

Open Thesis / Project **Design of an Energy-Efficient MAC Protocol for Ultra-Wideband Systems**

Thesis Type

Master Project / Master Thesis

Motivation

Ultra-wideband (UWB) has become one of the most promising technologies for indoor positioning thanks to its robustness and high time-domain resolution. Indeed, UWB devices are nowadays ubiquitous: big players such as Apple, Samsung, and Xiaomi have started to include UWB radios into their high-end smartphones; whereas car manufacturers already rely on this technology to enable secure access to vehicles. As this communication technology becomes pervasive, there is a need to further increase its energy-efficiency, as several locationaware IoT applications running on tiny low-power embedded devices will soon disrupt the market.

To this end, we aim to exploit the latest generation UWB transceivers (e.g., NXP Trimension, Qorvo DW3000) to develop energy-efficient MAC protocols that can offer at the same time a high scalability and a reliable communication performance. In this project, you will hence be focusing on the next-generation UWB transceivers, and investigate new communication paradigms for UWB-based systems, ultimately evaluating the performance of your solution and comparing it to the state of the art.

Goals and Tasks

Within this context, you will explore several directions and perform different tasks, such as:

- Exploring the features of the new generation UWB transceivers (e.g., the Qorvo DW3000 or the NXP Trimension), implementing a driver supporting them in an embedded OS;
- Developing an energy-efficient MAC protocol for UWB-based systems that can still sustain a high reliability and scalability;
- Evaluating the performance of your protocol and comparing it with other solutions, quantifying its pros and cons.

Target Group

- Students of ICE/Telematics;
- Students of Computer Science;
- Students of Electrical Engineering.

Required Prior Knowledge

- Knowledge of networked embedded systems;
- Excellent C programming skills;
- Experience with embedded operating systems such as Contiki, Contiki-NG, MyNewt, and Zephyr is of advantage.

Contact Person

- DI Max Schuh schuh@tugraz.at
- Assoc. Prof. Carlo Alberto Boano cboano@tugraz.at

Institute of Technical Informatics Networked Embedded Systems Group

