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Exercice 2: propulsion at low Re

Exercise 2: propulsion in Stokes flows

Introduction

Propelling and swimming in Stokes flows (where Stokes equation is valid) have found a great interest in
the last decades. “Natural” micro swimmers are found in biological processes, including reproduction
(spermatozoa), infection (bacteria), and the marine life ecosystem (algae, plankton) ,... The development
of artificial micro swimmers able to carry payloads and navigate autonomously is considered as a
promising alternative to today’s drug delivery systems, lab-on-a-chip devices, and opens new approaches
for performing microsurgery and micro/nano-fabrication. Work on artificial micro-swimmers is also
performed in the military field aiming for the development of micro surveillance systems as well as
micro-weapons.

In this exercise session, we will consider two kinds of motion under Stokes equation. The first part is
dedicated to low Reynolds numbers and starts presenting the concept of resistance matrix which is
applied on Purcell micro swimmer. The second part deals with lubrication theory. Lubrication flows can
be described using Stokes equation due to their geometrical characteristic (parallel or quasi-parallel) but
can correspond to “large” Reynolds numbers. We apply lubrication theory to snail locomotion.
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Preliminary: Stokes equation

The Navier Stokes equation is recalled below. Under certain conditions, both the convective and
unsteady parts of the Navier-Stokes equation can be neglected leading to the Stokes equation. Can you
express these conditions? It may be useful to Introduce the Reynolds and Strouhal numbers -which
compare respectively the convective term to the viscous one and the convective term to the unsteady

term of the Navier Stokes equation.
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Preliminary: Movement of a solid body with Stokes flows

We consider a solid body immerged in a fluid. The solid body is subjected to a translational movement

(no rotation) at a velocity U. We note v the velocity of the surrounding fluid. We consider no slip

boundary condition at the surface of the body and v=>0 for r> o,

We note T the stress tensor. It can be shown that Tj= - p §; + 2 n e; where n is the fluid viscosity
v

(Newtonian case) and e = %(% + a_:?) . Stokes equation can be reformulated as divT =0 The force F
j i

exerted on a solid body of surface S by the stress field T is F = ¢ TndS or F; = g[ﬁT,-jn]-dS. The

pressure being isotropic, its contributions cancel each other and only the contribution of 2 1 e remains
for the force.

Considering no slip condition, we obtain that at the surface of the solid v=U
Stokes being linear, we further obtain that v must be proportional to U in all space
Finally, it leads to F proportional to v which is itself proportional to U = F is proportional to U!

This demonstration can be made on a more general way including rotational movement and torque.
Doing so, we obtain:

Fi and G; are the component along i of the force and torque respectively, U; is the velocity of the solid
body along i axis and €); is the angular velocity around the i axis. A and D are symmetric, C;=B;.
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12¢  13p)\a R (Q) with R the resistance matrix.

More generally, it writes (g) =-n (

First part: Purcell swimmer

1) Scallop theorem
Let consider a scallop made of two arms of length b connected by a join.
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1) How many degrees of freedom does the scallop possess? As the scallop should swim for a certain time
period, we will consider a periodic way of swimming. Can you propose the simplest sequence of states
which could lead to swimming?

2) We note Bose and O,pen the two extreme states the scallop can take. In which direction does the
scallop swim if Re>>17? If Re<<1?

1) Purcell swimmer

We now consider a swimmer made of a central body of length a with two arms of length b. The so-called

Purcell swimmer has two joints with respective angles 0, and 0, has depicted on the figure below.

T

0, 0,
a

We propose two different sequences of movements which are represented below.

3) Using mirror/time reverse transformation for each step, find which one of these two sequences could
lead to a net propulsion. Can you explain why? Find this result again by drawing the phase diagram of
each sequence.

e Sequence 1:

e Sequence 2:

4) We note Ax and Ay the elementary displacement achieved in the first step of the sequence 2 shown
above. Can you deduce the direction of the propulsion and its amplitude for one cycle of swimming?

5) The experimental results obtained by Brian Chan are reproduced below. Comment the dependence of
the net propulsion with the ratio a/l where | is the total length of the swimmer i.e. [=2a+b?
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Figure 3-5: Net translation per cycle as a function of arm length, normalized to total
body length (I = 2a + b). Note the zero points at a/l = 0 and a/fl = (.5 The curve
¥ = 1.9527¥(1 — 42?) is included merely as a likely interpolation and was not derived
from any theory,
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