2 In-Depth Module Description

Variable Type •/◦ Description

logheight int • relative height of the layer where the power law can be ap-
plied (recommended: 0.2)

component int • velocity component that will be used for least squares re-
gression 0: x, 1: y, 2: z, 3: magnitude of x and y (recom-
mended)

Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.5: Variables of cfg logfit

Variable Type •/◦ Description

topcells int • number of cells used for linear extrapolation new water sur-
face

forcepowerlaw bool • use power law for extrapolation on both zones

Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.6: Variables of cfg extrapolation

3.2.5 Extrapolation of cells

In order to fill the gaps in be unmeasured areas below water surface and above river bed, extrapo-
lation methods are being used. While this can not produce any new or additional information about
the unmeasured zone, extrapolation can be useful when estimating total discharge.

Usage

Extrapolation can be invoked with:

profile_stage3 = extrapolation.extrapolate_profile(profile_stage1, cfg_extrapolation)

Where cfg extrapolation is explained in Table 3.6.

Extrapolation Algorithms

y

0.2 * d

free surface
T

B

v

topcells

d

z+

z-
y2

y1

Figure 3.3: Variables within ve-
locity extrapolation

The algorithm used for the area near water surface (referred as
“zone T”) can be described as follows:

1. take the topcells topmost cells and fit a linear function in it.

2. use this function to create additional velocity components

Is done for each velocity component seperatly.

For the area near river bed, a number of different methods, depend-
ing on available data is being used (See Figure 3.4).

The simplest one makes use of ks and v∗. If a log law velocity
distribution is assumed.

1. compute velocity magnitude with v = v∗ · 2.5 · ln 30

ks(d+ z)

ADCPtool Reference Manual 12



3.2 In-Depth Module Description

2. compute average direction angles

3. split velocity magnitude into vector components with com-
puted angles

If no roughness data is available, velocities in “zone b”, an estimation via the power law is being
done. The following velocity distribution can be used to approximate the full depth of a channel, as
shown by Cheng [3]:

v(y) = a · yb (b = 1/6)

While a could also be derived from bed roughness and shear stress, it isn’t necessary for extrapo-
lation.

Similar to WinRiver [6], ADCPtool first tries to find cells at 0.2 · d to determine a with:

a =
v(0.2 · d)

yb

Otherwise a will be determined by equalizing the measured discharge with the discharge in the
measured area using the power law velocity distribution:

QADCP =
∑
i

vi · di

QPL =

∫ y2

y1

ayb dy = a
yb+1
2 − yb+1

1

b+ 1

With the initial condition

QPL = QADCP

a can be explicitly written as

a =

∑
i
vi · di

yb+1
2 − yb+1

1

b+ 1

It is worth mentioning, that this algorithm also works on the magnitude velocities, which require to
be split up into its components.

ADCPtool Reference Manual 13



3.2 In-Depth Module Description

Start

linear extrapolation
in zone T

ensemble has
valid cells?

ensmble has
roughness data?

extrapolate zone B
with log law

cells above
0.2 * d?

determine parameter
"a" that

vPL(0.2d) = vM(0.2d)

get vM(0.2d)
through interpolation

extrapolate zone B
with power law

determine "a" that
QPL= QM

End
add newly created
cells to ensemble

forcepowerlaw == True?

forcepowerlaw == True?

extrapolate zone T
with power law

lin
ea

r 
&

 lo
g

-l
aw

p
o

w
er

 la
w

yes

no

yes

no

no

yes

yes

no

no

yes

Figure 3.4: Flow chart for extrapolation

3.2.6 Profile Visualisation

For a quick visual feedback profile data can be plotted. For this two functions in the module quickviz

exist:

plot profile 2d(p, cfg) plot the plan view of the profile including depth averaged velocities
plot profile 3d(p, cfg) plot a cross section view trough the profile showing data specified inside

cfg (See Table 3.8)

The second function provides a few features that require explanation:

What Data to Show

Virtually any data inside an ProcessedCellObj can be displayed. (See the datatype variable in
Table 3.8). If “custom” is provided, then cellattr has to be filled with the cell attributes (including
the dot at the beginning) to be plotted. See Section 4.2 for examples.

How to Show the Data

If more than one data is being selected, it is possible to display it as a vector field2. If two or more
attributes are selected and a display style other than “vector” is used, the “length” of the attributes
will be displayed:

a =
√∑

a2i

2Please note: If it is desired to plot secondary currents, it is strongly recommended to use the uv rot option when
creating the ProcessedProfileObj

ADCPtool Reference Manual 14



3.2 In-Depth Module Description

Variable Type •/◦ Description

title string ◦ title of the plot

saveas string ◦ path and filename where to save output graphic, if not spec-
ified, plot will be displayed on screen

Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.7: Variables inside cfg for plot profile 2d()

3.2.7 Export Formats

For passing on the data to other software, the following export functions are available:

Pre-Defined Output Methods

The names should be mostly self explaining. Only some parts of the names need explanation:

2D will export data (usually depth averaged velocities) stored directly in the ensemble
3D will export data stored directly in the cells
BlueKenue Output for BlueKenueTM[2]
Paraview Output for ParaView [1]
DXF famous CAD drawing exchange file format

where

profile the ProcessedProfileObj to be exported
f the output file
format a format string. See Sec. 3.2.7
vel scale a scaling value for displaying velocities.

If 1, a velocity of 1[m/s] will be drawn with the length of 1
f depth4Beams filename for storing all beams
f depth4Beam1-4 filename for storing beam 1-4

Customizable Output Methods

The functions writeAscii2D() and writeAscii3D() allow the user to define which information is
being written and how it is formatted.

They will be called with:

# for ensemble data

writeAscii2D(profile, formatstring, f, header)

# and respectively for cell data

writeAscii3D(profile, formatstring, f, header)

where

profile is the ProcessedProfileObj to be exported
formatstrting Python format string for the print() function

f output file name
h string as file header, optional

ADCPtool Reference Manual 15



3.2 In-Depth Module Description

As one might expect, the definition of the format can be defined in formatstrting, which itself will
be parsed by Python’s .format() method 3.

Essentially, a format string contains the variables to be printe d in curly brackets surrounded by white
space:

formatstrting = "{vx}, {vy}, {vz}"

The a list of available variables can be found in Table 3.10. Usage examples can be found in Section
4.3.2

3See http://docs.python.org/2/tutorial/inputoutput.html#fancier-output-formatting and http://docs.

python.org/2/library/string.html#formatspec

ADCPtool Reference Manual 16

http://docs.python.org/2/tutorial/inputoutput.html#fancier-output-formatting
http://docs.python.org/2/library/string.html#formatspec
http://docs.python.org/2/library/string.html#formatspec


3.2 In-Depth Module Description

Variable Type •/◦ Description

datatype string ◦ determines what to plot, possible values:

• velocity: requires variable components (default)

• custom: requires variable cellattr

components list ◦ a list of of velocity components, that will be used. valid
components: ”x”, ”y”, ”z” (default: [’x’,’y’])

cellattr list ◦ the attribute of cell the cells that will be plotted

style string ◦ visualization method. implemented methods: ”contour”,
”gradient” (default), ”vector”

title string ◦ title of the plot (default: “plan view”)

saveas string ◦ path and filename where to save output graphic, if not spec-
ified, plot will be displayed on screen

Note: • . . . Argument mandatory, ◦ . . . Argument optional

Table 3.8: Variables inside cfg for plot profile 3d()

Function Name Arguments

writeAscii3D profile, format, f, voidtext="---", header=None

writeAscii2D profile, format, f, voidtext="---", header=None

write2DVelocity profile, f

write2DVelocity BlueKenue profile, f

write2DVelocity Paraview profile, f

write3DVelocity Paraview profile, f

write3DVelocity profile, f

write3DVelocity BlueKenue profile, f

write3DVelocity W0 BlueKenue profile, f

writeAverageDepth profile, f

write4BeamDepths profile, f depth4Beams, f depthBeam1,

f depthBeam2, f depthBeam3, f depthBeam4

writeDXF2D profile, f, vel scale=50

writeDXF3D profile, f, vel scale=50

Table 3.9: Available Export Functions

ADCPtool Reference Manual 17



3.2 In-Depth Module Description

Variable 2D 3D Description

x • • X coordinate of cell or ensemble

y • • Y coordinate of cell or ensemble

z • • Z coordinate of cell or ensemble

vx • • x component of velocity

vy • • y component of velocity

vz • • z component of velocity

vmag • • magnitude of x and y components of velocity

vmag3d • • magnitude of all components of velocity

artificial ◦ • True, if this is an extrapolated cell

ks ◦ • bed roughness

tau shear ◦ • bed shear stress

v shear ◦ • shear velocity

depth • ◦ averaged depth reading of ensemble

four depths 1 • ◦ depth reading of beam 1 for ensemble

four depths 2 • ◦ depth reading of beam 2 for ensemble

four depths 3 • ◦ depth reading of beam 3 for ensemble

four depths 4 • ◦ depth reading of beam 4 for ensemble

Table 3.10: Available Variables for formatstrting

ADCPtool Reference Manual 18



4 Tutorial

In this tutorial, we will demonstrate all features of ADCPTOOL. We will be using the PYTHON inter-
active shell, because it is the easiest way to play with the ADCP data1. Of course it is also possible
to start the commands from a Python script file. See also missioncontrol.py or mc advanced.py

for examples.

Since ADCPtool isn’t installed inside the Python directory, we can’t start it directly. So we either
have to

• add the directory where ADCPTOOL is installed to the Python path, or

• start the Python shell in the corresponding directory.

For Windows users the easiest way is probably to open the folder in Explorer, and then with
[shift]+[right mouse button] an extended context menu appears, where we can select “Open com-
mand window here”, which should open up cmd.exe, the windows command line. In that window,
the Python shell can finally be started with typing: python.

Figure 4.1: A sucessfully opened Python interactive shell on Windows

In order to have access to all the modules provided by ADCPTOOL it is recommended to import
(load) them with the adcploader script:

>>> from adcploader import *

>>>

Something that applies for everything from now on: If there is no text output, everything worked
fine.

1We will use Windows as operating system. If you are running a different OS, then you are probably capable of opening
a python shell on your own anyway.

19



4.1 Required

4.1 Required

4.1.1 Import

The basis for every processing is to convert the original WinRiver ASCII file into a Python object
with:

>>> p_raw = RawProfileObj(’../testfiles/demodata.txt’)

4.1.2 Geo-Mapping

Geo-Mapping is required per definition, because the ensembles need to have some coordinates
later on. But since we don’t want have any reference coordinates, and don’t care about profile
projection we use the following settings:

>>> startingpoint = dict(start=Vector(0,0,0))

>>> processing_settings = dict(proj_method=3)

Then we can use these variables for the processing:

>>> p0 = ProcessedProfileObj(p_raw, processing_settings, startingpoint)

And the result can be previewed as well:

>>> plot_profile_2d(p0)

Figure 4.2: Output of plot profile 2d(p0)

See Fig. 4.2 for how the output can look like. If you want to save the graphic, either use the floppy
symbol found in the window. Or if you want to save the graphic without displaying it, specify that in
the cfg:

ADCPtool Reference Manual 20



4.1 Required

>>> plot_2d_cfg = dict(saveas=’../testfiles/demo1.pdf’)

>>> plot_profile_2d(p0)

The file type is automatically detected by the file extension.

Now a few config settings and the thin out() function shall be demonstrated:

>>> import math

>>> startingpoint_1a = dict(start=Vector(0,0,0), dir=0.5*math.pi)

>>> startingpoint_1b = dict(start=Vector(0,0,0), end=Vector(0,1,0))

>>> processing_settings_1a = dict(proj_method=1)

>>> processing_settings_1b = dict(proj_method=3)

>>> p1a = ProcessedProfileObj(p_raw, processing_settings_1a, startingpoint_1a)

>>> p1b = ProcessedProfileObj(p_raw, processing_settings_1b, startingpoint_1b)

>>> plot_profile_2d(thin_out(p1a, {’keep_ensemble’:5}), {’saveas’:’../testfiles/

demo_p1a.pdf’, ’title’:’demo 1a’})

>>> plot_profile_2d(thin_out(p1b, {’keep_ensemble’:15}), {’saveas’:’../testfiles/

demo_p1b.pdf’, ’title’:’demo 1b’})

The following should give two profiles, both pointing upwards and the second with less ensembles
remaining. However, comparing with the output in Fig. 4.3 the second, (b) the profile is pointing
downwards! This can be explained by how the projection method 3 works.2

velocity: 0.001 [m/s]

400 200 0 200 400
x coordinate [m]

100

0

100

200

300

400

500

600

700

800

y
 c

o
o
rd

in
a
te

 [
m

]

demo 1a

(a) projection method 1

velocity: 0.001 [m/s]

400 200 0 200 400
x coordinate [m]

800

700

600

500

400

300

200

100

0

100

y
 c

o
o
rd

in
a
te

 [
m

]

demo 1b

(b) projection method 2

Figure 4.3: Demonstration of thin out() and different projection methods and profile definitions

For comparison with the following steps, we also want to take a look at the velocities:

2As seen in Fig. 4.2 the measurement boat actually moved downwards, so the ensembles will be projected on the
”negative” end of the profile, which is defined by a starting point, but however internally it is extending infinite in both
directions

ADCPtool Reference Manual 21



4.2 Optional

0 100 200 300 400 500 600 700
profile station [m]

8

7

6

5

4

3

2

1

0

p
ro

fi
le

 d
e
p
th

 [
m

]

section view

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Figure 4.4: Velocities at the unmodified profile

4.2 Optional

4.2.1 Outlier Removal

The outlier removal is not that exciting:

>>> p2 = interpolate_outliers(p0, cfg={’limit’:2.5, ’radius_h’:10)

>>> plot_profile_3d(p2)

0 100 200 300 400 500 600 700
profile station [m]

8

7

6

5

4

3

2

1

0

p
ro

fi
le

 d
e
p
th

 [
m

]

section view

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

Figure 4.5: Velocities without outliers

4.2.2 Averaging

Lets do some averaging. Output see Fig. 4.6

p3 = get_averaged_profile(p2, cfg={’order’:21})

plot_profile_3d(p3, cfg={’saveas’:’../testfiles/demo_p3_3d.pdf’})

ADCPtool Reference Manual 22



4.2 Optional

0 100 200 300 400 500 600 700
profile station [m]

8

7

6

5

4

3

2

1

0

p
ro

fi
le

 d
e
p
th

 [
m

]

section view

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Figure 4.6: Averaged Velocities

4.2.3 Roughness and Shear Stress Estimation

This topic is a bit tricky, because the results heavily depend on the input data, which require mea-
surements below 0.2 · depth, which is not always the case. In order to give judge the quality of the
output data, we need to introduce a previously undocumented function: plot logfit profile()

which can be found inside quickviz.py.

Starting the roughness estimation is easy however:

>>> cfg_logfit = {’logheight’:0.30, ’component’:3}

>>> p4 = logfit_profile(p3, cfg_logfit)

>>> plot_logfit_profile(p4, cfg=cfg_logfit)

The result of plot logfit profile can be seen in Fig. 4.7. It is left to the user, if they trust these
results.

0 100 200 300 400 500

0

1

2

3

4

5

6

7

8

d
e
p
th

 [
m

],
 #

 o
f 

u
se

d
 c

e
lls

depth

# of cells used

existing cell

cell used for logfit

0 100 200 300 400 500
0

20

40

60

80

100

ks
 [

m
]

100

0

100

200

300

400

500

600

700

800

ta
u
_s

h
e
a
r 

[N
/m

^
2
]

ks

tau_shear

0 100 200 300 400 500
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

Figure 4.7: Roughness and Shear Stress

ADCPtool Reference Manual 23



4.3 Recommended

4.2.4 Velocity Extrapolation

To demonstrate the velocity extrapolation, we use the following lines of code:

>>> p5 = extrapolate_profile(p4, cfg={’topcells’:5, ’forcepowerlaw’:True})

>>> plot_profile_3d(p5, cfg={’saveas’:’../testfiles/tut_demo5.pdf’})

Note that in this example, we used forepowerlaw=True, because the roughness values were not
realistic and matplotlib would run into numerical problems.

0 100 200 300 400 500 600 700
profile station [m]

8

7

6

5

4

3

2

1

0

p
ro

fi
le

 d
e
p
th

 [
m

]

section view

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Figure 4.8: Extrapolated velocities

4.3 Recommended

4.3.1 Profile Visualisation

plot profile 3d

So far we have only seen one way to visualize profile data. Now lets see the others:

>>> plot_profile_3d(p3, cfg=dict(style=’contour’, saveas=’../testfiles/tut_demo6a.pdf

’, title=’contour demo’))

Figure 4.9: Contour Plot

When trying to plot secondary flows it is recommended to make sure the y-axis for velocities is
aligned parallel to the profile. For optical reasons, one would probably want to thin out the data a
bit:

ADCPtool Reference Manual 24



4.3 Recommended

>>> p0_sf = ProcessedProfileObj(p_raw, dict(proj_method=3, uv_rot=1), startingpoint)

>>> p1_sf = get_averaged_profile(p2, cfg={’order’:5})

>>> plot_profile_3d(thin_out(p1_sf, dict(keep_ensemble=5)), cfg=dict(style=’vector’,

components=[’y’,’z’], saveas=’../testfiles/tut_demo6b.pdf’, title=’vector demo’))

It should also be noted, that the demo measuremend data are not really suited, to demonstrate this
effect, but it was demonstrated how it could work.

0 100 200 300 400 500 600 700
profile station [m]

8

7

6

5

4

3

2

1

0

p
ro

fi
le

 d
e
p
th

 [
m

]

vector demo

Figure 4.10: Attempted visualisation of secondary flows

4.3.2 Export in other Formats

The different output formats have already been discussed in Sec. 3.2.7 and they are pretty similar,
so we just want to demonstrate it for DXF and custom ASCII output.

DXF Output

DXF output is as easy as:

>>> writeDXF3D(p5, ’../testfiles/demo7_p5_3d.dxf’, vel_scale=40)

>>> writeDXF2D(p5, ’../testfiles/demo7_p5_2d.dxf’, vel_scale=40)

Figure 4.11: Output of writeDXF3D()

Custom ASCII Output - Example 1

In a first example, we want to export the cell coordinates and their velocity components.

>>> writeAscii3D(p5, ’{x} {y} {z} {vx} {vy} {vz}’, ’../testfiles/tut_demo8_velocities

.txt’)

This produces an output which is correct, but not very pleasing:

ADCPtool Reference Manual 25



4.3 Recommended

...

0.0 0.0 -3.44 0.0487707013245 0.00411604185165 -0.00629261246467

-0.0352388493007 0.138668689947 -0.19 0.0809096270561 -0.00156761831666 -0.011711294767

-0.0352388493007 0.138668689947 -0.44 0.0798823693507 -0.00154771527109 -0.0115626039594

-0.0352388493007 0.138668689947 -0.69 0.0787844753962 -0.00152644365317 -0.0114036888811

...

Therefore we use the specify the space each argument is allowed to fill and the number of decimals:

>>> import datetime

>>> header=’# generated on: {} \n# x y z v_x v_y v_z \n’.format(datetime.datetime.now

().strftime(’%x %X’))

>>> writeAscii3D(p5, ’{x:6.2f} {y:6.2f} {z:6.2f} {vx:9.2e} {vy:9.2e} {vz:9.2e}’, ’../

testfiles/tut_demo8_velocities_awesome.txt’, header=header)

Which produces an output that is much more readable:

# generated on: 12/20/12 13:21:44

# x y z v_x v_y v_z

0.00 0.00 -0.19 8.32e-02 7.02e-03 -1.07e-02

0.00 0.00 -0.44 8.21e-02 6.93e-03 -1.06e-02

0.00 0.00 -0.69 2.96e-02 -5.45e-04 -1.51e-02

0.00 0.00 -0.94 7.77e-02 9.00e-03 -1.14e-02

...

Custom ASCII Output - Example 2

As a final exercise, we will print the estimated roughness values:

>>> header2d=’# generated on: {} \n# x y ks tau_shear v_shear\n’.format(datetime.

datetime.now().strftime(’%x %X’))

>>> writeAscii2D(p4, ’{x:6.2f} {y:6.2f} {ks:9.2e} {tau_shear:9.2e} {v_shear:9.2e}’, ’

../testfiles/tut_demo8_rouhgness.txt’, header=header2d, voidtext=-999)

And the output should look like this:

# generated on: 12/20/12 13:21:44

# x y ks tau_shear v_shear

0.00 0.00 -9.99e+02 -9.99e+02 -9.99e+02

0.42 -1.64 -9.99e+02 -9.99e+02 -9.99e+02

...

0.56 -2.19 2.14e+15 1.12e-03 -1.06e-03

0.64 -2.51 2.13e+03 6.76e-02 -8.22e-03

...

The roughness values are now ready for further processing in other programs. Note that values of −999 are
invalid values. This was set with voidtext=-999.

4.3.3 Conclusion

This chapter has provided everything needed to use ADCPtool. For developing and testing own scripts, it
is recommended to comment out the plot functions, as they consume a significant amount of time. Also
Pythons pickel module is a good alternative way to re-compute data every run by storing temporary results
(all Python objects, variables) on hard disk.

ADCPtool Reference Manual 26



Bibliography

[1] Paraview: open-source, multi-platform data analysis and visualization application.
http://www.paraview.org.

[2] N. R. C. Canada. Blue kenueTM: Software tool for hydraulic modellers. http://www.nrc-
cnrc.gc.ca/eng/solutions/advisory/blue kenue index.html.

[3] N.-S. Cheng. Power-law index for velocity profiles in open channel flows. Advances in Water Resources,
30:1775 – 1784, 2007.

[4] T. Karvonen. Hydraulics script. http://civil.tkk.fi/fi/tutkimus/vesitalous/www oppikirjat/yhd 122010/, 2009.

[5] Teledyne RD Instruments. Acoustic Doppler Current Profiler - Principles of Operation, 1996.

[6] Teledyne RD Instruments. WinRiver II User’s Guide, 2007.

27



List of Figures

2.1 Definition of Profile, Ensemble, Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Available projection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Variables within velocity extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Flow chart for extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 A sucessfully opened Python interactive shell on Windows . . . . . . . . . . . . . . . . . . . . . 19
4.2 Output of plot profile 2d(p0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Velocities at the unmodified profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Velocities without outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Averaged Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Roughness and Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8 Extrapolated velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.9 Contour Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.10 Attempted visualisation of secondary flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.11 Output of writeDXF3D() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

28



List of Tables

3.1 Variables of startingpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Variables of processing settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Variables of cfg outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Variables of cfg average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Variables of cfg logfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Variables of cfg extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Variables inside cfg for plot profile 2d() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 Variables inside cfg for plot profile 3d() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Available Export Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10 Available Variables for formatstrting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

29


	1 Introduction to ADCPtool
	1.1 What is it?
	1.2 Getting Started
	1.2.1 Requirements
	1.2.2 Installing

	1.3 How to use it

	2 Basics of Acoustic Doppler Current Profiler
	2.1 ADCP Basics
	2.2 Conventions and Definitions

	3 Program description
	3.1 Overview
	3.2 In-Depth Module Description
	3.2.1 Initial Processing
	3.2.2 Outlier Detection and Removal
	3.2.3 Velocity Averaging
	3.2.4 Roughness and Shear Stress Estimation
	3.2.5 Extrapolation of cells
	3.2.6 Profile Visualisation
	3.2.7 Export Formats


	4 Tutorial
	4.1 Required
	4.1.1 Import
	4.1.2 Geo-Mapping

	4.2 Optional
	4.2.1 Outlier Removal
	4.2.2 Averaging
	4.2.3 Roughness and Shear Stress Estimation
	4.2.4 Velocity Extrapolation

	4.3 Recommended
	4.3.1 Profile Visualisation
	4.3.2 Export in other Formats
	4.3.3 Conclusion



