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Turbulent near-wall velocity profile
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Turbulent near-wall velocity profiles

Experimental data from Durst et al.: Methods to set up and investigate low Reynolds
number, fully developed turbulent plane channel flows. J. Fluids Eng. 120, 496-503
(1998)
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A(Re,k¢/d) for straight round pipes

Moody diagram of the friction factor A



Tensor Analytical Operations in Fluid Mechanics
Fluid Mechanics and Heat Transfer I, LV 321.100

e The tensor of viscous and/or elastic stresses t reads

T Z-xy T
TYX TW Tyz
T T T

X 7y 7z

e The divergence of the stress tensor (line vector Nabla times the tensor) is a vector

aTXX az-yx aTZX

x oy o

e ary v (nowy w2 YR
[V-z-: z-yx z-w TYZ = + *

ox oy oz

T le Ta 61XZ az-yz 82’22
+ +

oX oy 0z

e The inner product of the stress tensor with the velocity vector (column vector)

To Ty To| (U Uz, +V7, + Wz,
[r-v]=|z, 7, 7, ||V]|=|ur,+vr, +wr,
Ty Ty Thp) \W Uz, +Vz, +Wr,

e The inner product of the velocity vector and the divergence of the stress tensor is
clearly a scalar

_ 0 0 0 0 0
\*/-[V-T]:u[arXX Ly aTZX}LV( Dy sz}tw(ar” AT afzzj

OX oy 0z OX oy 0z OX oy oz

e The divergence of the inner product of the stress tensor and the velocity vector is (of
course) also a scalar

= -1 O 0 0
V. [T-V] = &(U‘[XX +V7,, +Wrxz)+5(u Ty +VT,, +Wryz)+§(u T, +VT, +Wrzz)

e The difference of the two latter equations is denoted by the product with double points
and represents the viscous dissipation function

?~[r-\7]—\7~[§-r]= (r : V\7)= D, = TXXa—u+ryxa—u+rzxa—u+rxyQ+z’wﬂ+rzy@
“ OX oy 0z oX oy 0z
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THE EQUATION OF CONTINUITY IN SEVERAL COORDINATE
SYSTEMS

Cartesian coordinates (z, vy, z):
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Cylindrical coordinates (r, 0, z):

1 0
rsin@%ww) =0
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m%(pug sinf) +

THE EQUATION OF MOTION IN CARTESIAN COORDINATES (z,v, 2)

T-component

Ou, n % % ou, dp
P\ ot

-component %—l—u%—ku%jw,b% ——@
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for a Newtonian fluid with constant p and u:
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THE EQUATION OF MOTION IN CYLINDRICAL COORDINATES

(r,0,z); x=rcosh, y=rsinf, z=z

r-component
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for a Newtonian fluid with constant p and u:
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THE EQUATION OF MOTION IN SPHERICAL COORDINATES
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for a Newtonian fluid with constant p and p:
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COMPONENTS OF THE STRESS TENSOR FOR NEWTONIAN FLUIDS
IN CARTESIAN COORDINATES (z,y, z)
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COMPONENTS OF THE STRESS TENSOR FOR NEWTONIAN FLUIDS
IN CYLINDRICAL COORDINTES (r,6, 2)
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COMPONENTS OF THE STRESS TENSOR FOR NEWTONIAN FLUIDS
IN SPHERICAL COORDINATES (r,0,¢)
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THE FUNCTION (7 : Vu) = ¢, FOR NEWTONIAN FLUIDS
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THE ENERGY EQUATION IN CARTESIAN COORDINATES

Total energy:

9 IV e (9 (e+ B -
ar |P\“ " 2 PP\ ) )~
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where 7,,9% + ... = @, (viscous dissipation function)



Heat conduction equation:

oT do
L GAT 2R
o ¢ i pc

Laplace operator in Cartesian coordinates:

°T T 8T
= +

AT 0x? + oy? 022

Laplace operator in cylindrical coordinates:

2 2
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Laplace operator in spherical coordinates:
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SS 2009 Working Sheet for Energy Equation

Energy equation in integral form:

i%{p(e+\7—;ﬂdv+£p(e+\7—22j(\7-ﬁ)d0 =

+[(V-7,)n,dO+ [(V -7, )n,dO+[(V-7,)n,dO +
o

-[(G-1)do + [ gqdv
0]

For solid bodies we have: v=0 , =0

Energy equation in differential form:

o] o)

= p(\?-fB)—(Vp\?)Jra%(mXX VT, + W, )+

+%(myx +Vt,, + Wryz)+a%(mzx +VT,, + WTZZ)—<§ : EI) +0q

Working Sheet Energy Equation Page 1



Convective Heat Transport:
Internal flows in pipes and channels

(1) General remarks

The marked difference from external flows around submerged bodies is that, in internal flow, the
growth of the boundary layer thickness is limited due to the presence of the pipe or channel walls.

In both internal and external flow we distinguish between laminar and turbulent flow. In internal flow
we additionally need to distinguish between the

e entrance region and
e developed flow.

Assuming incompressible flow, the fully developed flow is defined by the constant velocity profile in
the downstream direction, which holds for flow with heat transfer also, provided that density changes
due to varying temperature may be neglected. The latter is assumed in the following.

This leads to the question if ,.thermally developed flow* can exist at all.

In the following we restrict our discussion to pipes with circular cross section. In many cases, the
results may be applied to channels with non-circular cross section as well if the pipe diameter D is
replaced by the hydraulic diameter Dy: D — Dy = 4 A/U, where A is the flow cross section and U its
wetted circumference.

a) Hydrodynamic entrance

We briefly repeat the hydrodynamic entrance flow, where the flow velocity profile remains
constant from x = xg on: ou/ox =0 and v=0.

This flow field may be sketched as follows:

relbungsfrei Grenzschicht
u(r,x)

u, |
_— : ! o
BT | 5 rTI
N . R—
B WSS AT s e : v ey
- R g, s
— = ) i |

- Anlaufbereich J entwickelt
<4 >

For developed laminar flow we have obtained (Hagen-Poiseuille flow):

u r 2 u 1
—=2|1-| — and mo—=
u, R U 2

Un ... volume flow rate equivalent mean velocity; Umax ... maximum velocity on the pipe axis.

The length of the hydrodynamic entrance region is given (without derivation) by
u.D
v

)I;—EzO.OSReD where Re, =

~N|e

1
For developed turbulent flow we have: L:(Xy = (lj
u 0 R

max

Convective heat transport: internal flow in pipes and channels 1



where y is the distance from the wall, and, for developed flow, 6=R. We also do not derive the
length of the entrance region in turbulent flow which may be estimated as

10 < X& < 60.
D

b) Thermal entrance

In the following derivation we assume that the fluid enters the pipe at uniform temperature T(r,0)
= constant < Ty (pipe wall temperature). We distinguish two thermal boundary conditions for the
flow, which are idealised, but nonetheless close to real situations:

= Tw=constant = qw = qw (X)
= gw=constant = Ty =Ty (X)

In both cases the thermal boundary layer develops, and a state of ,,thermally developed flow” may
be reached. This may be sketched as follows:

Randbedingung
Ty > T(r,0) Qw
] e
.
1 USRS Sy
—] 3 —/5—& ' i\
—] 1 s
P | -: e _ = | —
T(r,0) Tr0) Tw Tro) T, Tro) T
- N thermisch entwickelt
Anlauf I >
xE,th .

The resulting temperature profile depends on the thermal boundary condition. The temperature
increase above the entrance level, however, will increase with the downstream position x in both
cases. This means that the continuing heat transfer across the pipe walls changes the local fluid
temperature continuously.

The thermal entrance length for laminar flow is given (without derivation) by

X
ET'“‘zO.OS Re, Pr where Re, = UnD.
v

This relation represents the dependency of the thermal boundary layer thickness on the Prandtl
number in laminar flow.

o Pr=1 Xgn=Xe Pr>1: Xg > Xe Pr<l: Xgwn<Xeg

Pr ~ 1 for most gases (~ 0.7 for air), Pr > 1 for many liquids,
Pr>> 1 e.g. for highly viscous oils, Pr << 1 for liquid metals with large thermal diffusivity.

(2) Definition of ,,mean quantities*

In internal flow, a well-defined velocity outside a boundary layer does not exist. It is conveniently
replaced by the volume flow rate equivalent mean velocity:

Convective heat transport: internal flow in pipes and channels 2



m

v/ 1
u =—=—/7_u(r)dA
o A{()

Equally important is the definition of a ,,mean fluid temperature* T,,, which characterises the energy
transport through a flow cross section.

The rate of enthalpy transport across a pipe cross section A is given as
H:jpu h(T)dA where T=T(x,r)
A
The mean temperature T, is defined such that the product of mass flow rate and specific enthalpy at
temperature Ty, is the rate of enthalpy transport H.

Mass flow rate: M= j pudA , rate of enthalpy transport: ~ H=mh h(T,,) .
A

If h = ¢, T for ideal gases, and c, = constant, and for incompressible flow, we obtain

jpquA

TmzijpquA = A _ 1
my [puda  u, A
A

jquA
A

This temperature is the ,,enthalpy transport rate equivalent mean fluid temperature”, and u, is the
volume flow rate equivalent mean flow velocity.

(3) Criterion for thermally developed flow

From the above discussion we conclude that, with continuing heat transfer to or from the fluid, the
fluid temperature profile changes continuously, so that

I g ang 9T=a®) g
OX dx

A detailed analysis of this situation showed that a ,,thermally developed* state (denoted by subscript
E) may be defined using a non-dimensional quantity. The following criterion proved reasonable as a
criterion:

-0. (®)

E

0| Tw()=T(r,x)
x| Ty ()T, (x)

In this relation, Tw(X) is the pipe wall temperature, T,(x) the mean fluid temperature and T(r,x) the
local fluid temperature.

This state, characterised by a non-dimensional temperature profile which does not change with the x
coordinate, may be reached with both above mentioned thermal boundary conditions, i.e. with Ty =
constant and with qy = constant.

(4) Conclusions from equation (®)
If the non-dimensional temperature profile does not depend on x, we may conclude that the derivative
w.r.t. the radial coordinate is also not a function of x, i.e.,

E [ .]7& f(X), since Tw and T,, are constants in this derivative. Especially at r=R we have:

Convective heat transport: internal flow in pipes and channels 3



r=R
Q[TW T} o™t
or| T,—T. . Ty —T.,
For the wall heat flux we have
Qw =— A ﬂ = )‘g
oy or
which we may also formulate as
Qw = @ (TW - Tm)
Equating the two expressions yields
q a
S AT, - T)
= = f(X)

(TW _Tm) (TW _Tm)
From this we obtain the following conclusion, which is important for thermally developed flow:
For constant thermal conductivity (independent on x) the heat transfer coefficient a. is constant, i.e.,

a = constant = f(x) for thermally developed flow

This holds both for Ty = constant and for g, = constant. The value of the constant, however, is
different in the two cases.

This criterion does not hold in the entrance region, where the heat transfer coefficient depends on X,
i.e. a = a(x). Around x=0, the thermal boundary layer thickness &, is small and, therefore, the heat
transfer coefficient is high. The thickness &, increases with the downstream coordinate, and o
decreases down to the value of the thermally developed state.

(5) Special conclusions from equation (®) for thermally developed flow
a) Wall heat flux gy = constant

With o = constant, we conclude from Gw _ T, — T, immediately that (T,, — T, )= f(X)
a

and, furthermore

dT,| _ dT.|

= for = constant
dx | ox | e

b) Partial differentiation of equation (®) yields
or| _dT,| (T, -T [dTW _dTm}
e \Ty-T,)L dx dx

X|e
From this we may draw two different conclusions.

e dx

E

1) For qw = constant, using a), we obtain immediately that [...] = 0 and furthermore that the axial
temperature gradient does not depend on r:

ar
OX

= ( dT, | J: dTm| = g(r) for qw = constant
£ dx |E dx ‘E

Convective heat transport: internal flow in pipes and channels 4



Tw
2) For Tw = constant we get

=0 and we conclude that, in this case, the axial temperature

gradient varies across the pipe cross section:

orf  T,-T dTm|

e T,-T. dx|

=h(r,Xx)

These discussions show that the enthalpy transport rate equivalent mean temperature Tr, is a very
important quantity for calculating internal flow with heat transfer.

(6) Global balances, energy balance

For this purpose we consider a pipe with constant cross section (diameter D) and length L. Heat is
transferred across the pipe wall under the influence of convection. The kinetic energy of the flow is
treated as constant, and heat conduction in the x direction of the flow is neglected because of its small
influence on the balance.

. X . A

! | S q _____ I ___________

! +Q ! R l A

'm m ! :
- —> : '

| ) n ... @rrcncccccen s i n
Tm. ein TI'TI. aus Aem AO Aaus

The energy equation for the sketched control volume reads
E
Jp(e+—](\7ﬁ)d0 =—[p(vi)dO-[grdo
o) 2 o 0
where O denotes the total surface of the control volume. Special evaluation for the present case yields

—J'p [e+\7—2jvd0+ j 0 [e+v—2jvd0: jpde— I pvdO- j(—q) do
Ain 2 Aout 2 Air\ AO

A

out

Due to the equal kinetic energies at the entrance and exit, we may rewrite the equation and obtain

I pV (e+EJ dO - jpv (e+EJ dOoO = Q
Aout p Ain p
where Q is the total rate of heat transferred across the control volume walls. Introducing the enthalpy

h=e+ P we obtain
p

H.. - H,= Q,

out in

and using the earlier definition of the enthalpy transport rate H =m h(T,)=mc, T, yields a very

important relation between the change of mean fluid temperature between entrance and exit and the
rate of heat transferred:

T

i)

Q=mc, (T

m,out

Convective heat transport: internal flow in pipes and channels 5



Except for the special assumptions used (ideal gas etc.), this relation is general and does not depend on
the special boundary condition, which may be either gy = constant or Ty = constant. There were also
no restrictions about developed or developing flow.

The above calculation also did not use any restrictions about the pipe length — the relation may
therefore be used between any two cross sections of the pipe. We may derive from it a balance for a
pipe element with the differential length dx, which renders the formulation even more general:

X

dQ=mc, (d;-m dxj

For dQ the relation dQ =q,, U dx also holds, where U = = D is the circumference of the pipe cross
section. For the heat flux we may substitute g, = a (T,, —T,,) to obtain
dQ=a(T, - T,)Udx
Equating the two relations for dQ yields
dT, aDnx

& e, (Tw —To) (®®)

This relation is essential in the calculation of the mean temperature profile. The solution depends on
the boundary condition. In general the pipe diameter D may be a function of the downstream
coordinate x.

We may deduce the following behaviour from this equation:

dT )
T, >T = m > 0: Heatin
w dx g
Ty <T, = ddTm < 0: Cooling
X

D-constant — 27 —constant

me

In summary we conclude:
In the entrance region, the heat transfer coefficient o = a(x), for thermally developed flow o =

constant. Independently on the special boundary condition, Ty, = Tp(X) !

(7) Conclusions for gy = constant

For this case we have Q = q,, UL, so that the difference between the entrance and exit fluid
temperatures may be immediately calculated from the global energy balance.

From g, =a (T, —T,)=constant with m ¢, =constant we further conclude from equation
(®®) that

dT,

m

dx

_w DTy,

p

Integration between x = 0 and a variable position x down the pipe, using the entry boundary condition
Tm(x=0) = Trmin , We obtain

T.00 = T+ M x for qw = constant
p

This means that the mean fluid temperature varies linearly with the coordinate x, both in the entrance
region and in thermally developed flow. For the entrance region we furthermore conclude from

Convective heat transport: internal flow in pipes and channels 6



Ay =a(X)(T,, =T, ) that (T, — T, ) increases with x, since a(x) decreases. The mean fluid
temperature profile for g,, = constant may therefore be sketched as follows:

T

Anlauf entwickelt

gy

T, (x

'y

Note that, even in the more general case that qw = qw(X) is variable, but a known function, and D =
D(x), equation (®®) may be integrated.

With Q = J.qw )dx the difference (T T . ) may also be calculated.

m,out  'm,in

(8) Conclusions for Tyy = constant

We start again from equation (®®) which we note down again here

dTm . GDT[(

dx rhcp

TW _Tm)

With Ty = constant we may introduce conveniently a temperature difference AT(x) = T,, — T, (X)
to facilitate the calculation. This manipulation turns equation (®®) into the form

_d(aT) _ Ua ,;
dx mc,
Separation of variables and integration yields
Tout d AT X AT X
( _ Y Ja )dx = In—2u--— .UX 1 Ia(x) dx (RR®)
ot AT mc, AT, mc, | X g

I 1% _ . -
where the expression in square brackets {—J‘a(x)dx} = a, is the mean heat transfer coefficient
X
0
between x = 0 and any position x down the pipe. Rewriting the equation yields

T, —T (X
Ao _Tw=Tn(¥) _ o[ UX 5]
AT TW_Tm,in mc,

n

From this equation we see that the temperature difference T,, — T, (x) decreases exponentially with
increasing coordinate x. This dependency is sketched in the following picture.

Convective heat transport: internal flow in pipes and channels 7



AT,

ain

0 L
The exponential mean temperature profile makes the calculation of the rate of heat transferred a bit

more complicated than before. The global energy balance between entry and exit reads in a rewritten
form

Q =m Cp [(TW _Tm,in)_ (TW _Tm,out ):I =m Cp [ATln o ATout]

Expressing (m C,) with the help of equation (®®®) above we obtain

— AT, —AT _
Q=U X a, % = Ao Q, (ATIog)
In out
AT,
where
, AT, —AT, N
Ao = Ux is the transfer surface and AT, =—2"——" the logarithmic mean temperature
|n ATOI.H
AT,

difference. This relation represents a heat transfer law relating the total rate of heat transferred to the
mean fluid temperature difference between entry and exit.

Note: The two above mentioned thermal boundary conditions represent simplifications, but they may
be related to practical situations in many cases.

e (gw_= constant: electrically heated walls or constant heat load of the outer wall surface by
radiation.

e T, = constant: in many practical processes with phase transition (boiling, condensation).

e Both boundary conditions may be enforced by appropriate control of heating or cooling.

(9) Determination of heat transfer coefficients and Nusselt numbers
(a) Laminar flow in pipes of circular cross section, thermally fully developed.
For this case we know the velocity profile

2
i=2 1—(Lj where U :1 and v=0.
R 2

m

Convective heat transport: internal flow in pipes and channels 8



The energy equation for incompressible, steady flow and negligible viscous dissipation, using the

boundary layer approximation

2T 2
<<—, reads
or

X2

or ol 16( GTJ
U—+V-—=al-—|I—
OX or [r or\ or

For fully developed flow with v = 0 we may solve the simplified equation

oT 10( oT
U—=a|-—|I—
OX L 8r( 6rﬂ

For this case we have shown above that

aT|
OX

Wall heat flux gy = constant

_dT,
e dx

E
and also that the mean fluid temperature varies linearly with the x coordinate. In this case the

2

boundary layer approximation o =0 is exact. Substituting the velocity profile into the
X

energy equation, we may integrate to obtain the temperature profile T(r,x). From this result
and upon introduction of the mean fluid temperature T,, we may deduce by some
manipulations the following important result:

aD

Nu = _)\ = 4.36 for gw = constant in a pipe with circular cross section

The Nusselt number formed with the pipe diameter as the length scale is constant for this
case.

Wall temperature Ty, = constant

We start again from the energy equation with boundary layer approximation. Using the
results derived above for Ty, = constant we obtain an equation which cannot be solved in a
closed form but requires an iterative method. The result for the Nusselt number is

aD

Nu = A = 3.66 for Tw = constant in a pipe with circular cross section

(b) Turbulent flow in pipes with circular cross section, thermally fully developed region

The two subsequent relations are valid for moderate temperature differences (Tw — Trm) only, and
the fluid material properties must be determined at the temperature T,,. Both relations are valid
both for Ty = constant and for qw = constant and were experimentally validated in the following
ranges of the parameters:

0.7 < Pr < 160

Re, = 2 - 10000
A%

£210
D

Convective heat transport: internal flow in pipes and channels 9



e  Colburn equation:

Nu = — = 0.023 Re!® Pr®

e Dittus-Boelter equation:

Nu = % ~ 0.023 Re’ Pr"

where n=0.4  for heating Ty > Ty,
and n=0.3 forcooling Ty < Ty, .

Finally we note that both relations are very easy to apply, but they include errors in the rate of
heat transfer of up to 25%. We do not present more complex relations here.

(c) Flow with heating in the entrance region

The calculation of heat transfer in the thermal entrance region and in a combined hydraulic
and thermal entrance is more complex. Appropriate relations determining the Nusselt
numbers may be found in the literature.

Convective heat transport: internal flow in pipes and channels 10



Institute of Fluid Mechanics and Heat Transfer

Graz University of Technology
Fluid Mechanics and Heat Transfer I, UE (LV 321.101)

Physical properties of water at the pressure p =1 bar

T P Cp p A u v a Pr

[°C] [kg/m?] [J/kg K] [10%/K] [W/m K] [10°Pa s] [10° m?/s] [10°m¥/s] []
-20 992.8 4375 - 0.7056 0.5118 4311.0 4.342 0.118 36.85
-15 995.8 4312 - 0.4946 0.5259 3312.8 3.372 0.122 27.17
-10 997.8 4269 - 0.3281 0.5388 2533.4 2.639 0.125 20.86
-5 999.1 4238 -0.1943 0.5508 2149.4 2.151 0.130 16.54
0 999.8 4217 - 0.0852 0.5620 1791.8 1.792 0.133 13.44
5 1000.0 4202 0.0055 0.5724 1519.6 1.520 0.136 11.16
10 999.8 4192 0.0823 0.5820 1307.6 1.308 0.139 9.42
15 999.2 4186 0.1486 0.5911 1139.0 1.140 0.141 8.07
20 998.3 4182 0.2067 0.5996 1002.6 1.004 0.144 6.99
25 997.2 4180 0.2586 0.6076 890.8 0.893 0.146 6.13
30 995.8 4178 0.3056 0.6151 797.7 0.801 0.148 5.42
35 994.1 4178 0.3488 0.6221 719.5 0.724 0.150 4.83
40 992.3 4179 0.3890 0.6287 653.1 0.658 0.152 4.34
45 990.3 4180 0.4267 0.6348 596.3 0.602 0.153 3.93
50 988.1 4181 0.4523 0.6405 547.1 0.554 0.155 3.57
55 985.7 4183 0.4963 0.6458 504.3 0.512 0.157 3.27
60 983.2 4185 0.5288 0.6507 465.8 0.475 0.158 3.00
65 980.5 4187 0.5590 0.6553 433.8 0.442 0.160 2.77
70 977.7 4190 0.5900 0.6595 404.5 0.414 0.161 2.57
75 974.7 4193 0.5190 0.6633 378.3 0.388 0.162 2.39
80 971.4 4196 0.6473 0.6668 355.0 0.365 0.164 2.23
85 968.5 4200 0.6748 0.6699 333.9 0.345 0.165 2.09
90 965.1 4205 0.7018 0.6728 315.0 0.326 0.166 1.97
95 961.7 4210 0.7284 0.6753 297.8 0.310 0.167 1.86
99.63" 958.4 4215 0.7527 0.6773 283.3 0.296 0.168 1.76

*) State of saturation

Thermophysical Properties of Water and Air (from the VDI Heat Atlas)
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Institute of Fluid Mechanics and Heat Transfer

Graz University of Technology
Fluid Mechanics and Heat Transfer I, UE (LV 321.101)

Physical properties of water at the pressure p =5 bar
T P Cp p A u v a Pr
[°C] [kg/m?] [J/kg K] [10%/K] [W/m K] [10°Pa s] [10° m?/s] [10° m?/s] []
0 1000.0 4215 - 0.08376 0.5622 1791 1.79 0.133 134
25 997.3 4178 0.2590 0.6078 890.7 0.893 0.146 6.12
50 988.2 4180 0.4622 0. 6407 547.2 0.554 0.155 3.57
75 974.9 4192 0.6185 0.6635 378.4 0.388 0.162 2.39
100 958.3 4215 0.7539 0.6777 282.3 0.295 0.168 1.76
150 916.8 4310 1.024 0.6836 181.9 0.198 0.173 1.15
Physical properties of water at the pressure p = 10 bar
T P Cp p 8 u v a Pr
[°C] [kg/m?] [J/kg K] [10%/K] [W/m K] [10°Pa s] [10° m?/s] [10°m¥/s] []
0 1000.3 4212 -0.08199 0.5625 1790 1.79 0.134 13.4
25 997.6 4177 0.2595 0.6081 890.6 0.893 0.146 6.12
50 988.5 4179 0.4620 0.6410 547.2 0.554 0.155 3.57
75 975.1 4191 0.6179 0.6638 378.6 0.388 0.162 2.39
100 958.6 4214 0.7530 0.6780 282.4 0.295 0.168 1.76
150 917.1 4308 1.022 0.6839 182.0 0.198 0.173 1.15
Thermophysical Properties of Water and Air (from the VDI Heat Atlas) Page 2




Institute of Fluid Mechanics and Heat Transfer
Graz University of Technology

Fluid Mechanics and Heat Transfer I, UE (LV 321.101)

Physical properties of water in the state of saturation (liquid)

T P P Cp p A u v a Pr
[°C] [bar] [kg/m?] [J/kg K] [10°/K] [W/m K] [10°Pa s] [10° m?/s] [10° m?/s] []
0.01 0.00611 999.8 4217 -0.0853 0.562 1791.4 1.792 0.1333 13.44
10 0.01227 999.7 4193 0.0821 0.582 1307.7 1.308 0.1388 9.42
20 0.02337 998.3 4182 0.2066 0.600 1002.7 1.004 0.1436 6.99
30 0.04242 995.7 4179 0.3056 0.615 797.7 0.801 0.1478 5.42
40 0.07375 992.2 4179 0.3890 0.629 653.1 0.658 0.1516 4.34
50 0.12335 988.0 4181 0.4624 0.640 547.1 0.554 0.1550 3.57
60 0.19919 983.1 4185 0.5288 0.651 466.8 0.475 0.1582 3.00
70 0.31151 977.7 4190 0.5900 0.659 404.4 0.414 0.1610 2.57
80 0.47359 971.6 4197 0.6473 0.667 355.0 0.365 0.1635 2.234
90 0.70108 965.1 4205 0.7019 0.673 315.0 0.326 0.1658 1.969
100 1.01325 958.1 4216 0.7547 0.677 282.2 0.294 0.1677 1.756
110 1.4326 950.7 4229 0.8068 0.681 254.9 0.268 0.1694 1.583
120 1.9854 942.8 4245 0.8590 0.683 232.1 0.246 0.1707 1.442
130 2.7012 934.6 4263 0.9121 0.684 212.7 0.228 0.1718 1.325

Thermophysical Properties of Water and Air (from the VDI Heat Atlas)
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Institute of Fluid Mechanics and Heat Transfer

Graz University of Technology
Fluid Mechanics and Heat Transfer I, UE (LV 321.101)

Thermophysical Properties of Water and Air (from the VDI Heat Atlas)

Page 4

Physical properties of dry air at the pressure p =1 bar
T P Cp p A u v a Pr
[°C] [kg/m?] [J/kg K] [10%/K] [W/m K] [10°Pas] | [10°m?s] [10° m?/s] []
-40 1.4952 1006 4.304 0.02145 15.09 10.09 14.3 0.71
-20 1.3765 1006 3.962 0.02301 16.15 11.73 16.6 0.71
0 1.2754 1006 3.671 0.02454 17.10 1341 19.1 0.70

20 1.1881 1007 3.419 0.02603 17.98 15.13 21.8 0.70
40 1.1120 1008 3.200 0.02749 18.81 16.92 24.5 0.69
60 1.0452 1009 3.007 0.02894 19.73 18.88 27.4 0.69
80 0.9859 1010 2.836 0.03038 20.73 21.02 30.5 0.69
100 0.9329 1012 2.684 0.03181 21.60 23.15 33.7 0.69
120 0.8854 1014 2.547 0.03323 22.43 25.33 37.0 0.68
140 0.8425 1017 2.423 0.03466 23.19 27.53 40.5 0.68
160 0.8036 1020 2.311 0.03607 24.01 29.88 44.0 0.68
180 0.7681 1023 2.209 0.03749 24.91 32.43 47.7 0.68
200 0.7356 1026 2.115 0.03891 25.70 34.94 51.6 0.68
250 0.6653 1035 1.912 0.04243 27.40 41.18 61.6 0.67

T  Temperature in °C B Thermal expansion coefficient a Thermal diffusivity

p Pressure A Thermal conductivity Pr  Prandtl number

p Density p  Dynamic viscosity

Cp, Specific heat capacity at p = constant v Kinematic viscosity




FICK's law (equimolar counter-diffusion in binary systems)

~ D dea kmol
JA = —UUAB
dz m2-s
D ,p ... diffusion coefficient
Characterisation of mixtures with K components
Wy
" Mg i Pi Pges
molar quantities Ty = G c;i = Cges =
Z wj MG,i MG,ges
j=1 Mg,j
— 7; - Mg,
mass-based quantities | w; = — ~ pi =Ci* Mg | Pges = Cges - M ges
> xj- Mg
Jj=1
. . K
molar quantities: Mg ges = > v - Mg
1=
.. 1
mass-based quantities: Mg ges = =
> i
i=1 Mei
The balance equation
aCz‘

-

ot

where 7; is the diffusive molar flux

Chemical reaction rate

Equimolar diffusion

dy; = ———

D c

One-sided diffusion - STEFAN diffusion

dy;
L=y B

_ids

D ¢

ko [kmol]
m3.s

Cartesian one-dimensional

Cartesian one-dimensional




Mass fluxes Molar fluxes

my = pwiv — pD grad w, ny = cx10 — c¢D grad x;
Mo = pwot — pD grad wy No = cxo® — cD grad x,

w1 +wy =1 grad wy + grad wo =0 | 1 + 29 =1 grad 1 + grad 2o =0

vad— (2, 90
srac =\ as oy’ 0z

total: 1 = puU

S
Il
Q
Sy

One-dimensional differential component transport equation for binary mixtures in equimolar
diffusion

oy _ 0y
ot 022

2. F1icK’s law

Diffusion coefficient for binary gas mixtures

FULLER/SCHETTLER/GIDDINGS developed the following empirical relation:

D 1,43-1077. T [mj
= 2
p M5, [(Zo) + (Zv)y] i
Dovennn. Pressure [bar]
T...... Temperature [K]
Mc¢ .... Molar mass [kg/kmol]
Voot Atomic diffusion volume
2
MG,12 - 1 1
Mg T Mg 2




Atomic diffusion volume v.

Atomic and structural increase of diffusion volume

C 15.9 F 14.7
H 2.31 Cl 21.0
O 6.11 Br 21.9
N 4.54 1 29.8
Aromatic ring —18.3 S 22.9

Heterocyclic ring —18.3

Diffusion volume of simple atoms, molecules and mixtures

He 2.67 cO 18.0
Ne 5.98 COq 26.9
Ar 16.2 N>,O 35.9
Kr 24.5 N Hj 20.7
Xe 32.7 H>O 13.1
H, 6.12 SFg 71.3
D, 6.84 Cly 38.4
Ny 18.5 Bry 69.0
Os 16.3 SO, 41.8
Luft 19.7

Non-dimensional mass transfer numbers

Mass transfer across a flat plate in laminar parallel low

Sh, = 0.332,/Re, - Sc'/?

for

Re < 10° and 0.6 < Sc < 2000

Mass transfer in turbulent flow

Turbulent flow along a flat plate (Zhukauskas)

Shy = 0.0296 Re2® . S48
for Re > 10° and Sec < 380

Sh = 0.037 Re*® . S04



Mass transfer across a flat plate in laminar or turbulent flow

In most practical cases, a laminar boundary layer is not formed even at moderate Reynolds
numbers due bluff plate tips and the turbulence level of the incoming flow. KRISCHER
and KAST represented experimental data including both the laminar and the turbulent
flow regimes by a mean curve.

The result allows the mean Sherwood number for the plate length L to be calculated for
a wide range of Schmidt numbers using the relation

Sh=\/Sh2, +Sh%,,  for 10 < Re <107 and 0.7 < Se < 70,000

lam

The laminar Sh number is given by POHLHAUSEN's relation

Shiam = 0.6641/Rey - v/ Sc

and the turbulent Sherwood number follows from the more recent relation by PETUKHOV
and Popov

0.037 - Re®® - Se
14 2.443 - Re=01(S¢?/3 — 1)

The characteristic numbers in these relations are defined as

Shturb -

ool Se= sn= "k

v
fer = v D D

The global mean rate of mass transfer

Empirical and semi-empirical relations for mass transfer on spheres

Re Sc Sh
GARNER/SUCKLING 100 + 700 | 1100 <+ 2200 | 2+ 0.95v/ReSc'/?
FROSSLING > 100 < 1000 2 4 0.552v/ReSc!/?
STEINBERGER/TREYBAL | 10 + 17-10% | 1 =+ 70000 | 2+ 0.347Re%625c031
ROWE u.a. 25 + 1150 1220 0.79v/ReSc'/?

Mass transfer on submerged individual bodies of various shape

Sh = Shoin + | Shhp + ShZ,,

lam

Sphere Shopin = 2
Infinitely long cylinder Sh,,;, = 0.3
Plate Shpin =0




Tabelle 1: Characteristic contact length L’ for various bodies.

™

sers angestr()'mt

SK1ZZE BESCHREIBUNG ANSTROMLANGE
l Ebene Platte L'=L
langs angestromt
l Kreiszylinder , T
quer angestromt L'= 2 D
l Kugel L=D
Y
2
l Kreisscheibe I = /4 D
3 in Richtung eines Durchmes- T4




SK1ZZE BESCHREIBUNG ANSTROMLANGE
l Rechteckformiges Prisma
L, quer angestromt
a) Stromung L1 auf eine Fla- L'=1L+L,
che
Ly
l b) Strémung 1 auf eine Kan- L'=L+L,
L, te
l Wiirfel .
L' =150L
a) Stromung L auf eine Fla-
che
5
W
g
>
[~
| :
S
3
b) Strémung L auf eine Kan- . @
e L'=124L %
3
o]
[
5]
S
l )
£
(V]
£
c¢) Stromung L auf ein Eck L' =116L




BESCHREIBUNG

ANSTROMLANGE

Ellipsenformiger Zylinder
quer angestromt

L= —’25[1,5(a+b)—«/<75]

]
/4
& =7 (a+0b)
2b
l Ellipsenformig Scheibe
]
S a) Stromung | zur kleinen L' = —g—a
\ Halbachse
\
2b
Q]\ b) Strémung L zur grofen L' = 2 b
N Halbachse 2
r
2a
l Rotationsellipsoid
]
2
© , (a+d)
N % a) Stromung L zur kleinen L= b
\ Halbachse
2b
l 2
] b) Stromung L zur grofen I = (a+0b)
Q Halbachse 2a
y K ‘;///




SK1ZZE BESCHREIBUNG ANSTROMLANGE
l Dreieckformiges Prisma
quer angestromt
- ! 3
a) Stromung 1 auf eine Kan- L' = > L
te
b) Stromung L auf eine Fld- L' = 3 L
che 2
l Winkelférmiges Prisma
quer angestromt
a) Stromung L auf Winkel- L =2L
kante
1) a > 60° L'=1L
2) a < 60°
b) Stromung L in den Winkel ,
=2L
1) a > 60° L
2) a < 60° L'=1L
Kreuzformiges Prisma L' =4L

quer angestromi

Stromung L auf Kante




SKI1ZZE BESCHREIBUNG ANSTROMLANGE

l Berippte Rohre
D quer angestromt
a) kreisformiges Rippe =" JD? + B2
2

b) rechteckformige Rippe L ="Jp? +12
"S5} ;
\ muit
h =0,565- L, L_D
L, L, 2

Mass transfer in internal flow in channels and pipes
Na = ABAc,

—_— ACA’O — ACA,L
ACA =

Acao
Aca,r,

In hydraulically developed laminar flow in pipes with circular cross section

Bd 0.188 (Re Scd)"
D a\"
140.117 (Re Scf )

Ratio of concentration entrance length to pipe diameter

LO,c
d

= 1.365 Re Sc

In hydraulic and concentration entrance in pipe with circular cross section (laminar)

Ratio of hydraulic entrance length to pipe diameter

LO,u

d

= 0.0575 Re

Ratio of concentration to dynamic entrance lengths

LO,c

=23.7-85
LO,u ¢

0.0677 (Re S )™

>0
140.1-S5c0%17 (Re Sc%)m3

Sh = 3.66 + for 0.1 < Se¢ <100 and Re SC-Z >




Mass transfer in turbulent flow in pipes with circular cross section

Hydraulically smooth pipe wall

Sh= 20 fic- Se (1— 180 ) 1+<d>2/3
8 1.07 +12.7 (S — 1) | /2 het ™ L

The above relation is valid for the regimes

Re > 2300 Sc>0.5 0< =<0

&~

The friction factor Ay for smooth pipe wall may be calculated for arbitrary Reynolds
number of turbulent pipe flow using the relation by FILONENKO:

1
)\0 - D)
(1.82 - logipRe — 1.64)
Rough pipe wall
A Re - Sc

Sh, =
81+ (Sc;\—; — 1) 1.5 Re~1/8. §¢—1/6

1 . 251 1K
= —2-lo _
VoW N\ Re/x, 371

Phase equilibria

Range of low concentrations (x; — 0):

Here we may apply HENRY’s law:

pi=H;, -x; where H,;, = f(T)is only a function of temperature

H.
or p;=H;.-¢; where H;.=—"
Cr
H
or y;=H; x; where H=-"""
p

where the HENRY constant has the following dimensions:

10



Range of high concentrations (z; — 1):

Here we may apply RAOULT’s law:
pi =i p;
where p; [Pal is the vapour pressure of the pure component i.

The mass transport coefficient

Mass transport coefficient related to the gas phase

1
k, =

24 1 Hi .
Big + RTr-Bi 5

Mass transport coefficient related to the liquid phase

1
RTT 1
Hi,c'ﬁi,g ﬂz,f

k@f -

Mass transfer resistances
We define the following mass transfer resistances:

A) For the gas phase:

related to the gas phase:

H; H; H; 1
related to the liquid phase: S — = o B, Ty
quia p RT, "W RT, RT; Biy
:jg I C:.",g %)
B) For the liquid phase:
RTy RTy RT; 1 .
related to the gas phase: ——Cigoo— —Ci = . - Ny
gasp H;, ¥ H;. ugd Hi. Big
c:,f,oo C’vaal
o s 1 .
related to the liquid phase: Cif.1 = Cifroo = BTf - N,
HTU/NTU approach for constant phase flow rates
N Yi,w d
HTU, = NTU, = + / Yi
Uclk@g v; y;k — Y

11

1
Tigg = 57
2,9
Hi,c
T =
7g7f RT ,Bz,f
RT; 1

T = —
,fs9 Hi,c Bi,g

Ti7f7f = /Bf
2y




or )
Ny
U Cgk‘hf

dl’i

HTU2 == *

NTU, = + /

T,

Dependency of the mass transfer coefficient on the molar fraction (binary system)

STEFAN correction

B 1 1
o 1=view 11—y

For gases the correction may be written in terms of partial pressure as per:

L N .
Bo P~ DPic P—Dir
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List of Translations

The present list puts together translations of German words in figures of the present
materials where the figures were not easily transformed into a fully English version. The

meanings of words still contained in those figures are listed here in alphabetic order,

starting from the German word.

Anlauf, Anlaufbereich
Anstromléange

aus

berippte Rohre
Beschreibung
dreieckférmiges Prisma
ebene Platte

ein

ellipsenformige Scheibe
ellipsenformiger Zylinder
entwickelt

Grenzschicht

in einer untergeordneten Schiittung
in Richtung eines Durchmessers angestromt
kreisformige Rippe
Kreisscheibe
Kreiszylinder
kreuzformiges Prisma
Kugel

langs angestromt

mit

quer angestromt
Randbedingung
rechteckformige Rippe
rechteckformiges Prisma
reibungsfrei
Rotationsellipsoid

Skizze

entrance region
wetted length

out

finned pipes
description
triangular cylinder
flat plate

in

elliptic disk

elliptic cylinder
developed
boundary layer

in random packing
in flow along one diameter
circular fin

circular disk
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