Regelungstechnik

Institut für Regelungs- und Automatisierungstechnik

(c) Institut für Regelungs- und Automatisierungstechnik

Technische Universität Graz

Hinweis: Dieses Skriptum dient als Lernbehelf und ersetzt den Besuch der Lehrveranstaltung nicht! Prüfungsrelevant sind ausschließlich die in der Lehrveranstaltung behandelten Themen.

Version vom 26.6.2015

Inhaltsverzeichnis

1	$\mathbf{Beg}_{1,1}$	Begriffe der Regelungstechnik							
	1.1	Die Spreche der Degelungstechnik	7						
	1.2 1.2		10						
	1.0	1 3 1 Drehzahlregelung mit Hilfe des Fliehkraftreglers	$10 \\ 10$						
		1.3.2 Regelung der Raumtemperatur	10						
		1.3.3 Der Pupillenapparat des Menschen	11						
2	ΡΙΓ)-Begler	13						
-	21	Finführung	13						
	$\frac{2.1}{2.2}$	Parallelrealisierung - die Lehrbuchform	13						
	2.2	Serienrealisierung	17						
	2.9 9.4	Praktische Realisierungen	18						
	2.4	2/1 I PD Rogler und PI D Rogler	18						
		2.4.1 I-I D-Regier und II-D-Regier	10						
	25	2.4.2 Windup-Ellekt und Gegenmäßhähmen	19 91						
	2.0	2.5.1 Finstellrogeln nach Ziegler Nichols	21 91						
		2.5.1 Einsteinegen nach Ziegier-Mchols	21						
		2.5.2 Methode der Summenzerkonstante ("1-Summen Reger)	24						
3	Free	quenzkennlinien und Ortskurven	25						
	3.1	Einführung	25						
		3.1.1 Mathematische Grundlagen	27						
	3.2	Frequenzkennlinien	27						
		3.2.1 Normierte Darstellung	28						
		3.2.2 Zerlegung von G(s) in "elementare Bestandteile"	29						
	3.3	Frequenzgangs-Ortskurve	35						
4	Nyo	quist-Kriterium	39						
	4.1	Einführung							
	4.2	Stetige Winkeländerung einer Ortskurve							
	4.3	Formulierung des Nyquist-Kriteriums	42						
	4.4	Vereinfachtes Schnittpunktkriterium	45						
		4.4.1 Durchtrittsfrequenz	45						
		4.4.2 Phasenreserve und Amplitudenrand	46						

		4.4.3 Formulierung des vereinfachten Schnittpunktkriteriums
5	Free	quenzkennlinien - Verfahren 49
	5.1	Allgemeine Überlegungen zum Reglerentwurf
		5.1.1 Einschränkungen beim Entwurf
	5.2	Ein typisches Entwurfsverfahren
		5.2.1 Systeme mit dominantem Polpaar
		5.2.2 Spezifikation des Wunschverhaltens
		5.2.3 Faustformeln für den Reglerentwurf
		5.2.4 Durchführung des Reglerentwurfes
	5.3	Korrekturglieder
6	\mathbf{Disl}	cretisierung zeitkontinuierlicher Regelgesetze 61
	6.1	Einführung
	6.2	Vorwärts-Euler-Integration
	6.3	Rückwärts-Euler-Integration
	6.4	Integration mittels Trapez-Regel
7	Stei	erbarkeit und Beobachtbarkeit 67
•	71	Einführung 67
	72	Steuerbarkeit 6
	1.2	7.2.1 Kriterium nach Kalman 6
		7.2.2 Kriterium nach Hautus 7(
	73	Robachtbarkeit 7
	1.0	7 3 1 Kriterium nach Kalman 7
		7.3.2 Kriterium nach Hautus
6	T. A	
8	Ent 8.1	Wurf von Zustandsregiern 78 Einführung 75
	8.2	Stabilisierung des Regelkreises
	0.2	8 2 1 Prinzip der Eigenwertvorgabe 76
		8.2.2 Entwurf für ein System in Begelungsnormalform
		8.2.3 Transformation auf Regelungsnormalform
		824 Formel von Ackermann
		8.2.5 Stabilisierung beliebiger Arbeitspunkte 8
	83	Nachführung
	8.4	PI - Zustandsregler 9
	8.5	Wahl der Eigenwerte
	0.0	8 5 1 Dominantes Figenwertpaar 97
9	Ent	wurf von Zustandsbeobachtern 101
	9.1	$Emrunrung \dots 10.$
	9.2	Trivialer Beobachter
	9.3	Luenberger-Beobachter
	9.4	Der Beobachter im Regelkreis

9.4.1 Separationstheorem	•	•	 •	•	•	 •	•	106
10 Entwurf von Vorsteuerungen								109
10.1 Einführung \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots						 •		109
10.2 Entwurf für den Standardregelkreis						 •		109
10.2.1 Entwurf durch "direkte Inversion" der Regelstrecke						 •		110
10.2.2 Flachheitsbasierter Entwurf						 •		112
10.3 Entwurf für Zustandsregelungen		•		•		 •		115

Kapitel 1

Begriffe der Regelungstechnik

1.1 Einführung

In allen Bereichen des täglichen Lebens wird vorausgesetzt, dass sich Systeme bzw. Prozesse genau so verhalten, wie man es von ihnen erwartet. Flugzeuge sind in der Lage, vollautomatisch Kurs und Höhe zu halten und können komplizierte Manöver völlig ohne menschliche Einflussnahme fehlerfrei ausführen. Industrieroboter führen mit höchster Präzision und Wiederholgenauigkeit komplexe Bewegungsabläufe aus und verrichten dabei Schweiß- oder Schneidarbeiten. In Geschäftlokalen herrscht, völlig unabhängig von den äußeren Witterungsbedingungen, ein angenehmes Raumklima. Leistungsfähige Assistenzsysteme, wie z.B. Spurhaltesysteme oder Tempomat verbessern Sicherheit und Komfort von Fahrzeugen, autonom bzw. automatisiert fahrende Autos sind keine Zukunftsmusik mehr.

In den angegebenen Beispielen wird das Verhalten der Systeme "Flugzeug", "Roboter", "Geschäftslokal" und "Fahrzeug" über vorgebbare Größen, wie z. B. die Ruderstellungen beim Flugzeug, in gewünschter Weise beeinflusst. Die hierfür erforderlichen Ruderstellungen werden aus der messtechnisch erfassten Abweichung des Flugzeugs von seinem vorgegebenen Kurs berechnet. Es entsteht also ein **geschlossener Wirkungskreis**, in dem das "Ist-Verhalten" fortlaufend mit dem "Soll-Verhalten" verglichen wird und das System im Sinne einer Angleichung an das "Soll-Verhalten" beeinflusst wird. Dieses Prinzip der **Rückkopplung** ist charakteristisch für eine **Regelung**. Im Gegensatz dazu zeichnet sich eine **Steuerung** durch eine **offene Wirkungskette** aus, bei der ein System auf eine vom aktuellen Systemverhalten unabhängige Weise beeinflusst wird. Ein typisches Beispiel hierfür ist ein Bewässerungssystem, bei dem Pflanzen völlig unabhängig von der Witterung nach einem zeitlich fest vorgegebenem Schema mit Wasser versorgt werden.

1.2 Die Sprache der Regelungstechnik

In Bild 1.1 ist eine sehr allgemeine Darstellung eines **Regelkreises** zu sehen. Das zu beeinflussende System wird **Regelstrecke** oder kurz **Strecke** genannt. Diejenigen Größen der Regelstrecke, deren Verläufe kontrolliert werden sollen, sind die so genannten **Regelgrößen**. Diese werden als messbar vorausgesetzt. Die vorgebbaren Eingangsgrößen der Regelstrecke,

Bild 1.1: Regelkreis, allgemeine Darstellung

also diejenigen Größen, die eine Beeinflussung der Regelgrößen erlauben, sind die so genannten Stellgrößen. Im Rahmen dieses Skriptums wird vorausgesetzt, dass es genau eine Stellgröße u(t) und eine Regelgröße y(t) gibt, d.h. die Strecke ist ein Eingrößensystem. Der Wunschverlauf der Regelgröße wird in Form der **Führungsgröße** oder **Referenzgröße** r(t) vorgegeben. Der **Regelfehler** e(t) repräsentiert die Abweichung der Regelgröße von der Führungsgröße, d.h. e(t) = r(t) - y(t). Soll y(t) dem Verlauf von r(t) folgen, so spricht man von einer Folgeregelung oder Nachführung. Wenn y(t) hingegen auf einem konstanten Wert gehalten werden soll - was natürlich auch als Vorgabe einer konstanten Führungsgröße interpretiert werden kann - handelt es sich um eine Festwertregelung. Der Regler bzw. das Regelgesetz generiert aus gegebenen bzw. messbaren Signalen die Stellgröße u(t) so, dass die Regelgröße y(t) der Führungsgröße r(t) trotz des Einwirkens einer Störgröße d(t) "möglichst gut" entspricht. Diese unscharfe Ausdrucksweise soll verdeutlichen, dass die Güte bzw. Qualität einer Regelung, die so genannte **Regelgüte**, nicht eindeutig definiert werden kann. In späteren Kapiteln wird sich zeigen, dass es verschiedene Möglichkeiten gibt, die Regelgüte sinnvoll zu definieren. Allen Definitionen ist allerdings gemeinsam, dass sie die Stabilität des Regelkreises voraussetzen.

In weiterer Folge wird angenommen, dass die Regelstrecke im relevanten Arbeitsbereich durch ein lineares, zeitinvariantes System der Ordnung n hinreichend genau approximiert werden kann. Das bedeutet, dass der Zusammenhang zwischen y und u bzw. d im Bildbereich durch die Relation

$$\bar{y}(s) = P(s)\,\bar{u}(s) + P_d(s)\,d(s)$$
(1.1)

dargestellt werden kann, siehe hierzu auch Bild 1.2, links. Die beiden Übertragungsfunktionen

Bild 1.2: Einfluss von d und u auf die Regelgröße y

P(s) und $P_d(s)$ sind gebrochen rationale Funktionen, d.h. sie können als Quotienten von Poly-

nomen in s dargestellt werden. Dabei wird im Folgenden vorausgesetzt, dass die so genannte "Streckenübertragungsfunktion" P(s), die das Verhalten der störungsfreien Strecke (d = 0)beschreibt, nicht sprungfähig ist, d.h. der Nennerpolynomgrad n der Übertragungsfunktion ist größer als der Zählerpolynomgrad. Im Gegensatz dazu wird angenommen, dass d einen unmittelbaren Einfluss auf y besitzt, d.h. $P_d(s)$ repräsentiert ein sprungfähiges System, bei dem der Zählerpolynomgrad dem Nennerpolynomgrad entspricht. Sehr häufig wird auch vereinfachend angenommen, dass die Störung d direkt auf die Regelgröße y wirkt, d.h. $P_d(s) = 1$, siehe Bild 1.2, rechts. Mit dieser Annahme wird der Tatsache Rechnung getragen, dass der Einfluss einer unbekannten und nicht messbaren "inneren" Störung ohnehin nur mittels des gemessenen Verlaufs von y erfasst werden kann. Die tatsächliche Störgröße wird also in eine äquivalente Störung am Streckenausgang umgerechnet.

Die Streckenbeschreibung kann auch in Form eines Zustandsmodells der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}\,u + \mathbf{h}\,d$$

$$y = \mathbf{c}^T \mathbf{x} + g\,d$$
(1.2)

erfolgen, wobei **A** eine $n \times n$ Matrix ist, **b**, **h** und **c** sind n-dimensionale Spaltenvektoren und g ist eine reelle Konstante. Der Zustand der Regelstrecke wird durch den Vektor

$$\mathbf{x}(t) = \begin{bmatrix} x_1 & x & \dots & x_n \end{bmatrix}^T$$

beschrieben. Der Zusammenhang zwischen den Darstellungen (1.1) und (1.2) ist durch die Relation

$$P(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b} \quad \text{und} \quad P_d(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{h} + g \quad (1.3)$$

gegeben.

In Bild 1.3 ist exemplarisch der so genannte **Standardregelkreis** dargestellt, er repäsentiert den klassischen Regelkreis schlechthin. Die Eingangsgröße des Reglers ist hier der Regelfehler, d.h. die Abweichung zwischen gewünschtem und tatsächlichem Verlauf der Regelgröße. Es wird sich später zeigen, dass es oft auch sinnvoll ist, andere Regelkreis-Strukturen zu wählen. Die in weiterer Folge für den Standardregelkreis eingeführten Begriffe sind allgemeingültig, die zugehörigen Berechnungsvorschriften müssen allerdings an die jeweilige Regelkreisstruktur angepasst werden.

Bild 1.3: Standardregelkreis

Der Regler wird als lineares, zeitinvariantes System angesetzt. Im Fall des Standardregelkreises bedeutet dies, dass der Regler durch eine Übertragungsfunktion

$$R(s) = \frac{\bar{u}(s)}{\bar{e}(s)} \tag{1.4}$$

dargestellt werden kann. Der Regler wird im Allgemeinen als sprungfähiges System angesetzt, da es wünschenswert ist, dass sich sprunghafte Änderungen am Reglereingang unmittelbar am Reglerausgang auswirken. Der Zusammenhang zwischen Regelgröße y und Führungsgröße r sowie Störgröße d kann im Bildbereich durch die Relation

$$\bar{y}(s) = \frac{R(s)P(s)}{1+R(s)P(s)}\,\bar{r}(s) + \frac{1}{1+R(s)P(s)}\,\bar{d}(s) \tag{1.5}$$

ausgedrückt werden. Wie man erkennen kann, wird das **Führungsverhalten** durch die so genannte **Führungsübertragungsfunktion**

$$T(s) = \frac{\bar{y}(s)}{\bar{r}(s)}\Big|_{d=0} = \frac{R(s)P(s)}{1+R(s)P(s)}$$
(1.6)

beschrieben, während das Störverhalten durch die Störübertragungsfunktion

$$S(s) = \left. \frac{\bar{y}(s)}{\bar{d}(s)} \right|_{r=0} = \frac{1}{1 + R(s)P(s)}$$
(1.7)

charakterisiert ist.

1.3 Beispiele

1.3.1 Drehzahlregelung mit Hilfe des Fliehkraftreglers

Im Jahr 1788 wurde von Watt und Boulton¹ der in Bild 1.4 dargestellte Fliehkraftregler zur Drehzahlregelung von Dampfmaschinen eingesetzt. Usprünglich wurde dieses Regelungskonzept zur Drehzahlregelung bei Windmühlen mittels mechanischer Flügelverstellung entwickelt. Der Mechanismus besteht im Wesentlichen aus einem Fliehkraftpendel durch dessen Bewegung die Dampfzufuhr zur Dampfmaschine über einen Hebel verstellt wird. Im Ruhezustand ist die Dampfleitung vollständig geöffnet, mit der Kolbenbewegung der Dampfmaschine beginnt sich das Fliehkraftpendel zu drehen. Mit sich ändernder Drehzahl n werden die zwei rotierenden Gewichte aufgrund der Fliehkraft angehoben bzw. abgesenkt. Über einen Hebelmechanismus wird in der Dampfleitung eine Drossel (Klappe oder Schieber) betätigt, bis sich ein Gleichgewichtszustand von Dampfzufuhr und Drehzahl einstellt. Die Struktur des Regelkreises ist in Bild 1.5 dargestellt. Der Fliehkraftregler, bestehend aus Fliehkraftpendel und Hebelmechanismus fungiert hier als Drehzahlsensor und Regler, die auf diese Weise generierte Stellgröße wird durch das so genannte Stellglied, im vorliegenden Fall durch den Schieber mechanisch umgesetzt. Der gewünschte Soll-Wert für die Drehzahl kann über die Verschiebung des Angelpunktes am Hebel eingestellt werden.

1.3.2 Regelung der Raumtemperatur

Die Einstellung einer gewünschten Temperatur in Wohn- oder Büroräumen erfolgt in vielen Fällen mit Hilfe einer Temperaturregelung. Dabei erfasst ein Sensor fortlaufend die Raumtemperatur, die im Steuergerät mit einer vorgebbaren Wunschtemperatur verglichen wird. Abhängig von der Abweichung zwischen Soll- und Ist-Temperatur wird das Heizungsventil vom

¹James Watt (1736 - 1819), Matthew Boulton (1728 - 1809)

1.3. BEISPIELE

Bild 1.4: Drehzahlregelkreis mit Fliehkraftregler

Bild 1.5: Struktur der Drehzahlregelung

Regler mehr oder weniger stark geschlossen oder geöffnet. Je nach Reglertyp kann die Wunschtemperatur auf diese Weise exakt oder mit einem hinreichend kleinen, d.h. nicht wahrnehmbaren Fehler eingestellt werden. Einflüsse durch Störungen, wie geöffnete Fenster oder Witterungseinflüsse können aufgrund des geschlossenen Wirkungskreises unterdrückt werden. In vielen Fällen wird zusätzlich zur Raumtemperatur auch die Aussentemperatur gemessen. Diese Information über eine wesentliche Störgröße kann zur Verbesserung der Leistungsfähigkeit des Regelkreises genützt werden, man spricht auch von einer **Störgrößenaufschaltung**.

1.3.3 Der Pupillenapparat des Menschen

Der so genannte Pupillarapparat des Menschen hat die Aufgabe, die Intensität des auf die Netzhaut des Auges einfallenden Lichtes konstant zu halten². Dies wird durch eine gezielte Verstellung der Pupillenfläche mittels der Irismuskulatur erreicht. Fotorezeptoren in der Netzhaut fungieren als Sensoren, die nicht nur die Lichtintensität, sondern auch deren zeitliche Änderung detektieren. Aus den Sensorinformationen werden im Zentralnervensystem (ZNS) entsprechende Maßnahmen zur Verstellung der Pupillenfläche abgeleitet. Bei der Pupillenregelung handelt es sich somit um eine Festwertregelung, Lichtintesitätsschwankungen in der

 $^{^{2}}$ bei besonders starken Intensitätsschwankungen erfolgt eine zusätzliche Adaption, die auf chemischen Mechanismen beruht.

Bild 1.6: Struktur der Temperaturregelung

Außenwelt wirken als Störungen. Die Struktur dieses wichtigen biologischen Regelkreises ist in Bild 1.7 dargestellt.

Bild 1.7: Pupillarapparat als Regelkreis

Kapitel 2 PID-Regler

2.1 Einführung

PID-Regler sind dadurch charakterisiert, dass sich ihre Wirkung aus drei Komponenten zusammensetzt, nämlich einem proportionalen Anteil ("P-Anteil"), einem integrierenden Anteil ("I-Anteil") sowie einem differenzierenden Anteil ("D-Anteil"). Aufgrund ihrer strukturellen Einfachheit (und auch aus traditionellen Gründen) sind PID-Regler im industriellen Einsatz oft die erste - wenngleich in vielen Fällen nicht die beste - Wahl. Die Einstellung der Regler erfolgt meistens empirisch, unter Zuhilfenahme von Expertenwissen, oder auf Basis so genannter Einstellregeln, also "Kochrezepten" zur Reglerauslegung.

In den folgenden Abschnitten wird davon ausgegangen, dass die zu regelnde Strecke ein Eingrößensystem ist, die Regelkreisstruktur ist der Standardregelkreis. Zunächst werden die Grundlagen der PID-Regelung erläutert, einige wichtige Begriffe erklärt und verschiedene Realisierungsformen vorgestellt. Danach wird der so genannte Windup-Effekt beschrieben und einfache Gegenmaßnahmen werden vorgestellt. Den Abschluss des Kapitels bilden einige Einstellregeln, mit deren Hilfe geeignete Reglerparameter ermittelt werden können.

2.2 Parallelrealisierung - die Lehrbuchform

Diese Reglerform zeichnet sich dadurch aus, dass die Anteile (P, I und D) durch drei parallele Zweige realisiert sind (siehe Bild 2.1), man spricht daher von der Parallelrealisierung eines PID-Reglers. Da in dieser Form Modifikationen bzw. Erweiterungen fehlen, die in industriellen PID-Reglern zu finden sind, spricht man auch von der Lehrbuchform des PID-Reglers. Die Stellgröße u(t) setzt sich aus drei Komponenten zusammen, die proportional zum Regelfehler e(t), zum zeitlichen Integral über den Regelfehler sowie zur zeitlichen Ableitung des Regelfehlers sind. Es gilt somit

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt},$$
(2.1)

wobei K_P , K_I und K_D reelle Konstanten sind. Durch Veränderung dieser Gewichtungsfaktoren können die einzelnen Anteile unabhängig voneinander eingestellt werden, sie sind also

Bild 2.1: Parallelrealisierung eines PID-Reglers

entkoppelt¹.

Häufig wird auch die in der DIN 19226 vorgeschlagene Realisierung verwendet, nämlich

$$u(t) = K_P \left[e(t) + \frac{1}{T_N} \int_0^t e(\tau) d\tau + T_V \frac{de(t)}{dt} \right].$$
 (2.2)

Hierbei bezeichnen die Konstanten K_P , T_N und T_V den Proportionalbeiwert, die Nachstellzeit und die Vorhaltezeit, der Ursprung dieser Bezeichnungen wird später erläutert. Man beachte, dass bei der Realisierung (2.2) die oben erwähnte Entkopplung der einzelnen Anteile verloren geht. Vergleicht man nämlich (2.1) und (2.2) so findet man die Zusammenhänge

$$K_I = \frac{K_P}{T_N}$$
 bzw. $K_D = K_P T_V,$ (2.3)

d.h. bei einer Änderung von K_P verändern sich auch die Konstanten K_I und K_D . Eine Vergrößerung der Nachstellzeit T_N entspricht einer Reduktion der Gewichtung des I-Anteils, d.h. für $T_N \to \infty$ wird der I-Anteil deaktiviert. In Tabelle 1 sind die üblicherweise eingesetzten Konfigurationen von PID-Reglern dargestellt.

Reglertyp	K_P	K_I	K_D	K_P	T_N	T_V
P-Regler	*	0	0	*	∞	0
PI-Regler	*	*	0	*	*	0
PD-Regler	*	0	*	*	∞	*
PID-Regler	*	*	*	*	*	*
	Re	alisierung (2	2.1)	Rea	alisierung (2	.2)

¹engl.: non-interacting

Weiters ist zu beachten, dass in (2.1) bzw. (2.2) die - praktisch nicht mögliche - Durchführung einer *idealen* zeitlichen Differentiation erforderlich ist. Das bedeutet, dass die zugehörige Reglerübertragungsfunktion nicht realisierbar ist, d.h. ihr Zählergrad ist größer als ihr Nennergrad. Für einen PID-Regler gemäß (2.2) ergibt sich beispielsweise die Übertragungsfunktion

$$R(s) = \frac{\bar{u}(s)}{\bar{e}(s)} = K_P \left(1 + \frac{1}{sT_N} + sT_V \right) = K_P \frac{1 + sT_N + s^2 T_N T_V}{sT_N}.$$
 (2.4)

Ersetzt man das D-Element durch ein so genanntes DT_1 -Element, also durch einen Differenzierer mit Verzögerungsverhalten, so lautet die nunmehr realisierbare Reglerübertragungsfunktion

$$R(s) = \frac{\bar{u}(s)}{\bar{e}(s)} = K_P \left(1 + \frac{1}{sT_N} + \frac{sT_V}{1 + sT_R} \right) = K_P \frac{1 + sT_N \left(1 + T_R/T_N \right) + s^2 T_N T_V \left(1 + T_R/T_V \right)}{sT_N \left(1 + sT_R \right)}$$
(2.5)

In diesem Zusammenhang spricht man auch von einem realen PID-Regler bzw. von einem PID-T₁ Regler. Hierbei ist zu beachten, dass die Konstante T_R hinreichend klein gewählt werden muss, d.h

$$\frac{T_R}{T_V} \ll 1$$

Für die Sprungantwort, d.h. $e(t) = \sigma(t)$, des realen PID-Reglers gilt

$$u(t) = K_P\left(1 + \frac{1}{T_N}t + \frac{T_V}{T_R}e^{-\frac{t}{T_R}}\right),$$

in Bild 2.2 ist der zugehörige Verlauf der Stellgröße graphisch dargestellt.

Bild 2.2: Sprungantwort eines realen PID-Reglers

Nachstellzeit

Der Begriff der Nachstellzeit T_N eines PI-Reglers (d.h. "D-Anteil=0") kann mittels seiner Sprungantwort interpretiert werden. Dazu wird als Eingangsgröße des Reglers der Ein-

Bild 2.3: Sprungantwort PI-Regler (links) bzw. Rampenantwort PD-Regler (rechts)

heitssprung gewählt, also $e(t) = \sigma(t)$. Für den zugehörigen Verlauf der Ausgangsgröße u(t) gilt dann offensichtlich

$$u(t) = K_P\left(1 + \frac{1}{T_N}t\right)$$

Das bedeutet, dass sich die Stellgröße aus zwei Komponenten zusammensetzt. Während der P-Anteil des Reglers einen konstanten Stellgrößenanteil K_P bewirkt, liefert der I-Anteil einen rampenförmigen Anteil $\frac{K_P}{T_N} t$. Wie leicht zu erkennen ist, siehe hierzu auch Bild 2.3, sind die beiden Stellgrößenanteile zum Zeitpunkt $t = T_N$ genau gleich groß. Somit kann die Nachstellzeit als diejenige Zeit interpretiert werden, die der I-Anteil bei einer sprungförmigen Änderung des Regelfehlers braucht, um einen gleich großen Beitrag zur Stellgröße zu liefern wie der P-Anteil.

Vorhaltezeit

Die Vorhaltezeit T_V kann auf ähnliche Art und Weise gedeutet werden, wie die Nachstellzeit. Wählt man nämlich als Eingangsgröße eines idealen PD-Reglers eine Rampe, d.h. e(t) = t, so ergibt sich für den entsprechenden Verlauf der Stellgröße

$$u(t) = K_P \left(t + T_V \right).$$

Wieder setzt sich die Stellgröße aus zwei Anteilen zusammen, die offensichtlich zum Zeitpunkt $t = T_V$ den gleichen Wert annehmen. Die Vorhaltezeit ist somit diejenige Zeit, die der P-Anteil bei einer rampenförmigen Änderung des Regelfehlers benötigt, um einen gleich großen Beitrag zur Stellgröße zu liefern wie der D-Anteil, siehe auch Bild 2.3.

Proportionalband

Ein oft verwendeter Begriff ist das so genannte Proportionalband PB. Dabei wird berücksichtigt, dass Regelfehler e und Stellgröße u in gewissen Bereichen liegen, also

$$e \in [e_{\min}, e_{\max}]$$
 bzw. $u \in [u_{\min}, u_{\max}]$

Für die Schwankungen von e und u gilt somit

$$e_S = e_{\max} - e_{\min}$$
 bzw. $u_S = u_{\max} - u_{\min}$.

Ändert sich der Regelfehler um den Wert Δe , so gilt für den P-Anteil der Stellgröße

$$\Delta u = K_P \,\Delta e.$$

Das Proportionalband *PB* gibt nun an, um wieviel Prozent von e_S sich das Fehlersignal ändern muss, um eine Änderung $\Delta u = u_S$ zu bewirken, d.h.

$$\Delta e = \frac{PB}{100} e_S \qquad \Rightarrow \qquad \Delta u = K_P \Delta e = K_P \frac{PB}{100} e_S = u_S.$$

Daraus folgt unmittelbar

$$PB = \frac{100}{K_P} \frac{u_S}{e_S}$$
 in %. (2.6)

2.3 Serienrealisierung

Im praktischen industriellen Einsatz wird häufig die so genannte Seriendarstellung eingesetzt. Die Ursachen hierfür sind manchmal technischer Natur, in vielen Fällen wird die Serienstruktur

Bild 2.4: Seriendarstellung eines PID-Reglers

aber nur aus traditionellen Gründen eingesetzt. In Bild 2.4 ist die Struktur der Serienrealisierung dargestellt, die entsprechende Übertragungsfunktion lautet

$$R(s) = K\left(1 + \frac{1}{sT_I}\right)\left(1 + sT_D\right),\tag{2.7}$$

wobei hier wieder ideale Differentiation vorausgesetzt wird und die Parameter K, T_D und T_I reell sind. Durch Ausmultiplizieren erhält man

$$R(s) = K \frac{T_I + T_D}{T_I} \left(1 + \frac{1}{T_I + T_D} \frac{1}{s} + s \frac{T_D T_I}{T_I + T_D} \right),$$
(2.8)

durch einen Vergleich mit (2.4) findet man unmittelbar die entsprechenden Kenngrößen der Parallelrealisierung, nämlich

$$K_P = K \frac{T_I + T_D}{T_I}, \quad T_N = T_I + T_D, \quad T_V = \frac{T_D T_I}{T_I + T_D}$$
 (2.9)

bzw.

$$T_D = \frac{T_N}{2} \left(1 \pm \sqrt{1 - 4\frac{T_V}{T_N}} \right), \quad T_I = T_N - T_D, \quad K = K_P \frac{T_I}{T_N}.$$
 (2.10)

Institut für Regelungsund Automatisierungstechnik

Man beachte, dass - im Gegensatz zur Parallelrealisierung - bei der Reglerübertragungsfunktion (2.7) der Serienrealisierung ausschließlich reelle Nullstellen eingestellt werden können.

B Gegeben sei ein PID-Regler der Form (2.2) mit den Reglerparametern

 $K_P = 1, T_N = 1 \text{ und } T_V = 1.$

Eine Serienrealisierung dieses Reglers ist *nicht* möglich, da die zugehörige Reglerübertragungsfunktion (2.4) ein konjugiert komplexes Nullstellenpaar besitzt. Diese Tatsache manifestiert sich auch darin, dass die Auswertung von (2.10) keine rein reellen Lösungen für K, T_I und T_D liefert.

Wählt man hingegen

$$K_P = 1, \ T_N = 1 \quad \text{und} \quad T_V = 0.1,$$

so findet man mittels (2.8) die beiden möglichen Serienrealisierungen mit den Parametern

$$K = 0.1127, T_I = 0.1127$$
 und $T_D = 0.8873$

bzw.

$$K = 0.8873, T_I = 0.8873$$
 und $T_D = 0.1127.$

2.4 Praktische Realisierungen

Erfahrungen aus unzähligen praktischen Anwendungen von PID-Reglern sind der Ursprung mannigfaltiger Erweiterungen bzw. Modifikationen der ursprünglichen Reglerstruktur. Das Ziel dieser Erweiterungen besteht darin, unvorteilhafte Eigenschaften der elementaren PID-Struktur zu bekämpfen. Im Folgenden werden exemplarisch zwei besonders wichtige Erweiterungen des Standard-Reglers vorgestellt.

2.4.1 I-PD-Regler und PI-D-Regler

Bei einem abrupten Arbeitspunktwechsel, d.h. bei einer sprungförmigen Änderungen der Referenzgröße r ändert sich im Standardregelkreis der Regelfehler e aufgrund der "Trägheit" der Regelstrecke ebenfalls sprunghaft. Daraus resultiert im "normalen" PID-Regler eine sprunghafte Änderung des P-Anteils der Stellgröße ("proportional kick") und ein impulsartiger Verlauf des D-Anteils der Stellgröße ("derivative kick"). Eine solch starke Anregung der Regelstrecke bei einem Arbeitspunktwechsel ist oft aber unerwünscht, da sie zu einer unnötigen Beanspruchung des Stellgliedes bzw. der Regelstrecke führt. Um diesem Problem zu begegnen, wird oft ein Regelgesetz der Form

$$u(t) = K_P e_P(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de_D(t)}{dt}$$
(2.11)

2.4. PRAKTISCHE REALISIERUNGEN

eingesetzt. Hierbei gilt

$$e_P(t) = br(t) - y(t)$$
 und $e_D(t) = cr(t) - y(t),$ (2.12)

wobei über die vorgebbaren Konstanten b und c der Einfluss der (unstetigen) Referenzgröße auf e_P bzw. e_D eingestellt - und gegebenenfalls sogar eliminiert - werden kann. Für die Wahl b = c = 0 ergibt sich beispielsweise der in Bild 2.5 dargestellte I-PD-Regler, mit b = 1 und c = 0 ergibt sich der PI-D-Regler.

Bild 2.5: Struktur des I-PD-Reglers (links) und des PI-D-Reglers (rechts)

2.4.2 Windup-Effekt und Gegenmaßnahmen

Grundsätzlich ist beim Entwurf von Regelkreisen immer zu beachten, dass in praktischen Anwendungen die Stellgröße betragsmäßig beschränkt ist, also nicht beliebige Werte annehmen kann. Dieser Effekt kann mit Hilfe der in Bild 2.6 in den Standardregelkreis eingefügten Sättigungsfunktion nachgebildet werden, es gilt

$$u^*(t) = \operatorname{sat} u(t) = \begin{cases} u(t) & \text{für} & |u(t)| \le u_{\max} \\ u_{\max} \operatorname{sign} u(t) & \text{für} & |u(t)| \ge u_{\max} \end{cases}$$

wobei die positive, reelle Konstante u_{max} den maximal zulässigen Betrag der Stellgröße repräsentiert. Man beachte, dass durch das "Ansprechen" der Sättigungsfunktion die Regel-

Bild 2.6: Standardregelkreis mit Stellgrößenbeschränkung

güte des Regelkreises dramatisch verschlechtert werden kann, im schlimmsten Fall kann es sogar zur Destabilisierung kommen.

Bei Reglern mit Integralanteil, also auch bei PID-Reglern, kann der so genannte "Windup-Effekt" auftreten. Dieser ist dadurch gekennzeichnet, dass es beispielsweise bei einem abrupten

Arbeitspunktwechsel zu inakzeptablem Über- bzw. Unterschwingen der Regelgröße y kommt bevor der gewünschte stationäre Wert erreicht wird. Die Ursache hierfür besteht darin, dass bei aktiver Stellgrößenbeschränkung, also $|u(t)| \ge u_{\max}$, die Regelstrecke unabhängig vom Verlauf von y mit einer konstanten Eingangsgröße $(\pm u_{\max})$ gespeist wird. Die Rückkopplung ist somit unwirksam und der Regelkreis wird "offen" betrieben. Obwohl der Betrag von u^* nicht weiter anwachsen kann, kommt es aufgrund der fortwährenden Integration des Regelfehlers zu einem weiteren betragsmäßigen Ansteigen des I-Anteils u_i der Stellgröße. Man spricht in diesem Zusammenhang vom "Aufwickeln" oder "Aufziehen" des Integrators oder kurz vom "Windup-Effekt". Erst wenn der Regelfehler sein Vorzeichen ändert, kommt es zu einer betragsmäßigen Verkleinerung von u_i . Wenn der Betrag von u_i schließlich hinreichend klein ist, spricht die Stellgrößenbeschränkung nicht mehr an und der Regelkreis funktioniert wieder in gewünschter Weise. Aufgrund der unnötig langen zeitlichen Phase, während der $u^* = \pm u_{\max}$ gilt, kommt es zu dem oben erwähnten ungünstigen Verlauf der Regelgröße y.

Anti-Windup-Maßnahmen

Eine naheliegende Maßnahme zur Bekämpfung des Windup-Effekts besteht darin, das betragsmäßige Ansteigen von u_i im Falle einer aktiven Stellgrößenbeschränkung, d.h. $|u(t)| \ge u_{\max}$, zu vermeiden. Das bedeutet, dass die Integration des Regelfehlers bei aktiver Stellgrößenbeschränkung unterbunden wird, also

$$\frac{du_i}{dt} = 0 \qquad \text{für} \qquad |u(t)| \ge u_{\text{max}}.$$
(2.13)

Eine andere häufig angewandte Anti-Windup Strategie ist in Bild 2.7 dargestellt. Sie besteht

darin, dass bei aktiver Stellgrößenbeschränkung die Integration nicht vollständig angehalten wird, sondern dass dem Aufwickeln des Integrators proportional zur "Verletzung" der Stellgrößenbeschränkung entgegengewirkt wird. Für den in Bild 2.7 dargestellten PI-Regler gilt also

$$\frac{du_i}{dt} = K_I e - \frac{1}{T_a} \left(u - u^* \right),$$
(2.14)

wobei T_a eine positive Konstante² ist. Die Einstellung von T_a erfolgt üblicherweise empirisch, in der Literatur existieren aber auch Berechnungsvorschläge, wie z.B.

$$T_a = \sqrt{T_N T_V}$$
 oder $T_a = \frac{1}{2} (T_N + T_V)$

 $^{{}^{2}}T_{a}$ wird auch als "tracking time constant" bezeichnet.

für PID-Regler.

B Gegeben sei eine Regelstrecke, deren dynamisches Verhalten im interessierenden Betriebsbereich durch die Übertragungsfunktion

$$P(s) = \frac{s + 0.9}{s^2 + 0.5s + 1}$$

beschrieben werden kann. Für die betragsmäßig beschränkte Stellgröße u gilt

$$|u(t)| \le u_{\max} = 1.5.$$

Als Regler wurde ein PI-Regler mit der Übertragungsfunktion

$$R(s) = K_P \left(1 + \frac{1}{s T_N} \right) \quad \text{mit} \quad K_P = 3, \ T_N = 0.5$$

ausgewählt. Weiters wurde die in Bild 2.7 dargestellte Anti-Windup-Maßnahme realisiert, wobei

 $T_a = 0.1$

gesetzt wurde. In Bild 2.8 sind die Verläufe der Regelgröße y und der Stellgröße u graphisch dargestellt. Es ist deutlich zu erkennen, dass es ohne Anti-Windup-Maßnahme (blaue Kurven) zu einem starken Überschwingen der Regelgröße kommt, was auf das oben beschriebene "Aufwickeln" des Integrieres zurück zu führen ist.

2.5 Einstellregeln für PID-Regler

Mit Hilfe von so genannten Einstellregeln können die Reglerparameter von PID-Reglern relativ geradlinig ermittelt werden. Die hierfür benötigten charakteristischen Streckenparameter werden experimentell ermittelt. Die gesuchten Reglerparameter werden dann als Funktion dieser Streckenparameter angegeben, die entsprechenden Relationen sind tabellarisch zusammengefasst. Man beachte, dass hier nur einige der unzähligen Einstellregeln für PID-Regler vorgestellt werden. Weiters ist zu beachten, dass die mittels der Einstellregeln gefundenen Reglerparameter nur als Ausgangspunkt für die Reglerauslegung dienen, die endgültigen Werte der Parameter werden durch nachfolgendes "Feintuning" ermittelt.

2.5.1 Einstellregeln nach Ziegler-Nichols

Die beiden Methoden nach Ziegler und Nichols wurden im Jahr 1942 vorgestellt und gehören seitdem zu den klassischen Einstellregeln für PID-Regler. Man unterscheidet zwischen der Wendetangenten-Methode ("open-loop method") und der Stabilitätsrand-Methode ("closed loop method"). Erfahrungsgemäß führt die Anwendung der Ziegler-Nichols Regeln im Allgemeinen zu schwach gedämpften Regelkreisen.

Bild 2.8: Verläufe von Regelgröße (Bild oben) und Stellgröße (Bild unten) ohne und mit Anti-Windup Maßnahme

Wendetangenten-Methode

Bei diesem Verfahren wird vorausgesetzt, dass die Sprungantwort der Regelstrecke gefahrlos experimentell ermittelt werden kann. Wie in Bild 2.9 angedeutet, wird die Wendetangente der Sprungantwort eingezeichnet und die Streckenverstärkung K_S , die Verzugszeit T_v und die Ausgleichszeit T_g werden abgelesen. Die Reglerdimensionierung erfolgt dann mit Hilfe von Tabelle 2.

Reglertyp	K_P	T_N	T_V
P-Regler	$\frac{T_g}{K_S T_v}$	∞	0
PI-Regler	$0.9 \frac{T_g}{K_S T_v}$	$3.33 T_v$	0
PID-Regler	$1.2 \frac{T_g}{K_S T_v}$	$2 T_v$	$0.5 T_v$

Tabelle 2: Reglerparameter, Wendetangenten-Methode

Bild 2.9: Zur Wendetangenten-Methode nach Ziegler-Nichols

Stabilitätsrand-Methode

Bei diesem Ansatz werden die benötigten Streckeninformationen aus dem dynamischen Verhalten des geschlossenen Regelkreises ermittelt, wobei als Regler zunächst ein P-Glied verwendet wird. Der Verstärkungsfaktor des P-Reglers wird solange variiert, bis die Regelgröße y bei sprungförmiger Änderung der Referenzgröße eine ungedämpfte Schwingung vollführt, das System wird also bis an den "Stabilitätsrand" gebracht. Die Periodendauer T_k der Schwingung wird kritische Periode genannt, der zugehörige Verstärkungsfaktor des Reglers wird mit K_k bezeichnet. Die Reglerdimensionierung basiert auf den in Tabelle 3 angegebenen Relationen.

Reglertyp	K_P	T_N	T_V
P-Regler	$0.5 K_k$	∞	0
PI-Regler	$0.4 K_k$	$0.8 T_k$	0
PID-Regler	$0.6 K_k$	$0.5 T_k$	$0.12 T_k$

Tabelle 3: Reglerparameter, Stabilitätsrand-Methode

Bei "trägen" Regelstrecken, also Systemen mit sehr großer dominanter Zeitkonstante, kann die Durchführung der Stabilitätsrand-Methode mit einem großen zeitlichen Aufwand verbunden sein. Durch leichte Modifikationen kann die Methode auch zum "Autotuning", d.h. zur selbständigen Einstellung, von Reglerparametern eingesetzt werden. Dabei wird der P-Regler durch ein geeignetes nichtlineares Element ersetzt. Dies hat zur Folge, dass sich die Dauerschwingung der Regelgröße automatisch einstellt.

2.5.2 Methode der Summenzeitkonstante ("T-Summen Regel")

Aus der Sprungantwort der Regelstrecke wird die Streckenverstärkung K_S und die so genannte Summenzeitkonstante T_{Σ} abgelesen. Wie in Bild 2.10 zu erkennen ist, sind für $t = T_{\Sigma}$ die

Bild 2.10: Zur Methode der Summenzeitkonstante

beiden Flächen A_1 und A_2 gleich groß. Die Erfahrung zeigt, dass die Ermittlung von T_{Σ} auch bei stark verrauschter Sprungantwort hinreichend genau durchgeführt werden kann - ganz im Gegensatz zur Wendetangente beim Ziegler-Nichols Verfahren. Die Summenzeitkonstante ist offensichtlich ein Maß für die "Reaktionsfreudigkeit" des Systems, d.h. je kleiner T_{Σ} ist, umso schneller reagiert der Streckenausgang auf sprunghafte Änderungen am Streckeneingang. In Tabelle 4 sind die vorgeschlagenen Reglereinstellungen zusammengefasst.

Reglertyp	K_P	T_N	T_V		
P-Regler	$\frac{1}{K_S}$	∞	0		
PI-Regler	$\frac{1}{2 K_S}$	$0.5 T_{\Sigma}$	0		
PD-Regler	$\frac{1}{K_S}$	∞	$0.33 T_{\Sigma}$		
PID-Regler	$\frac{1}{K_S}$	$0.66T_{\Sigma}$	$0.17 T_{\Sigma}$		

=

Tabelle 4: Reglerparameter, T-Summen Regel

Kapitel 3

Frequenzkennlinien und Ortskurven

3.1 Einführung

Der so genannte Frequenzgang beschreibt den eingeschwungenen Zustand eines linearen, zeitinvarianten Systems bei harmonischer Erregung. Dabei wird hier vorausgesetzt, dass das betrachtete System BIBO-stabil ist, d.h. seine Übertragungsfunktion G(s) besitzt ausschließlich Pole mit negativem Realteil. Weiters wird vereinfachend vorausgesetzt, dass alle Pole von G(s) einfach sind, die gefundenen Ergebnisse gelten allerdings auch für den allgemeinen Fall mehrfacher Pole. Als Eingangsgröße u(t) wird nun die komplexe harmonische Funktion

$$u(t) = e^{j\omega t} \bigcirc \quad \bullet \quad \bar{u}(s) = \frac{1}{s - j\omega}$$
(3.1)

gewählt¹. Für die zugehörige Ausgangsgröße y(t) gilt im Bildbereich

$$\bar{y}(s) = G(s) \frac{1}{s - j\omega} = K \frac{\prod_{i=1}^{m} (s - n_i)}{\prod_{k=1}^{n} (s - p_k)} \frac{1}{s - j\omega},$$

eine Partialbruchzerlegung liefert

$$\bar{y}(s) = \frac{c_0}{s - j\omega} + \sum_{i=1}^n \frac{c_i}{s - p_i}.$$

Für den Koeffizienten c_0 findet man

$$c_0 = \lim_{s \to j\omega} (s - j\omega) \,\bar{y}(s) = \lim_{s \to j\omega} \left[(s - j\omega)G(s) \,\frac{1}{(s - j\omega)} \right] = G(j\omega),$$

d.h.

$$\bar{y}(s) = \frac{G(j\omega)}{s - j\omega} + \sum_{i=1}^{n} \frac{c_i}{s - p_i}.$$

 $^{^1\}mathrm{Man}$ beachte, dass es sich hier um ein reines Gedanken experiment handelt.

Für die zugehörige Zeitfunktion gilt nun

$$y(t) = G(j\omega) e^{j\omega t} + \sum_{i=1}^{n} c_i e^{p_i t}.$$

Für "sehr große Werte von t", also im so genannten eingeschwungenen Zustand gilt

$$y(t) \approx G(j\omega) e^{j\omega t},$$
(3.2)

d.h. die Ausgangsgröße entspricht der mit $G(j\omega)$ gewichteten Eingangsgröße. Diese komplexe Funktion

$$G(j\omega) = |G(j\omega)| \ e^{j \arg G(j\omega)}$$
(3.3)

ist der **Frequenzgang** des Systems. Salopp formuliert beschreibt er, wie sich im eingeschwungenen Zustand die Amplitude und die Phasenlage der harmonischen Eingangsgröße beim Durchlaufen des Systems verändern. Man beachte, dass die Eingangsgröße (3.1) als Linearkombination einer Sinus- und einer Cosinusfunktion dargestellt werden kann, d.h.

$$u(t) = e^{j\omega t} = \cos\omega t + j\sin\omega t.$$

Nach (3.2) und (3.3) gilt im eingeschwungenen Zustand für die zugehörige Ausgangsgröße

$$y(t) = |G(j\omega)| e^{j(\omega t + \arg G(j\omega))} = |G(j\omega)| \cos(\omega t + \arg G(j\omega)) + j |G(j\omega)| \sin(\omega t + \arg G(j\omega)).$$

Aus der Linearität der Laplace-Transformation und des Systems kann daher unmittelbar gefolgert werden, dass im eingeschwungenen Zustand gilt:

$$u(t) = \hat{u}\cos(\omega t + \phi) \implies y(t) = \hat{u} |G(j\omega)| \cos(\omega t + \phi + \arg G(j\omega))$$
$$u(t) = \hat{u}\sin(\omega t + \phi) \implies y(t) = \hat{u} |G(j\omega)| \sin(\omega t + \phi + \arg G(j\omega))$$

B Gegeben sei das System mit der Übertragungsfunktion

$$G(s) = \frac{1}{s+1}.$$

Für eine Eingangsgröße $u(t) = 3 \sin t$ ergibt sich für den Verlauf von y(t) im eingeschwungenen Zustand

$$y(t) \approx 3 |G(j)| \sin(t + \arg G(j)) = \frac{3}{\sqrt{2}} \sin\left(t - \frac{\pi}{4}\right).$$

Für jeden Wert von ω ergibt sich also eine komplexe Zahl $G(j\omega)$. Die graphische Darstellung dieser komplexen Zahlen in der komplexen Ebene als Funktion von ω wird *Frequenzgangs-Ortskurve* oder kurz Ortskurve genannt. In den so genannten **Frequenzkennlinien** werden jeweils Betrag und Phase von $G(j\omega)$ über ω dargestellt, man spricht in diesem Zusammenhang auch von den **Bode²–Diagrammen**.

²benannt nach dem amerikanischen Wissenschaftler Hendrik Wade Bode (1905-1982).

3.1.1 Mathematische Grundlagen

In diesem Abschnitt werden in aller Kürze die mathematischen Grundlagen wiederholt, die zum Zeichnen von Frequenzkennlinien und in weiterer Folge von Ortskurven erforderlich sind.

Komplexe Zahlen

Eine komplexe Zahl z kann in der kartesischen Darstellung

$$z = x + jy \quad \text{mit} \quad x, y \in \mathbb{R} \tag{3.4}$$

oder als komplexer Zeiger, also in der Polardarstellung

$$z = |z| e^{j \arg z}$$
 mit $|z| = \sqrt{x^2 + y^2}$ und $\tan(\arg z) = \frac{y}{x}$ (3.5)

angegeben werden. Hierbei ist $x = \text{Re}\{z\}$ der Realteil, $y = \text{Im}\{z\}$ der Imaginärteil, |z| ist der Betrag und arg z ist die Phase der komplexen Zahl z. Für das Produkt bzw. den Quotienten zweier komplexer Zahlen z_1 und z_2 gilt nun

$$z_1 z_2 = |z_1 z_2| \ e^{j \arg(z_1 z_2)} = |z_1| \ e^{j \arg z_1} \ |z_2| \ e^{j \arg z_2} = |z_1| \ |z_2| \ e^{j(\arg z_1 + \arg z_2)}, \tag{3.6}$$

bzw.

$$\frac{z_1}{z_2} = \left| \frac{z_1}{z_2} \right| e^{j\arg\frac{z_1}{z_2}} = \frac{|z_1| e^{j\arg z_1}}{|z_2| e^{j\arg z_2}} = \frac{|z_1|}{|z_2|} e^{j(\arg z_1 - \arg z_2)}.$$
(3.7)

Rechnen mit Logarithmen

Gegeben seien zwei positive, reelle Zahlen x und y. Berechnet man den (dekadischen) Logarithmus³ des Produktes bzw.des Quotienten der beiden Zahlen, so gilt

$$\lg (xy) = \lg x + \lg y \qquad \text{bzw.} \qquad \lg \frac{x}{y} = \lg x - \lg y. \tag{3.8}$$

Für zwei beliebige reelle Zahlen x und y gilt weiters

$$\lg |x|^y = y \lg |x|. \tag{3.9}$$

3.2 Frequenzkennlinien

Die Frequenzkennlinien eines Systems mit der Übertragungsfunktion G(s) erhält man, indem man Betrag und Phase des Frequenzganges $G(j\omega)$ jeweils über ω darstellt. Die Darstellung von $|G(j\omega)|$ über ω bezeichnet man als die Amplitudenkennlinie bzw. als den Amplitudengang. Üblicherweise wird dabei auf der Abszisse die Kreisfrequenz ω mit einer logarithmischen Skala oder lg ω und auf der Ordinate der Betrag des Frequenzganges in Dezibel (dB), d.h.

$$|G(j\omega)|_{\rm dB} = 20 \lg |G(j\omega|.$$
(3.10)

³Natürlich kann auch $\log_{10} x$ anstelle von $\lg x$ geschrieben werden.

aufgetragen. In der folgenden Tabelle sind wichtige Betragswerte in dB umgerechnet.

$$|G(j\omega)| = 0.01 \quad 0.1 \quad 1 \quad 10 \quad 100 \quad 2 \\ |G(j\omega)|_{\rm dB} = -40 \quad -20 \quad 0 \quad 20 \quad 40 \quad 6$$

Daraus können problemlos weitere Werte bestimmt werden, beispielsweise gilt

$$\begin{vmatrix} \sqrt{2} \\ _{\rm dB} &= & \left| 2^{\frac{1}{2}} \right|_{\rm dB} \stackrel{(3.9)}{=} \frac{1}{2} \left| 2 \right|_{\rm dB} = 3 \, dB \\ \\ \left| 0.5 \right|_{\rm dB} &= & \left| \frac{1}{2} \right|_{\rm dB} \stackrel{(3.8)}{=} \left| 1 \right|_{\rm dB} - \left| 2 \right|_{\rm dB} = -6 \, dB.$$

Die Darstellung von $\arg G(j\omega)$ über ω wird Phasenkennlinie bzw Phasengang des Systems genannt. Hierbei wird auf der Abszisse die Kreisfrequenz ω mit einer logarithmischen Skala oder $\lg \omega$ und auf der Ordinate die Phase von $G(j\omega)$ in Grad oder Radiant dargestellt. Aus den genannten Gründen spricht man oft auch von den logarithmischen Frequenzkennlinien eines Systems.

3.2.1 Normierte Darstellung

Der erste Schritt beim händischen Zeichnen der Frequenzkennlinien ist immer die Normierung der Übertragungsfunktion G(s). Es wird dabei - so wie bisher immer - vorausgesetzt, dass G(s) der Quotient zweier Polynome in s mit reellen Polynomkoeffizienten ist. Eine solche gebrochen rationale Funktion kann immer in die normierte Darstellung

$$G(s) = \frac{V}{s^{\lambda}} \frac{p(s)}{q(s)}$$
 mit $p(0) = q(0) = 1$ (3.11)

gebracht werden. Hierbei ist die reelle Konstante V der so genannte Verstärkungsfaktor des Systems, λ ist eine ganzzahlige Konstante und p(s) bzw. q(s) sind Polynome in s, bei denen die Koeffizienten zu s^0 auf 1 normiert sind.

B Gegeben seien die Übertragungsfunktionen

$$G(s) = \frac{s+3}{s^3+2s^2+2s}$$
 und $H(s) = \frac{s-1}{s^2-3s+2}$.

Für die zugehörigen normierten Darstellungen gilt offensichtlich

$$G(s) = \frac{3}{2} \frac{\left(1 + \frac{s}{3}\right)}{s\left(1 + s + \frac{s^2}{2}\right)} \qquad \Rightarrow \qquad V = \frac{3}{2}, \ \lambda = 1, \ p(s) = 1 + \frac{s}{3}, \ q(s) = 1 + s + \frac{s^2}{2}$$

und

$$H(s) = -\frac{1}{2} \frac{(1-s)}{\left(1 - \frac{3}{2}s + \frac{s^2}{2}\right)} \qquad \Rightarrow \qquad V = -\frac{1}{2}, \ \lambda = 0, \ p(s) = 1 - s, \ q(s) = 1 - \frac{3}{2}s + \frac{s^2}{2}.$$

3.2. FREQUENZKENNLINIEN

Man beachte, dass p(s) und q(s) reelle Polynomkoeffizienten besitzen und somit rein reelle und/oder paarweise konjugiert komplexe Nullstellen haben. Aus diesem Grund können beide Polynome als Produkte von *Linearfaktoren* (=Polynome ersten Grades mit reellen Koeffizienten zur Berücksichtigung von reellen Nullstellen) und *quadratischen Faktoren* (=Polynome zweiten Grades mit reellen Koeffizienten zur Berücksichtigung von konjugiert komplexen Nullstellen) dargestellt werden.

B Gegeben seien die beiden (normierten) Polynome

$$p(s) = 1 - s^2$$
 und $q(s) = 1 + \frac{7}{13}s - \frac{5}{13}s^2 + \frac{1}{13}s^3$.

Das Polynom p(s) besitzt offensichtlich zwei rein relle Nullstellen bei $s_1 = +1$ und $s_2 = -1$ und kann daher als Produkt zweier Linearfaktoren dargestellt werden, d.h.

$$p(s) = (1+s)(1-s).$$

Im Gegensatz dazu hat q(s) eine reelle Nullstelle $s_1 = -1$ sowie ein Paar konjugiert komplexer Nullstellen $s_{2,3} = 3 \pm j2$ und kann somit als Produkt eines Linearfaktors und eines quadratischen Faktors dargestellt werden, d.h.

$$q(s) = (1+s)(1 - \frac{6}{13}s + \frac{1}{13}s^2).$$

3.2.2 Zerlegung von G(s) in "elementare Bestandteile"

Für den Frequenzgang des Systems mit der Übertragungsfunktion G(s) in normierter Darstellung (3.11) gilt nun

$$G(j\omega) = \frac{V}{(j\omega)^{\lambda}} \frac{p(j\omega)}{q(j\omega)}.$$

Aufgrund der Tatsache, dass der Betrag in dB angegeben wird, gilt nun gemäß (3.8) für den Betrag des Frequenzganges

$$|G(j\omega)|_{\mathrm{dB}} = \left|\frac{V}{(j\omega)^{\lambda}}\frac{p(j\omega)}{q(j\omega)}\right|_{\mathrm{dB}} = |V|_{\mathrm{dB}} - \left|(j\omega)^{\lambda}\right|_{\mathrm{dB}} + |p(j\omega)|_{\mathrm{dB}} - |q(j\omega)|_{\mathrm{dB}},$$

für die Phase gilt gemäß (3.6) und (3.7)

$$\arg G(j\omega) = \arg V - \arg (j\omega)^{\lambda} + \arg p(j\omega) - \arg q(j\omega).$$

Zur Ermittlung von $|G(j\omega)|_{dB}$ bzw. arg $G(j\omega)$ müssen also die Frequenzgänge der einzelnen "Bestandteile" von $G(j\omega)$ ensprechend zusammengesetzt werden. Dabei ist zu beachten, dass die Polynome p(s) und q(s), wie bereits erläutert, in Linearfaktoren und quadratische Faktoren zerlegt werden können. Somit sind insgesamt vier verschiedene "elementare Bestandteile" zu berücksichtigen.

I Proportionalfaktor

Die Ermittlung von Betrag und Phase des Frequenzganges eines Proportionalgliedes

$$G(s) = V \quad \text{mit} \quad V \in \mathbb{R}$$
 (3.12)

ist sehr geradlinig. Gemäß (3.10) ergibt sich der Betrag in dB zu

$$|G(j\omega)|_{\rm dB} = |V|_{\rm dB} = 20 \, \lg |V| \,, \tag{3.13}$$

für die Phase des Frequenzganges gilt

$$\arg G(j\omega) = \begin{cases} 0^{\circ} & \text{für } V > 0\\ & & \\ -180^{\circ} & \text{für } V < 0 \end{cases}$$
(3.14)

II Term der Form $\left(\frac{1}{s^{\lambda}}\right)$

Der Frequenzgang der Übertragungsfunktion

$$G(s) = \frac{1}{s^{\lambda}}$$
 mit $\lambda \dots$ ganzzahlig (3.15)

ist durch

$$G(j\omega) = \frac{1}{(j\omega)^{\lambda}}$$

gegeben. Für den Betrag des Frequenzganges in dB ergibt sich somit

$$|G(j\omega)|_{\rm dB} = 20 \lg \left| \frac{1}{(j\omega)^{\lambda}} \right| \stackrel{(3.8)}{=} -20 \lg (j\omega)^{\lambda} \stackrel{(3.9)}{=} -20\lambda \lg |(j\omega)| \stackrel{(3.5)}{=} -20\lambda \lg \omega.$$
(3.16)

Trägt man den Betrag (3.16) über lg ω auf, so erhält man eine Gerade, die die 0 dB-Linie bei $\omega = 1$ schneidet und eine Steigung von (-20λ) dB pro Dekade, also pro Frequenz-Verzehnfachung besitzt. In Bild 3.1 sind Betragskennlinien für verschiedene Werte von λ dargestellt, wobei die Steigungen der Geraden zusätzlich angegeben sind.

Für die Phase des Frequenzganges gilt

$$\arg G(j\omega) = \arg \frac{1}{(j\omega)^{\lambda}} \stackrel{(3.6)}{=} -\lambda \arg (j\omega) = -\lambda \cdot 90^{\circ}, \qquad (3.17)$$

d.h. die Phase besitzt einen frequenzunabhängigen, konstanten Wert, was auch Bild 3.1 zu entnehmen ist.

30

Bild 3.1: Frequenzkennlinien von $\frac{1}{s^{\lambda}}$ für $\lambda = -2, -1, +1, +2$

III Linearfaktor

Der Frequenzgang eines Linearfaktors der Form

$$G(s) = 1 + \frac{s}{\omega_k} \quad \text{mit} \quad \omega_k \in \mathbb{R}$$
 (3.18)

ist gegeben durch

$$G(j\omega) = 1 + j\frac{\omega}{\omega_k}.$$
(3.19)

Hierbei ist ω_k ein konstanter, reeller Parameter. Mit (3.5) und (3.10) findet man für den Betrag des Frequenzganges

$$|G(j\omega)|_{\rm dB} = 20 \, \lg \sqrt{1 + \left(\frac{\omega}{\omega_k}\right)^2} = \begin{cases} 0 & \text{für } \omega \ll |\omega_k| \\ 20 \, \lg \sqrt{2} \approx 3 & \text{für } \omega = |\omega_k| \\ 20 \, \lg \frac{\omega}{|\omega_k|} = 20 \, \lg \omega - 20 \, \lg \, |\omega_k| & \text{für } \omega \gg |\omega_k| \end{cases}$$

$$(3.20)$$

siehe hierzu auch Bild 3.2, wo $\omega_k = 1$ gesetzt wurde. Häufig - vor allem aber beim händischen Zeichnen der Frequenzkennlinien - wird vereinfachend der *asymptotische* Verlauf des Amplitudenganges dargestellt. Dabei wird der Betrag für $\omega \leq |\omega_k|$ gleich 0 dB gesetzt, ab $\omega = |\omega_k|$ entspricht die Betragskennlinie einer Gerade mit einer Steigung von 20 dB pro Dekade.

Dadurch ensteht bei $\omega = |\omega_k|$ ein Knick in der Betragskennlinie, weshalb man ω_k auch Knickfrequenz nennt. In Bild 3.2 ist der asymptotische Verlauf des Amplitudenganges rot strichliert dargestellt. Man erkennt, dass man bei der asymptotischen Darstellung des Betrages an der Stelle $\omega = |\omega_k|$ einen Fehler von 3 dB in Kauf nehmen muss.

Für den Verlauf der Phasenkennlinie ist, im Gegensatz zur Betragskennlinie, das Vorzeichen von ω_k zu berücksichtigen, gemäß (3.5) gilt nämlich

$$\arg G(j\omega) = \arctan \frac{\omega}{\omega_k}.$$

Daraus folgt unmittelbar

$$\arg G(j\omega) = \begin{cases} 0^{\circ} & \text{für } \omega \ll |\omega_k| \\ 45^{\circ} \operatorname{sgn} \omega_k & \text{für } \omega = |\omega_k| \\ 90^{\circ} \operatorname{sgn} \omega_k & \text{für } \omega \gg |\omega_k| \end{cases}$$
(3.21)

Der exakte Verlauf der Phasenkennlinie ist in Bild 3.2 für $\omega_k = 1$ dargestellt. Man beachte, dass es auch die Möglichkeit gibt, einen linear interpolierten Verlauf der Phasenkennlinie zu zeichnen. Hierbei wird für $\omega \leq \frac{1}{10} |\omega_k|$ die Phase gleich 0° gesetzt, für $\omega \geq 10 |\omega_k|$ wird die Phase gleich 90° sgn ω_k gesetzt. Im Bereich zwischen $\omega = \frac{1}{10} |\omega_k|$ und $\omega = 10 |\omega_k|$ wird die Phase linear interpoliert, der entsprechende Verlauf ist in Bild 3.2 rot strichliert dargestellt. Im Gegensatz zur asymptotischen Darstellung des Betragsganges wird die interpolierte Darstellung des Phasenganges allerdings nur eher selten angewandt.

Bei einem Linearfaktor im Nenner einer Übertragungsfunktion ändern sich gemäß (3.8) die Vorzeichen von Betrags- und Phasenkennlinie.

IV Quadratischer Faktor

Der Frequenzgang eines quadratischen Faktors

$$G(s) = 1 + 2\varsigma \frac{s}{\omega_k} + \left(\frac{s}{\omega_k}\right)^2 \quad \text{mit} \quad \omega_k, \varsigma \in \mathbb{R} \quad \text{und} \quad 0 \le \varsigma < 1 \quad (3.22)$$

ist gegeben durch

$$G(j\omega) = \left[1 - \left(\frac{\omega}{\omega_k}\right)^2\right] + j \, 2\varsigma \frac{\omega}{\omega_k}.$$
(3.23)

Institut für Regelungsund Automatisierungstechnik

Bild 3.2: Frequenzkennlinien eines Linearfaktors $\left(1 + \frac{s}{\omega_k}\right)$ mit der Knickfrequenz $\omega_k = 1$.

Für den Betrag des Frequenzganges gilt somit

$$|G(j\omega)|_{dB} = 20 \log \sqrt{\left[1 - \left(\frac{\omega}{\omega_k}\right)^2\right]^2 + \left(2\varsigma \frac{\omega}{\omega_k}\right)^2} = \begin{cases} 0 & \text{für } \omega \ll |\omega_k| \\ 20 \lg 2\varsigma & \text{für } \omega = |\omega_k| \\ 20 \lg \left(\frac{\omega}{\omega_k}\right)^2 = 40 \lg \omega - 40 \lg |\omega_k| & \text{für } \omega \gg |\omega_k| \end{cases}$$
(3.24)

d.h. in der asymptotischen Darstellung beträgt der Betrag für "niedrige" Frequenzen 0 dB, für "hohe" Frequenzen nimmt der Betrag um 40 dB pro Dekade zu. Der Wert des Betrages an der Stelle $\omega = |\omega_k|$ hängt offensichtlich vom Wert des Parameters ς ab, siehe auch Bild 3.3, wo die Betragskennlinie für verschiedene Werte von ς dargestellt ist.

Für die Phase des Frequenzganges (3.23) ist nicht nur das Vorzeichen von ω_k , sondern auch der Wert des Parameters ς von entscheidender Bedeutung. Analog zum Linearfaktor gilt für

die Phase

$$\arg G(j\omega) = \begin{cases} 0^{\circ} & \text{für } \omega \ll |\omega_k| \\ 90^{\circ} \operatorname{sgn} \omega_k & \text{für } \omega = |\omega_k| \\ 180^{\circ} \operatorname{sgn} \omega_k & \text{für } \omega \gg |\omega_k| \end{cases}$$
(3.25)

Wie man Bild 3.3 entnehmen kann, ergibt sich für kleine Werte von ς ein "schärferer" Übergang der Phase von 0° zu 180° sgn ω_k , für $\varsigma = 0$ ergibt sich ein Phasensprung an der Stelle $\omega = |\omega_k|$.

Bild 3.3: Frequenzkennlinien eines quadratischen Faktors $\left(1 + 2\zeta \frac{s}{\omega_k} + \frac{s^2}{\omega_k^2}\right)$ für $\zeta = 0.1, 0.5, 0.7, 0.9$ und $\omega_k = 1$

Bei einem quadratischen Faktor im Nenner einer Übertragungsfunktion ändern sich gemäß (3.8) natürlich die Vorzeichen von Betrags- und Phasenkennlinie.

Vorgangsweise beim Zeichnen der (asymptotischen) Frequenzkennlinien

- Normierung von G(s).
- Einzeichnen der Betrags- und Phasenkennlinie von $\frac{1}{s^{\lambda}}$.
- Aufspaltung von p(s) und q(s) in Linearfaktoren und/oder quadratische Faktoren.

- Die Betragsgänge der zu p(s) gehörigen Linearfaktoren "knicken" bei der Knickfrequenz $|\omega_k|$ um +20 dB/Dekade nach "oben", Linearfaktoren von q(s) nach "unten". Ausgehend von 0° für $\omega \ll |\omega_k|$ strebt die Phase von zu p(s) gehörigen Linearfaktoren für $\omega \gg |\omega_k|$ zum Wert 90°·sgn ω_k , an der Stelle $\omega = |\omega_k|$ lautet die Phase 45°·sgn ω_k . Linearfaktoren von q(s) sind analog, allerdings mit umgekehrten Vorzeichen zu berücksichtigen.
- Quadratische Faktoren sind analog zu den Linearfaktoren zu berücksichtigen, die Steigung beträgt jedoch 40 dB/Dekade und die Phase strebt zum Wert $180^{\circ} \cdot \operatorname{sgn} \omega_k$, an der Stelle $\omega = |\omega_k|$ lautet die Phase $90^{\circ} \cdot \operatorname{sgn} \omega_k$.
- Betrags- und Phasenkennlinien der einzelnen "Bestandteile" von G(s) werden additiv zusammengefügt.
- Die Betragskennlinie ist um den Wert $|V|_{dB}$ zu verschieben. Bei negativem V ist die Phasenkennlinie ebenfalls zu verschieben bzw. die Beschriftung anzupassen.

Die oben beschriebene Prozedur kann etwas vereinfacht werden, indem man im Betragsgang zunächst bei $\omega = 1$ den Wert $|V|_{dB}$ einzeichnet und mit derjenigen Asymptote "anvisiert", die für $\omega \to 0$ die Betragskennlinie von G(s) dominiert⁴. Dadurch kann man die sonst erforderliche Verschiebung der Betragskennlinien (siehe letzter Punkt oben) um $|V|_{dB}$ umgehen. Die Phasenkennlinie kann man prinzipiell mit einem so genannten Phasenlineal auch händisch sehr genau ermitteln.

B Es sollen die zur Übertragungsfunktion

$$G(s) = \frac{s+1}{s(s+10)}$$

gehörigen Frequenzkennlinien gezeichnet werden. Hierzu wird G(s) zunächst in die normierte Form gebracht, d.h.

$$G(s) = \frac{1}{10} \frac{(1+s)}{s\left(1+\frac{s}{10}\right)}$$

Das bedeutet, dass der Verstärkungsfaktor V, ein Term der Form $\frac{1}{s}$ und zwei Linearfaktoren zu berücksichtigen sind. Die entsprechenden Betrags- und Phasenkennlinien sind in den Bildern 3.4 und 3.5 dargestellt.

3.3 Frequenzgangs-Ortskurve

Die Frequenzgangs-Ortskurve oder kurz Ortskurve eines Systems mit der Übertragungsfunktion G(s) ist die graphische Darstellung des Frequenzganges $G(j\omega)$ in der komplexen Ebene.

 $^{^4}$ Man beachte, dass $\omega=0$ aufgrund der logarithmischen Skalierung der Frequenz nicht dargestellt werden kann.

Bild 3.4: Betragskennlinie von $G(s) = \frac{s+1}{s(s+10)}$

Für einfache Übertragungsfunktionen kann der Verlauf der Ortskurve direkt aus $G(j\omega)$ ermittelt werden.

B Es soll die Ortskurve zur Übertragungsfunktion

$$G(s) = \frac{1}{s+1}$$

gezeichnet werden. Hierzu wird zunächst der Frequenzgang

$$G(j\omega) = \frac{1}{j\omega + 1} = \frac{1 - j\omega}{1 + \omega^2}$$

angeschrieben, offensichtlich gilt

$$G(j0) = 1$$
 und $G(j\omega) = 0$ für $\omega \to \infty$,

d.h. die Ortskurve beginnt für $\omega = 0$ bei 1 und endet für $\omega \to \infty$ im Koordinatenursprung. Berechnet man nun den Abstand der Ortskurve zum Punkt $\frac{1}{2}$, so erhält man

$$\left|\frac{1}{2} - G(j\omega)\right| = \left|\frac{1}{2} - \frac{1 - j\omega}{1 + \omega^2}\right| = \frac{1}{2}$$

Das bedeutet, dass die Ortskurve dem in Bild 3.6 dargestellten Halbkreis entspricht. Der eingezeichnete Pfeil zeigt dabei in Richtung wachsender Werte von ω .

Bild 3.5: Phasenkennlinie von $G(s) = \frac{s+1}{s(s+10)}$

Bei "komplizierteren" Übertragungsfunktionen werden üblicherweise zunächst die Frequenzkennlinien des Systems gezeichnet und daraus die Ortskurve skizziert. Hierzu liest man für interessante Frequenzwerte Betrag und Phase des Frequenzganges aus den Frequenzkennlinien ab und zeichnet die entsprechenden komplexen Zeiger in die komplexe Ebene ein. Daraus ergibt sich eine Approximation des Ortskurvenverlaufes.

Man beachte, dass die Ortskurve manchmal für $-\infty < \omega < \infty$, also auch für negative Werte von ω gezeichnet wird. Dabei ist zu beachten, dass aufgrund von

$$|G(-j\omega)| = |G(j\omega)|$$
 und $\arg G(-j\omega) = -\arg G(j\omega)$

der Teil der Ortskurve für $-\infty < \omega \leq 0$ aus dem Teil der Ortskurve für $0 \leq \omega < \infty$ durch Spiegelung an der reellen Achse hervorgeht.

B Es soll die zur Übertragungsfunktion

$$G(s) = \frac{1}{s(s+1)}$$

gehörige Ortskurve gezeichnet werden. Wie man aus den in Bild 3.7, links dargestellten Frequenzkennlinien erkennt, beträgt die Phase von $G(j\omega)$ für sehr kleine Frequenzwerte -90° ,

Bild 3.6: Ortskurve zu $G(s) = \frac{1}{s+1}$

der zugehörige Betrag ist sehr groß und geht für $\omega = 0$ gegen Unendlich. Mit wachsenden Frequenzen wird der Betrag immer kleiner und die Phase strebt gegen -180° , bei $\omega = 1$ beträgt $|G(j\omega)|_{dB} = -3$, d.h. $|G(j\omega)| = \sqrt{2}$ und $\arg G(j\omega) = -135^{\circ}$. Mit diesen Informationen kann man die gesuchte Ortskurve skizzieren, sie ist in Bild 3.7, rechts dargestellt.

Bild 3.7: Frequenzkennlinien zu $G(s) = \frac{1}{s(s+1)}$ und zugehörige Ortskurve

Kapitel 4

Nyquist-Kriterium

4.1 Einführung

Ausgangspunkt der Überlegungen ist der in Bild 4.1 dargestellte Standardregelkreis. Will man die Führungsübertragungsfunktion

$$T(s) = \frac{R(s)P(s)}{1 + R(s)P(s)}$$
(4.1)

des Regelkreises hinsichtlich ihrer BIBO-Stabilität untersuchen, so ist zu überprüfen, ob das Nennerpolynom von T(s) ein Hurwitzpolynom ist. Zur Kontrolle, ob alle Nullstellen des

$$r \xrightarrow{e} R(s) \xrightarrow{u} P(s) \xrightarrow{y}$$

Bild 4.1: Standardregelkreis

Nennerpolynoms von T(s) in der linken, offenen komplexen Ebene liegen, gibt es natürlich mehrere Möglichkeiten. Die naheliegendste Möglichkeit besteht darin, die Pole von T(s) explizit zu berechnen, was meistens nur auf numerischem Weg möglich ist. Dieser Zugang zur Beantwortung des Stabilitätsproblems scheitert allerdings meistens, wenn die Koeffizienten des Nennerpolynoms von T(s) beispielsweise Funktionen von vorgebbaren Reglerparametern sind. In diesem Fall können Stabilitätskriterien, wie z.B. das Routh-Schema oder das Hurwitz-Kriterium angewandt werden, eine explizite Ermittlung der Polstellen ist dort nicht erforderlich.

Im Gegensatz zu den genannten numerischen Kriterien ist das Nyquist-Kriterium¹ ein gra-phisches Stabilitätskriterium, bei dem aus dem Verlauf der Ortskurve des offenen Kreises, also

$$L(j\omega) = R(j\omega)P(j\omega) \tag{4.2}$$

¹benannt nach dem in Schweden geborenen, amerikanischen Physiker Harry Nyquist (1889 - 1976)

auf die Stabilität des geschlossenen Kreises geschlossen werden kann. Ein wesentlicher Vorzug des Nyquist-Kriteriums besteht darin, dass neben dem Verlauf der Ortskurve $L(j\omega)$, z.B. in Form von Messwerten, nur wenige Informationen über die Übertragungsfunktion L(s) benötigt werden.

Man beachte, dass der deutsche Elektrotechniker Felix Strecker (1892-1951) bereits 1930, also 2(!) Jahre vor Harry Nyquist, ein ähnliches Stabilitätskriterium vorgeschlagen hat. Aus diesem Grund findet man in einigen deutschen Literaturstellen auch die Bezeichnung **Strecker-Nyquist-Kriterium**, siehe z.B. [7].

Für die Herleitung des Kriteriums wird der im nächsten Abschnitt erläuterte Begriff der stetigen Winkeländerung einer Ortskurve benötigt.

4.2 Stetige Winkeländerung einer Ortskurve

Zunächst wird vereinfachend die zur Übertragungsfunktion

$$F(s) = s - \beta \quad \text{mit} \quad \beta \in \mathbb{C} \tag{4.3}$$

gehörige Ortskurve genauer untersucht. Hierfür wird der Frequenzgang

$$F(j\omega) = j\omega - \beta$$

in der komplexen Ebene dargestellt, wobei der Frequenzparameter ω hier ausnahmsweise Werte von $-\infty$ bis $+\infty$ durchläuft. Aus der resultierenden Ortskurve wird nun die so genannte *stetige* Winkeländerung von $F(j\omega)$, also

$$\mathop{\Delta}\limits_{-\infty}^{+\infty} \arg F(j\omega) = \mathop{\Delta}\limits_{-\infty}^{+\infty} \arg \left(j\omega - \beta\right)$$

ermittelt. Darunter versteht man die Änderung der Phasenlage des komplexen Zeigers $F(j\omega)$, wenn ω Werte von $-\infty$ bis $+\infty$ durchläuft. Phasensprünge, also Unstetigkeiten im Phasenverlauf, werden *nicht* mitgezählt. In Bild 4.2 ist die Ortskurve $F(j\omega)$ graphisch dargestellt, wobei die drei Fälle Re $\beta < 0$, Re $\beta = 0$ und Re $\beta > 0$ unterschieden werden. Weiters ist der komplexe Zeiger $F(j\omega_*)$ eingezeichnet, wobei ω_* ein beliebiger Frequenzwert ist. Man kann leicht erkennen, dass für die stetige Winkeländerung von $F(j\omega)$ gilt:

$$\overset{+\infty}{\underset{-\infty}{\Delta}} \arg F(j\omega) = \overset{+\infty}{\underset{-\infty}{\Delta}} \arg (j\omega - \beta) = \begin{cases} -\pi & \text{für } \operatorname{Re}\beta > 0 \\ 0 & \text{für } \operatorname{Re}\beta = 0 \\ +\pi & \text{für } \operatorname{Re}\beta < 0 \end{cases}$$
(4.4)

Bild 4.2: Zur Bestimmung der stetigen Winkeländerung von $F(j\omega) = j\omega - \beta$

Diese Erkenntnisse können nun sehr geradlinig auf eine (teilerfremde, also gekürzte) Übertragungsfunktion der Form

$$F(s) = K \frac{\prod_{i=1}^{m} (s - \beta_i)}{\prod_{i=1}^{n} (s - \alpha_i)} \quad \text{mit} \quad K \in \mathbb{R}, \ \alpha_i, \ \beta_i \in \mathbb{C}$$
(4.5)

übertragen werden. Hierbei wird vorausgesetzt, dass die Übertragungsfunktion m_l Nullstellen mit negativem Realteil, m_a Nullstellen mit verschwindendem Realteil und m_r Nullstellen mit positivem Realteil besitzt, d.h.

$$m = m_l + m_a + m_r. \tag{4.6}$$

Analoges gilt für die n Pole von F(s), d.h.

$$n = n_l + n_a + n_r. \tag{4.7}$$

Weiters wird wieder vorausgesetzt, dass Nullstellen bzw. Pole reell und/oder paarweise konjugiert komplex auftreten. Für die Phase des zugehörigen Frequenzganges

$$F(j\omega) = K \frac{\prod_{i=1}^{m} (j\omega - \beta_i)}{\prod_{i=1}^{n} (j\omega - \alpha_i)}$$

gilt bekanntlich

$$\arg F(j\omega) = \arg K + \sum_{i=1}^{m} \arg (j\omega - \beta_i) - \sum_{i=1}^{n} \arg (j\omega - \alpha_i)$$

und in weiterer Folge auch

$$\stackrel{+\infty}{\underset{-\infty}{\Delta}} \arg F(j\omega) = \stackrel{+\infty}{\underset{-\infty}{\Delta}} \arg K + \sum_{i=1}^{m} \stackrel{+\infty}{\underset{-\infty}{\Delta}} \arg (j\omega - \beta_i) - \sum_{i=1}^{n} \stackrel{+\infty}{\underset{-\infty}{\Delta}} \arg (j\omega - \alpha_i) .$$

Institut für Regelungsund Automatisierungstechnik Mit (4.4) kann nun unmittelbar

$$\Delta_{-\infty}^{+\infty} \arg F(j\omega) = 0 + m_a \cdot 0 + m_l \pi - m_r \pi - n_a \cdot 0 - n_l \pi + n_r \pi$$

gefolgert werden. Eliminiert man nun mittels (4.6) und (4.7) m_l und n_l , so findet man nach kurzer Rechnung

$$\Delta_{-\infty}^{+\infty} \arg F(j\omega) = (m-n) \ \pi - (m_a + 2m_r) \ \pi + (n_a + 2n_r) \ \pi.$$
(4.8)

Darüber hinaus kann man die Tatsache ausnützen, dass der "negative Ast" der Ortskurve $F(j\omega)$ (d.h. für negative Werte von ω) aus dem "positiven Ast" von $F(j\omega)$ durch Spiegelung an der reellen Achse hervorgeht. Daraus folgt unmittelbar, dass die stetige Winkeländerung von $F(j\omega)$, wenn ω (nichtnegative) Werte von 0 bis $+\infty$ durchläuft genau die Hälfte von $\overset{+\infty}{\Delta} \arg F(j\omega)$ beträgt, d.h.

$$\Delta \arg F(j\omega) := \mathop{\Delta}\limits_{0}^{+\infty} \arg F(j\omega) = \frac{1}{2} \mathop{\Delta}\limits_{-\infty}^{+\infty} \arg F(j\omega).$$
(4.9)

Damit gilt aber auch

$$\Delta \arg F(j\omega) = (m-n) \ \frac{\pi}{2} - (m_a + 2m_r) \ \frac{\pi}{2} + (n_a + 2n_r) \ \frac{\pi}{2}.$$
(4.10)

B Gegeben sei die Übertragungsfunktion

$$F(s) = \frac{s^2 + 0.1s + 1}{s^3 - s}$$

mit den Nullstellen und Polen

$$\beta_{1,2} = -0.05 \pm j \, 0.9987, \ \alpha_1 = 0, \ \alpha_2 = +1, \ \alpha_3 = -1,$$

d.h. m = 2, n = 3 sowie $m_a = m_r = 0$ und $n_a = n_r = 1$. Gemäß (4.10) gilt für die stetige Winkeländerung

$$\Delta \arg F(j\omega) = (2-3) \frac{\pi}{2} - (0+0) \frac{\pi}{2} + (1+2) \frac{\pi}{2} = \pi.$$

4.3 Formulierung des Nyquist-Kriteriums

Wie bereits in der Einführung angedeutet wurde, wird beim Nyquist-Kriterium mit der Ortskurve des offenen Kreises operiert. Die Übertragungsfunktion L(s) = R(s)P(s) des offenen Kreises ist der Quotient der teilerfremden Polynome $\mu(s)$ und $\nu(s)$, d.h.

$$L(s) = \frac{\mu(s)}{\nu(s)},\tag{4.11}$$

wobei vorausgesetzt wird, dass L(s) eine realisierbare Übertragungsfunktion ist, d.h.

$$\operatorname{Grad}\mu(s) \le \operatorname{Grad}\nu(s).$$
 (4.12)

Zur Überprüfung der Stabilität des geschlossenen Kreises muss das Nennerpolynom von

$$T(s) = \frac{L(s)}{1 + L(s)} = \frac{\mu(s)}{\mu(s) + \nu(s)}$$

untersucht werden. Der geschlossene Kreis ist genau dann BIBO-stabil, wenn das Polynom $\mu(s) + \nu(s)$ ein Hurwitzpolynom ist. Man beachte, dass die Übertragungsfunktion

$$F(s) := 1 + L(s) = \frac{\mu(s) + \nu(s)}{\nu(s)}$$
(4.13)

das zu untersuchende Polynom als Zählerpolynom besitzt, d.h. der geschlossene Regelkreis ist genau dann BIBO-stabil, wenn das Zählerpolynom von F(s) ein Hurwitzpolynom ist. Wegen (4.12) und (4.13) gilt sicher

$$m = n$$
,

und aus (4.10) folgt nun unmittelbar

$$\Delta \arg F(j\omega) = \Delta \arg \{1 + L(j\omega)\} = -(m_a + 2m_r)\frac{\pi}{2} + (n_a + 2n_r)\frac{\pi}{2}.$$

Der geschlossene Regelkreis ist genau dann BIBO-stabil, wenn $m_a = m_r = 0$ gilt, d.h. wenn die Bedingung (Nyquist-Kriterium)

$$\Delta \arg \{1 + L(j\omega)\} = (n_a + 2n_r)\frac{\pi}{2}$$
 (4.14)

erfüllt ist.

Das bedeutet, dass T(s) dann, und nur dann BIBO-stabil ist, wenn die stetige Winkeländerung der Ortskurve $\{1 + L(j\omega)\}$ dem (nichtnegativen) Ausdruck auf der rechten Seite von (4.14) entspricht. Es ist also die stetige Winkeländerung des komplexen Zeigers $\{1 + L(j\omega)\}$ zu untersuchen. Diesen Zeiger erhält man auch, wenn man den Punkt (-1) mit $L(j\omega)$ verbindet, eine Verschiebung der Ortskurve $L(j\omega)$ nach "rechts" ist somit nicht erforderlich, siehe hierzu auch Bild 4.3. Man beachte auch, dass aufgrund von (4.13) die Polstellen von F(s) identisch sind mit den Polstellen von L(s), d.h. die nichtnegativen ganzen Zahlen n_a bzw. n_r geben an, wieviele Pole des offenen Kreises auf bzw. rechts der imaginären Achse liegen.

B Gegeben sei ein Standardregelkreis mit

$$L(s) = \frac{K}{s(s+1)}$$
 wobei $K \in \mathbb{R}$,

d.h. $n_a = 1$ und $n_r = 0$. Es soll mit Hilfe des Nyquist-Kriteriums derjenige Wertebereich von *K* ermittelt werden, für den der geschlossene Regelkreis BIBO-stabil ist, d.h. gemäß (4.14) muss für die stetige Winkeländerung von $\{1 + L(j\omega)\}$ die Bedingung

$$\Delta \arg \left\{ 1 + L(j\omega) \right\} \stackrel{!}{=} \frac{\pi}{2}$$

Bild 4.3: Zur Bildung des komplexen Zeigers $1 + L(j\omega)$

gelten. Zunächst wird die in Bild 4.4, links dargestellte Ortskurve $L(j\omega)$ für K = 1 skizziert, Details dazu findet man im Kapitel über Ortskurven. Unter Annahme positiver Werte für K bewirkt eine Variation von K eine Skalierung der Ortskurve, d.h. die Form der Ortskurve bleibt gleich, die Ortskurve wird aber für K > 1 "aufgeblasen" und für K < 1 "geschrumpft". Offensichtlich gilt für beliebige positive Werte von K tatsächlich

Bild 4.4: Ortskurven von $L(s) = \frac{K}{s(s+1)}$ für K = +1 (linkes Bild) und K = -1 (rechtes Bild)

$$\Delta \arg \left\{ 1 + L(j\omega) \right\} = \frac{\pi}{2},$$

d.h. das Nyquist-Kriterium ist erfüllt. Für negative Werte von K ändert sich die Phase von $L(j\omega)$ um 180°, die entsprechende Ortskurve für K = -1 ist in Bild 4.4, rechts dargestellt. Für beliebige negative Werte von K kann nun die stetige Winkeländerung

$$\Delta \arg \{1 + L(j\omega)\} = -\frac{\pi}{2},$$

abgelesen werden, d.h. das Nyquist-Kriterium ist nicht erfüllt. Der zulässige Wertebereich für den reellen Parameter K lautet somit

$$0 < K < \infty$$

Dieses Ergebnis kann auch analytisch bestätigt werden. Für den geschlossenen Regelkreis gilt

$$T(s) = \frac{L(s)}{1 + L(s)} = \frac{K}{s^2 + s + K},$$

d.h. das Nennerpolynom ist genau für den oben angegebenen Wertebereich von Kein Hurwitzpolynom.

4.4 Vereinfachtes Schnittpunktkriterium

Das Nyquist-Kriterium (4.14) wird besonders einfach, wenn die (realisierbare) Übertragungsfunktion L(s) vom so genannten *einfachen Typ* ist, d.h.

- 1. Der Verstärkungsfaktor V des offenen Kreises ist positiv.
- 2. Alle Pole von L(s) haben einen negativen Realteil bis auf möglicherweise einen Pol bei s = 0.
- 3. Die Betragskennlinie von $L(j\omega)$ besitzt genau einen Schnittpunkt mit der 0 dB Linie und verläuft für $\omega \to \infty$ unter dieser.

Ist L(s) vom einfachen Typ, dann gilt auf jeden Fall $n_r = 0$ und $n_a = 0$ bzw. $n_a = 1$, d.h. aus (4.14) folgt

$$\Delta \arg \{1 + L(j\omega)\} = \begin{cases} 0 & \text{wenn } L(s) \text{ keinen Pol bei } s = 0 \text{ besitzt } (n_a = 0) \\ \frac{\pi}{2} & \text{wenn } L(s) \text{ einen Pol bei } s = 0 \text{ besitzt } (n_a = 1) \end{cases}$$

Dies bedeutet, dass die Phase von $L(j\omega)$ für diejenige (eindeutige, s.o.) Frequenz ω_c , bei der $L(j\omega)$ den Einheitskreis schneidet, größer sein muss als -180° , d.h.

arg
$$L(j\omega_c) > -180^{\circ}$$
. (4.15)

Zur endgültigen, prägnanten Formulierung dieses so genannnten vereinfachten Schnittpunktkriteriums ist die Einführung der Begriffe "Durchtrittsfrequenz" und "Phasenreserve" erforderlich.

4.4.1 Durchtrittsfrequenz

Die Durchtrittsfrequenz ω_c ist diejenige Kreisfrequenz², bei der die Ortskurve $L(j\omega)$ des offenen Kreises den Einheitskreis schneidet, bzw. bei der die Betragskennlinie $|L(j\omega)|_{dB}$ die 0 dB Linie schneidet, d.h.

$$|L(j\omega_c)| = 1$$
 bzw. $|L(j\omega_c)|_{dB} = 0.$ (4.16)

Die Durchtrittsfrequenz ist in Bild 4.5 im oberen Diagramm beim Schnittpunkt der Betragskennlinie mit der 0 dB Linie eingezeichnet, in Bild 4.6 schneidet die Ortskurve $L(j\omega)$ den Einheitskreis (EHK) für den Frequenzparameter $\omega = \omega_c$.

²Die Bezeichnung ω_c ist auf die englische Übersetzung "crossover-frequency" zurück zu führen.

Bild 4.5: Illustration von Durchtrittsfrequenz und Phasenreserve im Bode-Diagramm

4.4.2 Phasenreserve und Amplitudenrand

Die Phasenreserve ϕ_r ist der "Abstand" der Phasenkennlinie von $L(j\omega)$ an der Stelle $\omega = \omega_c$ zu (-180°) , d.h.

$$\phi_r = \arg L(j\omega_c) + 180^\circ. \tag{4.17}$$

In den Bildern 4.5 und 4.6 ist die Phasenreserve in den Frequenzkennlinien bzw. in der Ortskurve des offenen Kreises dargestellt.

Bezeichnet man mit ω^- diejenige Frequenz, bei der $L(j\omega^-) = -180^\circ$ gilt, so gilt für den so genannten Amplitudenrand

$$A_r = \frac{1}{|L(j\omega^-)|}.$$
 (4.18)

Aus der in Bild 4.6 dargestellten Ortskurve ist der Amplitudenrand leicht ablesbar, bei den in Bild 4.5 dargestellten Frequenzkennlinien gilt $A_r \to \infty$, da die Phasenkennlinie den Wert -180° für endliche Werte von ω nicht erreicht.

4.4.3 Formulierung des vereinfachten Schnittpunktkriteriums

Fasst man die Erkenntnisse und Begriffe der letzten Abschnitte zusammmen, so kann das vereinfachte Schnittpunktkriterium folgendermaßen formuliert werden:

Ist der offene Kreis L(s) vom einfachen Typ, so ist der geschlossene Regekreis genau dann BIBO-stabil, wenn die Phasenreserve (4.17) positiv ist.

Aus dem vereinfachten Schnittpunktkriterium folgen anschauliche Interpretationen für ϕ_r und A_r . Die Phasenreserve ϕ_r gibt den "Spielraum" an, in dem sich die Phase des offenen Kreises

Bild 4.6: Zur Erläuterung von Durchtrittsfrequenz, Phasenreserve und Amplitudenrand

an der Stelle ω_c verändern darf, ohne dass der geschlossene Regelkreis instabil wird. Der Amplitudenrand A_r hingegen kennzeichnet den "Spielraum", in dem sich der Betrag des offenen Kreises an der Stelle ω^- ändern darf, ohne dass der geschlossene Regelkreis instabil wird.

Kapitel 5 Frequenzkennlinien - Verfahren

Der Entwurf von Regelgesetzen mit Hilfe von Frequenzkennlinien gehört zu den klassischen Verfahren der Regelungstechnik. Der Ausgangspunkt der Betrachtungen ist der in Bild 5.1 dargestellte Standardregelkreis, wobei P(s) die gegebene Übertragungsfunktion der Regel-

Bild 5.1: Standardregelkreis

strecke ist und R(s) die gesuchte Reglerübertragungsfunktion repräsentiert. Diese muss so bestimmt werden, dass Führungs- und Störverhalten, ausgedrückt durch die Übertragungsfunktionen

$$r \to y: \quad T(s) = \frac{R(s)P(s)}{1+R(s)P(s)} \quad \text{und} \quad d \to y: \quad S(s) = \frac{1}{1+R(s)P(s)}$$
(5.1)

so beeinflusst werden, dass vorgegebene Spezifikationen möglichst gut erfüllt werden. Aus (5.1) geht hervor, dass die Auswirkungen von Modifikationen des Reglers R(s) auf die Übertragungsfunktionen T(s) und S(s) im Allgemeinen nur sehr schwer abzuschätzen sind. Dies erschwert die systematische Vorgangsweise bei der Bestimmung des Regelgesetzes. Erfreulicherweise können gewisse Spezifikationen, die der geschlossene Regelkreis erfüllen muss - wenigstens näherungsweise - in entsprechende Bedingungen für den offenen Kreis

$$L(s) = R(s) P(s) \tag{5.2}$$

übersetzt werden. Wie sich zeigen wird, ergeben sich aus den Vorgaben für den geschlossenen Kreis im Zeitbereich mittels einfacher Relationen Vorgaben für den offenen Kreis im Frequenzbereich. Der Regler R(s) wird also dazu verwendet, den Frequenzgang $L(j\omega)$ des offenen Kreises entsprechend zu "formen", oft wird dafür der Begriff "loop shaping" verwendet.

In weiterer Folge wird davon ausgegangen, dass die Übertragungsfunktion des offenen Regelkreises L(s) vom einfachen Typ ist, d.h. das vereinfachte Schnittpunktkriterium kann eingesetzt werden.

5.1 Allgemeine Überlegungen zum Reglerentwurf

Wie man aus (5.1) leicht erkennen kann, gilt

$$S(s) + T(s) = 1,$$
 (5.3)

d.h. in einem Standardregelkreis ergibt die Summe aus Führungsübertragungsfunktion und Störübertragungsfunktion immer den Wert 1. Daraus folgt unmittelbar, dass in einem (unrealistischen) Regelkreis mit idealem Führungsverhalten, d.h. T(s) = 1, ganz automatisch auch S(s) = 0 gilt und der Regelkreis somit auch ideales Störverhalten aufweist. In einem realen Regelkreis ist T(s) = 1 aufgrund diverser Einschränkungen (siehe weiter unten) überhaupt nicht erzielbar und, wie sich zeigen wird, auch gar nicht erwünscht. Der Grund hierfür sind bisher unberücksichtigte Störeinflüsse, wie z.B. das in Bild 5.2 eingezeichnete Messrauschen n(t). Wie man leicht überprüfen kann, gilt

Bild 5.2: Standardregelkreis

$$n \to y:$$
 $N(s) = \frac{-R(s)P(s)}{1+R(s)P(s)} = -T(s),$

d.h. das Messrauschen wird für T(s) = 1 in keinster Weise unterdrückt. In den meisten praktischen Anwendungen sind r, d und n in verschiedenen Frequenzbereichen wirksam. Verglichen mit r und d ist n üblicherweise ein hochfrequentes Signal. Die daraus resultierenden geforderten Eigenschaften der Führungsübertragungsfunktion T(s) können somit besonders geradlinig mittels des Frequenzganges $T(j\omega)$ angegeben werden, es muss gelten:

$$|T(j\omega)| \approx 1$$
 im "niederfrequenten Bereich"
 $|T(j\omega)| \ll 1$ im "hochfrequenten Bereich" (5.4)

Diese Erkenntnisse sind in Bild 5.3 graphisch zusammengefasst. Für "niedrige" Frequenzen soll der Betrag von $T(j\omega)$ möglichst längs der 0dB-Linie verlaufen, für "hohe" Frequenzen möglichst weit unter der 0dB-Linie.

Bild 5.3: Typische Verläufe von $|T(j\omega)|$ und $|L(j\omega)|$

Mit Hilfe der bekannten Relation

$$T(s) = \frac{L(s)}{1 + L(s)}, \quad \text{d.h.} \quad |T(j\omega)| = \frac{|L(j\omega)|}{|1 + L(j\omega)|}$$
(5.5)

kann der wünschenswerte Verlauf von $|T(j\omega)|$ leicht auf den offenen Kreis umgerechnet werden, es gilt

$$|T(j\omega)| \approx 1 \qquad \Leftrightarrow \qquad |L(j\omega)| \gg 1,$$

$$|T(j\omega)| \ll 1 \qquad \Leftrightarrow \qquad |L(j\omega)| \approx |T(j\omega)| \ll 1.$$
(5.6)

D.h. bei niedrigen Frequenzen muss $|L(j\omega)|$ möglichst weit über der 0dB-Linie verlaufen, bei hohen Frequenzen möglichst weit unter der 0dB-Linie, siehe Bild 5.3.

Von besonderer Bedeutung für das Verhalten des Regelkreises ist der Frequenzbereich nahe der Durchtrittsfrequenz ω_c , die bekanntlich durch $|L(j\omega_c)| = 1$ charakterisiert ist. Aus Bild 5.3 kann gefolgert werden, dass die Durchtrittsfrequenz ω_c ungefähr der Bandbreite ω_B des geschlossenen Kreises entspricht. Diese ist defininiert durch

$$|T(j\omega_B)|_{dB} = -3$$
 bzw. $|T(j\omega_B)| = \frac{1}{\sqrt{2}}.$

Wie leicht einzusehen ist, bedeutet eine große Bandbreite, dass der geschlossene Regelkreis auf schnelle Änderungen der Eingangsgrößen ohne nenneswerte Verzögerung reagieren kann. Somit stellen ω_B bzw. ω_c ein Maß für die "Reaktionsfreudigkeit" des Regelkreises dar. Die Phasenreserve ϕ_r gibt den "Abstand" der Phasenkennlinie des offenen Kreises an der Stelle $\omega = \omega_c$ zu -180° an. Bei kleiner Phasenreserve ist der geschlossene Regelkreis nahe an der Stabilitätsgrenze, was sich durch eine verstärkte Schwingneigung manifestiert. Weiters können Abweichungen des Streckenmodells von der Realität bis zur Instabilität des Regelkreises

führen. Somit ist die Phasenreserve ein Maß für die Robustheit des Regelkreises und charakterisiert dessen Schwingneigung.

5.1.1 Einschränkungen beim Entwurf

Wesentlich für den erfolgreichen Reglerentwurf ist die Vorgabe von sinnvollen Spezifikationen. Aus diesem Grund ist bei der Wahl der Spezifikationen genau darauf zu achten, ob diese überhaupt erfüllbar sind. Anhand einiger charakteristischer Streckeneigenschaften können mögliche Einschränkungen bei der Vorgabe von Spezifikationen erkannt werden. Dazu zählen Streckenpole und -nullstellen mit positivem Realteil¹ sowie Beschränkungen der Stellgröße.

Instabile Pole

Instabile Streckenpole erfordern eine Mindestbandbreite ω_B , woraus auch unmittelbar eine untere Grenze für die Durchtrittsfrequenz ω_c folgt. Diese Tatsache kann leicht anhand des Balancierens eines Stabes auf einem Finger plausibel gemacht werden. Die Stabilisierung des Stabes ist prinzipiell nur dann möglich, wenn der Finger hinreichend schnell bewegt werden kann, der Regelkreis also eine gewisse Mindestbandbreite besitzt.

Instabile Nullstellen

Im Gegensatz zu instabilen Polen begrenzen instabile Streckennullstellen die erzielbare Bandbreite ω_B bzw. die maximale Durchtrittsfrequenz ω_c . Es ist zu beachten, dass instabile Streckennullstellen immer auch Nullstellen von L(s) und T(s) sind. Anderenfalls kommt es im Regelkreis zu einer verbotenen "instabilen" Kürzung. Als Beispiel kann wieder das Balancieren eines Stabes auf dem Finger herangezogen werden. Will man beispielsweise den balancierenden Finger nach rechts bewegen ohne dass der Stab hinunterfällt, so muss der Finger zunächst kurz nach links, also in die Gegenrichtung bewegt werden. Dieses "Systemverhalten" ist typisch für Systeme mit einer instabilen Nullstelle. Es veranschaulicht sehr schön, warum die gewünschte Endposition des balancierenden Fingers nicht beliebig schnell erreicht werden kann.

Stellgrößenbeschränkung

Bei praktischen Anwendungen sind de facto immer Beschränkungen der Stellgröße zu berücksichtigen. Eine gezielte Einhaltung von Stellgrößenbeschränkungen ist allerdings bei vielen gängigen Entwurfsverfahren nur schwer oder gar nicht möglich. Aus diesem Grund werden oft sehr "vorsichtige" Reglereinstellungen verwendet. Dies führt zu einer schlechten Ausnützung des Stellbereiches und in weiterer Folge zu einem "trägen" Verhalten des Regelkreises. Häufige und länger andauernde Verletzungen der Stellgrößenbeschränkung aufgrund zu "aggressiver" Reglereinstellungen können hingegen zu unerwünschtem dynamischen Verhalten des geschlossenen Kreises führen. Ein Beispiel hierfür ist der bereits ausführlich diskutierte Windup-Effekt.

¹In diesem Zusammenhang spricht man auch von "instabilen, Polen bzw. Nullstellen.

5.2 Ein typisches Entwurfsverfahren

Es wird davon ausgegangen, dass der geschlossene Regelkreis sich näherungsweise verhält wie ein System mit dominantem Polpaar. Das bedeutet, dass das dynamische Verhalten des Regelkreises durch ein konjugiert komplexes Polpaar dominiert wird. Wie sich zeigen wird, ergeben sich aus dieser Annahme einfache Richtlinien für den Reglerentwurf.

5.2.1 Systeme mit dominantem Polpaar

Aufgrund obiger Annahme kann davon ausgegangen werden, dass für die Führungsübertragungsfunktion des Regelkreises (wenigstens näherungsweise) gilt

$$T(s) = \frac{\omega_n^2}{s^2 + 2d\omega_n s + \omega_n^2} \quad \text{mit} \quad \omega_n > 0 \quad \text{und} \quad 0 < d < 1,$$
(5.7)

wobei ω_n die so genannte Kennkreisfrequenz und d der Dämpfungsgrad ist. Die angegebenen Wertebereiche für ω_n und d gewährleisten, dass T(s) BIBO-stabil ist und ein konjugiert komplexes Polpaar

$$s_{1,2} = -d\,\omega_n \pm j\omega_n \sqrt{1-d^2}$$

besitzt. Für die zugehörige Übertragungsfunktion des offenen Kreises gilt offensichtlich

$$L(s) = \frac{\omega_n^2}{s \ (s+2d\omega_n)}.$$
(5.8)

Wie bereits erwähnt wurde, haben Kenngrößen des offenen Kreises, nämlich die Durchtrittsfrequenz ω_c , bei der bekanntlich $|L(j\omega_c)| = 1$ gilt, und die Phasenreserve $\phi_r = \arg L(j\omega_c) + 180^{\circ}$ einen wesentlichen Einfluss auf das dynamische Verhalten des geschlossenen Regelkreises. Diese Tatsache wird beim vorliegenden Entwurfsverfahren ausgenützt, indem das Wunschverhalten des geschlossenen Regelkreises in entsprechende Werte für ω_c und ϕ_r umgerechnet wird.

5.2.2 Spezifikation des Wunschverhaltens

Sehr oft wird das Wunschverhalten eines Regelkreises im Zeitbereich spezifiziert. Hierfür gibt es eine Vielzahl verschiedener Möglichkeiten. Im vorliegenden Fall wird das dynamische Verhalten des Regelkreises durch den Verlauf seiner Sprungantwort mit Hilfe der so genannten Anstiegszeit und der Überschwingweite charakterisiert, das asymptotische Verhalten wird über die bleibende Regelabweichung spezifiziert.

Anstiegszeit t_r und Überschwingweite M_p

In Bild 5.4 ist der typische Verlauf der Sprungantwort eines Systems (5.7) mit dominantem Polpaar dargestellt. Mit M_p wird die Überschwingweite ("maximum peak") bezeichnet, sie gibt den maximalen Wert der Regelgröße an, wenn die Referenzgröße der Einheitssprung ist. Aus der Überschwingweite M_p kann das entsprechende prozentuale Überschwingen gemäß

$$\ddot{u} = 100 \ (M_p - 1) \qquad \text{in \%}$$
(5.9)

Institut für Regelungsund Automatisierungstechnik

Bild 5.4: Sprungantwort eines Systems mit dominantem Polpaar

ermittelt werden. Mit t_r wird die so genannte Anstiegszeit ("rise time") bezeichnet. Man beachte, dass in der Literatur verschiedene Definitionen für die Anstiegszeit zu finden sind, die sich bei genauerer Untersuchung jedoch nur geringfügig unterscheiden.

Bleibende Regelabweichung

Das asymptotische Verhalten des Regelkreises wird durch die bleibende Regelabweichung e_{∞} charakterisiert, wobei für die Führungsgröße spezielle "Testfunktionen" der Form

$$r(t) = \frac{t^{\nu-1}}{(\nu-1)!} \sigma(t) \quad \bigcirc \quad \bar{r}(s) = \frac{1}{s^{\nu}} \quad \text{mit} \quad \nu = 1, 2, 3, \dots$$
(5.10)

gewählt werden. Geht man von einer normierten Darstellung der Übertragungsfunktion des offenen Kreises aus, also

$$L(s) = \frac{V p(s)}{s^{\lambda} q(s)}$$
 mit $p(0) = q(0) = 1$,

so ergibt sich für die Laplace-Transformierte des Regelfehlers

$$\bar{e}(s) = \mathcal{L}\left\{e(t)\right\} = \frac{1}{1 + L(s)}\bar{r}(s) = \frac{s^{\lambda}q(s)}{s^{\lambda}q(s) + Vp(s)}\bar{r}(s),$$

wobei in einem sinnvoll entworfenen Regelkreis das Polynom $[s^{\lambda}q(s) + Vp(s)]$ natürlich ein Hurwitzpolynom ist. Setzt man (5.10) in den obigen Ausdruck ein, so erhält man

$$\bar{e}(s) = \frac{s^{\lambda}q(s)}{s^{\lambda}q(s) + Vp(s)} \frac{1}{s^{\nu}} = \frac{s^{\lambda-\nu}q(s)}{s^{\lambda}q(s) + Vp(s)}$$

Vom Endwertsatz der Laplace-Transformation weiß man, dass der Grenzwert

$$e_{\infty} = \lim_{t \to \infty} e(t)$$

genau dann existiert, wenn das Nennerpolynom von

$$s \bar{e}(s) = \frac{s^{\lambda - \nu + 1}q(s)}{s^{\lambda}q(s) + Vp(s)}$$

ein Hurwitzpolynom ist. Dies ist offensichtlich dann der Fall, wenn die Bedingung

$$\lambda-\nu+1\geq 0 \quad \Rightarrow \quad \lambda\geq \nu-1$$

erfüllt ist. Es darf dann der Endwertsatz

$$e_{\infty} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s \,\overline{e}(s) = \lim_{s \to 0} \frac{s^{\lambda - \nu + 1}q(s)}{s^{\lambda}q(s) + Vp(s)} = \lim_{s \to 0} \frac{s^{\lambda - \nu + 1}}{s^{\lambda} + V}$$

angewandt werden. Aus obigem Ausdruck für die bleibende Regelabweichung kann die unten angegebene Tabelle unmittelbar abgeleitet werden.

$$e_{\infty} \qquad \lambda = 0 \quad \lambda = 1 \quad \lambda = 2$$

$$\nu = 1 \Rightarrow r(t) = \sigma(t) \qquad \frac{1}{1+V} \qquad 0 \qquad 0$$

$$\nu = 2 \Rightarrow r(t) = t\sigma(t) \qquad - \qquad \frac{1}{V} \qquad 0$$

$$\nu = 3 \Rightarrow r(t) = \frac{t^2}{2!}\sigma(t) \qquad - \qquad - \qquad \frac{1}{V}$$

Aus der Tabelle ist beispielsweise zu erkennen, dass bei sprungförmiger Führungsgröße r die bleibende Regelabweichung e_{∞} verschwindet, wenn der offene Kreis mindestens einfach integrierend ist.

5.2.3 Faustformeln für den Reglerentwurf

Es kann gezeigt werden, dass bei Systemen mit dominantem Polpaar die beiden Relationen

$$\phi_r [\text{in Grad}] + \ddot{u} [\text{in \%}] \approx 70 \quad \text{und} \quad \omega_c t_r \approx 1.5$$
 (5.11)

näherungsweise gelten. Diese beiden "Faustformeln" spiegeln die bereits bekannten Tatsachen wider, dass eine kleine Phasenreserve eine große Schwingneigung des Regelkreises zur Folge hat und dass eine kleine Anstiegszeit eine große Bandbreite erfordert.

5.2.4 Durchführung des Reglerentwurfes

Der Reglerentwurf gliedert sich typischerweise in drei Schritte, nämlich

I Umrechnung der gegebenen Regelkreisspezifikationen auf den offenen Kreis

Das gewünschte Überschwingen und die gewünschte Anstiegszeit werden mittels (5.11) in ω_c und ϕ_r umgerechnet. Weiters werden aus der vorgegebenen bleibenden Regelabweichung λ und gegebenenfalls V ermittelt.

II Entsprechende Modifikation der Frequenzkennlinien des offenen Kreises

Durch geschicktes Einfügen von Korrekturgliedern wird der Frequenzgang des offenen Kreises sukzessive so verändert, dass er gewünschte Eigenschaften besitzt.

III Simulation des Regelkreises

Da der Reglerentwurf auf einigen vereinfachenden Annahmen beruht, ist eine Simulation des geschlossenen Kreises unumgänglich. Hierbei muss überprüft werden, ob die vorgegebenen Spezifikationen zufriedenstellend erfüllt werden.

5.3 Korrekturglieder

Proportionalglieder

Mit Hilfe eines Proportionalgliedes, d.h.

$$R(s) = K$$

kann die Betragskennlinie des offenen Kreises um $|K|_{dB}$ angehoben (|K| > 1) bzw. abgesenkt (|K| < 1) werden, wobei die Phasenkennlinie nicht beeinflusst bzw. bei negativem K um 180° abgesenkt wird.

Integrierer

Werden m Integrierer in den offenen Kreis eingefügt, d.h.

$$R(s) = \frac{1}{s^m},$$

so wird die Phasenkennlinie um $m \cdot 90^{\circ}$ Grad abgesenkt wobei auch die Betragskennlinie entsprechend verändert wird. Üblicherweise werden Integrierer in den offenen Kreis eingefügt, um das asymptotische Verhalten des Regelkreises den vorgegebenen Spezifikationen anzupassen.

Lead/Lag-Glied

Das so genannte Lead / Lag-Glied besitzt die Übertragungsfunktion

$$R(s) = \frac{1 + \frac{s}{\omega_Z}}{1 + \frac{s}{\omega_N}} \quad \text{mit} \quad \omega_Z, \ \omega_N > 0,$$

ist also der Quotient zweier Linearfaktoren mit den (positiven) Knickfrequenzen ω_Z und ω_N . Für $\omega_Z < \omega_N$ spricht man von einem Lead-Glied (phasenanhebend), für $\omega_N < \omega_Z$ von einem Lag-Glied (phasenabsenkend). Definiert man die Größe m gemäß

$$m := \frac{\omega_N}{\omega_Z},$$

so gilt offensichtlich

$$m > 1$$
: Lead-Glied bzw. $m < 1$: Lag-Glied

In Bild 5.5 sind die Frequenzkennlinien eines Lead-Gliedes graphisch dargestellt. Man erkennt, dass die Betragskennlinie angehoben wird, für die maximale Anhebung ΔA gilt

$$\Delta A_{dB} = m_{dB} = 20 \log m \qquad (\Delta A_{dB} > 0 \text{ wegen } m > 1).$$

Das bedeutet, man kann an einer vorgegebenen Frequenz $\omega \gg \omega_N$ die Betragskennlinie des offenen Kreises um ΔA anheben, ohne die Phasenkennlinie des offenen Kreises nennenswert zu beeinflussen. Typischerweise wird aber ein Lead-Glied dazu eingesetzt, die Phasenkennlinie des offenen Kreises anzuheben. Wie man Bild 5.5 entnehmen kann, tritt die größte Phasenanhebung $\Delta \varphi$ bei der so genannten Mittenfrequenz

$$\omega_m = \sqrt{\omega_Z \,\omega_N}$$

$$\Delta \varphi = \arcsin \frac{m-1}{m+1} \tag{5.12}$$

berechnet werden.

auf, sie kann gemäß

In Bild 5.6 sind die Frequenzkennlinien eines Lag-Gliedes graphisch dargestellt. Üblicherweise wird ein Lag-Glied dazu eingesetzt, die Betragskennlinie an einer vorgegebenen Frequenz $\omega \gg \omega_Z$ um

$$\Delta A_{dB} = m_{dB} = 20 \log m \qquad (\Delta A_{dB} < 0 \text{ wegen } m < 1).$$

abzusenken, ohne die Phasenkennlinie nennenswert zu beeinflussen.

B Gegeben sei die Übertragungsfunktion einer Regelstrecke

$$P(s) = \frac{10}{(s+1)^2}.$$

Für die Sprungantwort des Regelkreises sind die Spezifikationen

$$t_r = 3s, \quad M_p = 1.1 \quad \text{und} \ e_{\infty} = 0$$

vorgegeben. Die Anwendung der Faustformeln (5.11) liefert die Vorgaben

$$\omega_c = 0.5 \, rads^{-1}$$
 und $\phi_r = 60^\circ$

Institut für Regelungsund Automatisierungstechnik

Bild 5.5: Frequenzkennlinien, Lead-Glied

für den Frequenzgang des offenen Kreises. Zur Erzielung von $e_{\infty} = 0$ für eine sprungförmige Referenzgröße ist mindestens ein Integrator im offenen Kreis erforderlich. Aus diesem Grund wird als Ausgangsbasis für den Regler die Übertragungsfunktion

$$R_1(s) = \frac{1}{s}$$

gewählt, für den offenen Kreis gilt dann

$$L_1(s) = R_1(s)P(s) = \frac{10}{s(1+s)^2}.$$

Wie in Bild 5.7 zu erkennen ist, gilt

$$\arg L_1(j\omega_c) = -143^\circ,$$

d.h. zur Erzielung einer Phasenreserve von 60° muss die Phasenkennlinie des offenen Kreises an der Stelle ω_c um $\Delta \varphi = 23^\circ = 0.4 \, rad$ angehoben werden. Hierzu wird ein Lead-Glied eingesetzt. Mit Hilfe von (5.12) findet man

$$m = \frac{1 + \sin 0.4}{1 - \sin 0.4} = 2.28$$

und man erhält mit $\omega_m=\omega_c$ die Parameter

$$\omega_Z = \frac{0.5}{\sqrt{2.28}} = 0.33 \, rads^{-1}, \quad \omega_N = 0.5\sqrt{2.28} = 0.76 \, rads^{-1}$$

5.3. KORREKTURGLIEDER

Bild 5.6: Frequenzkennlinien, Lag-Glied

Das gesuchte Lead-Glied lautet somit

$$R_2(s) = \frac{1 + \frac{s}{0.33}}{1 + \frac{s}{0.76}}$$

Damit lautet die Übertragungsfunktion des offenen Kreises nun

$$L_2(s) = R_1(s)R_2(s)P(s) = 10\frac{\left(1 + \frac{s}{0.33}\right)}{s\left(1 + \frac{s}{0.76}\right)(1 + s)^2}$$

In Bild 5.7 erkennt man, dass die gewünschte Phase an der Stelle ω_c nun gewährleistet ist, für die Betragskennline gilt

$$|L_2(j\omega_c)|_{dB} = 27.$$

Die entsprechende Absenkung der Betragskennlinie kann mit dem Proportionalelement

$$R_3(s) = 10^{-\frac{27}{20}} = 0.041$$

bewerkstelligt werden. Damit lautet der endgültige Regler

$$R(s) = R_1(s)R_2(s)R_3(s) = 0.041 \frac{\left(1 + \frac{s}{0.33}\right)}{s\left(1 + \frac{s}{0.76}\right)}.$$

In Bild 5.8 ist die Sprungantwort des Regelkreises dargestellt, Überschwingweite und Anstiegszeit entsprechen in guter Näherung den vorgegebenen gewünschten Werten.

Bild 5.7: Frequenzkennlinien des offenen Kreises

Bild 5.8: Sprungantwort des Regelkreises

Kapitel 6

Diskretisierung zeitkontinuierlicher Regelgesetze

6.1 Einführung

Sehr häufig müssen zeitkontinuierlich entworfene Regelgesetze zeitdiskret realisiert werden. Das dynamische Verhalten des resultierenden zeitdiskreten Regelkreises soll dann dem Verhalten des ursprünglich entworfenen zeitkontinuierlichen Regelkreises "möglichst nahe" kommen. Diese "Güte" der Diskretisierung wird dabei üblicherweise durch numerische Simulation des zeitdiskreten Regelkreises bewertet. Eine notwendige Voraussetzung für eine zufriedenstellende Diskretisierung ist natürlich die sinnvolle Wahl der Diskretisierungszeit T_d , wovon in weiterer Folge auch ausgegangen wird.

Die grundlegenden Ideen der Reglerdiskretisierung werden im Folgenden anhand eines PI-Reglers mit der Zeitbereichsbeschreibung

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau$$
(6.1)

und der Übertragungsfunktion

$$R(s) = \frac{\bar{u}(s)}{\bar{e}(s)} = \frac{\mathcal{L}\left\{u(t)\right\}}{\mathcal{L}\left\{e(t)\right\}} = \frac{K_P s + K_I}{s}$$
(6.2)

demonstriert. Hierbei stellen K_P und K_I die reellen Reglerparameter dar, die beispielsweise mit Hilfe der vorgestellten Einstellregeln ermittelt werden können. Das Regelgesetz (6.1) wird nun zu den äquidistanten Zeitpunkten

$$t = k T_d$$
 wobei $k = 0, 1, 2, 3, \dots$ (6.3)

ausgewertet, d.h.

$$u(kT_d) = K_P e(kT_d) + K_I \int_0^{kT_d} e(\tau) d\tau.$$
 (6.4)

Institut für Regelungsund Automatisierungstechnik Mit den Abkürzungen

$$u_k := u(k T_d)$$
 and $e_k := e(k T_d)$

erhält man

$$u_{k} = K_{P} e_{k} + K_{I} \int_{0}^{kT_{d}} e(\tau) d\tau = K_{P} e_{k} + K_{I} \int_{0}^{(k-1)T_{d}} e(\tau) d\tau + K_{I} \int_{(k-1)T_{d}}^{kT_{d}} e(\tau) d\tau, \quad (6.5)$$

was schlussendlich auf die Beziehung

$$u_k = u_{k-1} - K_P e_{k-1} + K_P e_k + K_I \int_{(k-1)T_d}^{kT_d} e(\tau) \, d\tau.$$
(6.6)

führt. Die nachfolgend angeführten Methoden zur Diskretisierung des PI-Reglers unterscheiden sich durch die Art der numerischen Berechnung des in (6.6) auftretenden Integrals.

6.2 Vorwärts-Euler-Integration

Hier wird die Approximation

$$\int_{(k-1)T_d}^{kT_d} e(\tau) d\tau \approx T_s e_{k-1} \tag{6.7}$$

verwendet, d.h. das Integral wird durch ein Rechteck, das in Bild 6.1 schraffiert dargestellt ist, angenähert. Die Differenzengleichung, die das zeitliche Verhalten des zeitdiskreten PI-Reglers

Bild 6.1: Prinzip der Vorwärts-Euler-Integration

beschreibt, lautet somit

$$u_k = u_{k-1} + K_P e_k + (K_I T_s - K_P) e_{k-1}.$$
(6.8)

Wendet man auf (6.8) die z-Transformation an, so erhält man die z-Übertragungsfunktion

$$R_d(z) = \frac{\tilde{u}(z)}{\tilde{e}(z)} = \frac{K_P z + (K_I T_s - K_P)}{z - 1} = \frac{K_P (z - 1) + K_I T_s}{z - 1} = \frac{K_P \frac{z - 1}{T_s} + K_I}{\frac{z - 1}{T_s} - 1}.$$
 (6.9)

Institut für Regelungsund Automatisierungstechnik Der direkte Vergleich von (6.2) mit dem zeitdiskreten Regler (6.9) zeigt, dass

$$R_d(z) = R(s)|_{s=\frac{z-1}{T_1}}.$$
(6.10)

gilt. Der Zusammenhang zwischen Punkten der komplexen s-Ebene und Punkten in der komplexen z-Ebene wird also durch die Relation

$$z = 1 + sT_d \tag{6.11}$$

beschrieben. Offensichtlich wird die imaginäre Achse der s-Ebene, d.h. $s = j\omega$ auf $z = 1 + j\omega T_d$ abgebildet. Das bedeutet, dass die linke offene Halbebene Re $\{s\} < 0$ abgebildet wird auf die Halbebene Re $\{z\} < 1$, siehe Bild 6.2. Ein stabiler Regler R(s) kann also prinzipiell durch diese Art der Diskretisierung (6.10) in einen instabilen zeitdiskreten Regler $R_d(z)$ übergehen.

Bild 6.2: Abbildung von $\operatorname{Re}\{s\} \leq 0$ auf $\operatorname{Re}\{z\} \leq 1$ bei der Vorwärts-Euler-Integration

6.3 Rückwärts-Euler-Integration

Bei dieser Art der Diskretisierung wird die Approximation

$$\int_{(k-1)T_s}^{kT_s} e(\tau) \, d\tau \approx T_s \, e_k \tag{6.12}$$

eingesetzt, das Integral in (6.6) wird also durch das in Bild 6.3 schraffiert dargestellte Rechteck angenähert.Für das zeitdiskrete Regelgesetz ergibt sich somit die Differenzengleichung

$$u_k = u_{k-1} + (K_P + K_I T_s) e_k - K_P e_{k-1}$$
(6.13)

mit der zugehörigen z-Übertragungsfunktion

$$R_d(z) = \frac{\tilde{u}(z)}{\tilde{e}(z)} = \frac{(K_P + K_I T_s) z - K_P}{z - 1} = \frac{K_P (z - 1) + K_I T_s z}{z - 1} = \frac{K_P \frac{z - 1}{z T_s} + K_I}{\frac{z - 1}{z T_s} - 1}.$$
 (6.14)

Der Zusammenhang zwischen R(s) und $R_d(z)$ wird also durch

$$R_d(z) = R(s)|_{s=\frac{z-1}{zT_d}}$$
(6.15)

Bild 6.3: Prinzip der Rückwärts-Euler-Integration

beschrieben. Punkte in der komplexen s-Ebene stehen mit Punkten in der komplexen z-Ebene über die Relation

$$z = \frac{1}{1 - sT_d}$$

in Beziehung. Die imaginäre Achse der s-Ebene, d.h. $s=j\omega$ geht in den in Bild 6.4 dargestellten Kreis

$$\left|z - \frac{1}{2}\right| = \frac{1}{2}$$

über. Die linke offene s-Ebene geht in das Innere des Kreises über, d.h.

$$\operatorname{Re}\left\{s\right\} < 0 \quad \Longrightarrow \quad \left|z - \frac{1}{2}\right| < \frac{1}{2}.$$
(6.16)

Daraus kann unmittelbar gefolgert werden, dass durch diese Art der Diskretisierung die BIBO-Stabilität der Reglerübertragungsfunktion erhalten bleibt.

Bild 6.4: Abbildung von Re $\{s\} \le 0$ auf $\left|z - \frac{1}{2}\right| \le \frac{1}{2}$ bei der Rückwärts-Euler-Integration

6.4 Integration mittels Trapez-Regel

Bei der Integration nach der Trapez-Regel wird, wie in Bild 6.5 dargestellt, das Integral in (6.6) durch das schraffierte Trapez approximiert, d.h.

$$\int_{(k-1)T_s}^{kT_s} e(\tau) \, d\tau = \frac{T_s}{2} \left(e_{k-1} + e_k \right). \tag{6.17}$$

Für die Differenzengleichung ergibt sich somit

Bild 6.5: Prinzip der Trapez-Integration

$$u_{k} = K_{P}e_{k} - K_{P}e_{k-1} + u_{k-1} + K_{I}\frac{T_{s}}{2}(e_{k-1} + e_{k}) = (6.18)$$
$$= u_{k-1} + (K_{I}\frac{T_{s}}{2} + K_{P})e_{k} + (K_{I}\frac{T_{s}}{2} - K_{P})e_{k-1},$$

d.h. z-Übertragungsfunktion des Reglers lautet

$$R_d(z) = \frac{\tilde{u}(z)}{\tilde{e}(z)} = \frac{(K_I \frac{T_s}{2} + K_P)z + (K_I \frac{T_s}{2} - K_P)}{z - 1} = \frac{K_P(z - 1) + K_I \frac{T_s}{2}(z + 1)}{z - 1} = \frac{K_P \frac{2}{T_s} \frac{z - 1}{z + 1} + K_I}{\frac{2}{T_s} \frac{z - 1}{z + 1} - 1}$$

Es gilt somit

$$R_d(z) = R(s)|_{s=\frac{2}{T_J}\frac{z-1}{z+1}}.$$
(6.19)

Den in (6.19) angegebenen Zusammenhang

$$s = \frac{2}{T_d} \frac{z-1}{z+1} \tag{6.20}$$

zwischen den komplexen Variablen s und z nennt man auch **Tustin-Formel**. Die Umkehrrelation zu (6.20) lautet

$$z = \frac{1 + s\frac{T_d}{2}}{1 - s\frac{T_d}{2}},\tag{6.21}$$

d.h. die imaginäre Achse der s-Ebene geht in den Einheitskreis der z-Ebene über bzw. die linke offene s-Ebene geht in das Innere des Einheitskreises über, siehe auch Bild 6.6.

B Der mit Hilfe des Frequenzkennlinienverfahrens gefundene Regler mit der Übertragungsfunktion

$$R(s) = 0.41 \frac{\left(1 + \frac{s}{0.33}\right)}{s\left(1 + \frac{s}{0.76}\right)}$$

Bild 6.6: Abbildung von Re $\{s\} \leq 0$ auf $|z| \leq 1$ bei der Trapez-Integration

wurde für $T_d=0.2$ mittels der Tustin-Formel diskretisiert:

$$R_d(z) = \frac{0.009065z^2 + 0.0005792z - 0.008486}{z^2 - 1.859z + 0.8587} = 0.009065 \frac{(z+1)(z-0.9361)}{(z-1)(z-0.8587)}$$

Kapitel 7 Steuerbarkeit und Beobachtbarkeit

7.1 Einführung

Wie sich zeigen wird, sind die Begriffe **Steuerbarkeit** und **Beobachtbarkeit** beim Entwurf von Zustandsreglern und Zustandsbeobachtern von entscheidender Bedeutung. Stark vereinfacht besagt die Steuerbarkeit eines Systems, dass über seine Eingangsgröße jede Zustandsvariable beeinflusst werden kann. Im Gegensatz dazu bedeutet die Beobachtbarkeit eines Systems, dass in seiner Ausgangsgröße Information über jede Zustandsvariable enthalten ist.

7.2 Steuerbarkeit

Man nennt das System

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u\tag{7.1}$$

steuerbar, wenn durch geeignete Wahl der Eingangsgröße u(t) der Zustandsvektor $\mathbf{x}(t)$ in endlicher Zeit T aus einem beliebig vorgebbaren Anfangszustand $\mathbf{x}_0 = \mathbf{x}(0)$ in den Endzustand $\mathbf{x}(T) = \mathbf{0}$ bewegt werden kann.

Man beachte, dass die Eigenschaft der Steuerbarkeit lediglich aussagt, ob ein Übergang von \mathbf{x}_0 nach $\mathbf{x}(T) = \mathbf{0}$ in endlicher Zeit prinzipiell möglich ist. Wie u(t) zu wählen ist und wie der zugehörige Verlauf von $\mathbf{x}(t)$ für 0 < t < T aussieht, bleibt offen.

7.2.1 Kriterium nach Kalman

Der Zustand $\mathbf{x}(T)$ kann für das System (7.1) gemäß

$$\mathbf{x}(T) = \boldsymbol{\phi}(T)\mathbf{x}_0 + \int_0^T \boldsymbol{\phi}(T-\tau) \,\mathbf{b} \,u(\tau) \,d\tau$$
(7.2)

ermittelt werden. Ist das System steuerbar, so kann die Eingnagsgröße so gewählt werden, dass die Bedinung $\mathbf{x}(T) = \mathbf{0}$ erfüllt ist. Aus (7.2) folgt daraus unmittelbar

$$\boldsymbol{\phi}(T) \int_0^T \boldsymbol{\phi}(-\tau) \, \mathbf{b} \, u(\tau) \, d\tau = -\boldsymbol{\phi}(T) \mathbf{x}_0. \tag{7.3}$$

Institut für Regelungsund Automatisierungstechnik Da die Matrix $\phi(T)$ jedenfalls regulär ist, folgt aus (7.3) die Bedingung

$$\int_0^T \boldsymbol{\phi}(-\tau) \, \mathbf{b} \, u(\tau) \, d\tau = -\mathbf{x}_0. \tag{7.4}$$

Stellt man die Transitionsmatrix $\phi(-\tau)$ als Matrix-Exponentialreihe dar, d.h.

$$\phi(-\tau) = \mathbf{E} - \mathbf{A}\tau + \mathbf{A}^2 \frac{\tau^2}{2!} \mp \ldots = \sum_{i=0}^{\infty} \mathbf{A}^i \frac{(-\tau)^i}{i!},$$
(7.5)

so erhält man die Beziehung

$$\int_{0}^{T} \sum_{i=0}^{\infty} \mathbf{A}^{i} \frac{(-\tau)^{i}}{i!} \mathbf{b} \, u(\tau) \, d\tau = \sum_{i=0}^{\infty} \mathbf{A}^{i} \mathbf{b} \int_{0}^{T} \frac{(-\tau)^{i}}{i!} u(\tau) \, d\tau = -\mathbf{x}_{0}.$$
(7.6)

Definiert man die - bei vorgegebener Wahl von u - konstanten Größen

$$\alpha_i := \int_0^T \frac{(-\tau)^i}{i!} u(\tau) \, d\tau,$$

so lautet die Bedingung für Steuerbarkeit

$$\sum_{i=0}^{\infty} \alpha_i \mathbf{A}^i \mathbf{b} = -\mathbf{x}_0. \tag{7.7}$$

Da \mathbf{x}_0 ein beliebig vorgebarer Vektor ist, müssen die Vektoren **b**, $\mathbf{Ab}, \mathbf{A}^2\mathbf{b}, \mathbf{A}^3\mathbf{b}, \ldots$ den gesamten *n*-dimensionalen Raum aufspannen. Das bedeutet, das es *n* linear unabhängige Vektoren der Form $\mathbf{A}^i\mathbf{b}$ mit $i = 0, 1, 2, \ldots$ gibt. Man kann zeigen, dass dies nur die ersten *n* Vektoren **b**, $\mathbf{Ab}, \mathbf{A}^2\mathbf{b}, \ldots, \mathbf{A}^{n-1}\mathbf{b}$ sein können. Nimmt man nämlich an, dass für $\delta < n$ die Bedingungen

rang
$$\begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{\delta-1}\mathbf{b} \end{bmatrix} = \delta$$
 und rang $\begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{\delta}\mathbf{b} \end{bmatrix} = \delta$

gelten, d.h. $\mathbf{A}^{\delta}\mathbf{b}$ ist linear abhängig, also

$$\mathbf{A}^{\delta}\mathbf{b} = k_0\mathbf{b} + k_1\mathbf{A}\mathbf{b} + \ldots + k_{\delta-1}\mathbf{A}^{\delta-1}\mathbf{b},\tag{7.8}$$

so ist auch $\mathbf{A}^{\delta+1}\mathbf{b}$ linear abhängig, denn es gilt

$$\mathbf{A}^{\delta+1}\mathbf{b} = \mathbf{A} \qquad \left(k_0\mathbf{b} + k_1\mathbf{A}\mathbf{b} + \ldots + k_{\delta-1}\mathbf{A}^{\delta-1}\mathbf{b}\right) = k_0\mathbf{A}\mathbf{b} + k_1\mathbf{A}^2\mathbf{b} + \ldots + k_{\delta-1}\mathbf{A}^{\delta}\mathbf{b} = \\ = \tilde{k}_0\mathbf{b} + \tilde{k}_1\mathbf{A}\mathbf{b} + \ldots + \tilde{k}_{\delta-1}\mathbf{A}^{\delta-1}\mathbf{b}$$

Die Steuerbarkeit ist somit gegeben, wenn die Bedingung

$$\operatorname{rang} \left[\begin{array}{ccc} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{n-1}\mathbf{b} \end{array} \right] = n \tag{7.9}$$

7.2. STEUERBARKEIT

erfüllt ist. Hierbei handelt es sich um eine notwendige und hinreichende Bedingung. Definiert man nun die so genannte **Steuerbarkeitsmatrix**

$$\mathbf{S}_{u} := \begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{n-1}\mathbf{b} \end{bmatrix}, \tag{7.10}$$

so kann das Steuerbarkeitskriterium nach Kalman prägnant formuliert werden: Das System (7.1) ist genau dann steuerbar, wenn die Steuerbarkeitsmatrix (7.10) regulär ist. Man sagt dann auch, dass das Paar (\mathbf{A}, \mathbf{b}) steuerbar ist.

B Die Systembeschreibung

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 3\\ 2 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u$$

soll auf Steuerbarkeit untersucht werden. Für die Steuerbarkeitsmatrix findet man

$$\mathbf{S}_u = \left[egin{array}{cc} 0 & 3 \ 1 & -1 \end{array}
ight],$$

aus ihrer Regularität folgt die Steuerbarkeit des Systems.

Invarianz bezüglich einer regulären Zustandstransformation

Führt man eine reguläre Zustandstransformation der Form $\mathbf{x} = \mathbf{T} \mathbf{z}$ durch, so erhält man die transformierte Systembeschreibung

$$\frac{d\mathbf{z}}{dt} = \underbrace{\mathbf{T}^{-1}\mathbf{A}\mathbf{T}}_{\tilde{\mathbf{A}}}\mathbf{z} + \underbrace{\mathbf{T}^{-1}\mathbf{b}}_{\tilde{\mathbf{b}}}u.$$
(7.11)

Die zugehörige Steuerbarkeitsmatrix gilt dann

$$\begin{split} \mathbf{\tilde{S}}_u &= \begin{bmatrix} \mathbf{\tilde{b}} & \mathbf{\tilde{A}}\mathbf{\tilde{b}} & \dots & \mathbf{\tilde{A}}^{n-1}\mathbf{\tilde{b}} \end{bmatrix} \stackrel{(7.11)}{=} \begin{bmatrix} \mathbf{T}^{-1}\mathbf{b} & \mathbf{T}^{-1}\mathbf{A}\mathbf{b} & \dots & \mathbf{T}^{-1}\mathbf{A}^{n-1}\mathbf{b} \end{bmatrix} = \\ &= \mathbf{T}^{-1}\begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{n-1}\mathbf{b} \end{bmatrix} = \mathbf{T}^{-1}\mathbf{S}_u. \end{split}$$

Das bedeutet, dass $\tilde{\mathbf{S}}_u$ genau dann regulär ist, wenn die Steuerbarkeitsmatrix \mathbf{S}_u des Originalsystems regulär ist.

Ein Sonderfall liegt vor, wenn die Systembeschreibung (7.1) in erster Normalform vorliegt, da dann das System jedenfalls steuerbar ist. Dies soll für ein System dritter Ordnung

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ -\alpha_0 & -\alpha_1 & -\alpha_2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} u.$$

veranschaulicht werden. Für die Steuerbarkeitsmatrix folgt dann

$$\mathbf{S}_{u} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -\alpha_{2} \\ 1 & -\alpha_{2} & -\alpha_{1} + \alpha_{2}^{2} \end{bmatrix},$$

man erkennt, dass diese auf jeden Fall regulär ist. Aus diesem Grund wird die erste Normalform auch **Steuerbarkeitsnormalform** genannt. Es kanngefolgert werden, dass ein System offenbar genau dann in die Steuerbarkeitsnormalform transformiert werden kann, wenn es steuerbar ist.

7.2.2 Kriterium nach Hautus

Es wird an dieser Stelle vorausgesetzt, dass die Systemmatrix **A** lauter verschiedene Eigenwerte besitzt. Zu jedem der *n* Eigenwerte s_i gibt es je einen (Rechts-) Eigenvektor \mathbf{p}_i bzw. einen Links-Eigenvektor $\boldsymbol{\rho}_i^T$, d.h. es gilt

$$\operatorname{rang}\left(s_i \mathbf{E} - \mathbf{A}\right) = n - 1 \quad \text{wobei} \quad i = 1, \dots, n.$$
(7.12)

Da die *n* Eigenvektoren linear unabhängig sind, kann das System (7.1) mittels der regulären Zustandstransformation $\mathbf{x} = \mathbf{T} \mathbf{z}$, wobei. $\mathbf{T} = \mathbf{P} = \begin{bmatrix} \mathbf{p}_1 & \dots & \mathbf{p}_n \end{bmatrix}$ in die Diagonalform

$$\frac{d\mathbf{z}}{dt} = \begin{bmatrix} s_1 & & \\ & \ddots & \\ & & s_n \end{bmatrix} \mathbf{z} + \begin{bmatrix} \boldsymbol{\rho}_1^T \mathbf{b} \\ \vdots \\ \boldsymbol{\rho}_n^T \mathbf{b} \end{bmatrix} u$$
(7.13)

transformiert werden. Gilt für die *i*-te Komponente des (transformierten) Eingangsvektors

$$\boldsymbol{\rho}_i^T \mathbf{b} = 0, \tag{7.14}$$

so kann offensichtlich der Verlauf der i-ten Zustandsgröße des transformierten Systems durch u nicht beeinflusst werden und es liegt sicher kein steuerbares System vor. Gilt hingegen

$$\boldsymbol{\rho}_i^T \mathbf{b} \neq 0 \quad \text{für} \quad i = 1, \dots n,$$
(7.15)

so lautet die Steuerbarkeitmatrix des transformierten Systems

$$\tilde{\mathbf{S}}_{u} = \begin{bmatrix} \boldsymbol{\rho}_{1}^{T} \mathbf{b} & s_{1} \boldsymbol{\rho}_{1}^{T} \mathbf{b} & \dots & s_{1}^{n-1} \boldsymbol{\rho}_{1}^{T} \mathbf{b} \\ \boldsymbol{\rho}_{2}^{T} \mathbf{b} & s_{2} \boldsymbol{\rho}_{2}^{T} \mathbf{b} & s_{2}^{n-1} \boldsymbol{\rho}_{2}^{T} \mathbf{b} \\ \vdots & & \vdots \\ \boldsymbol{\rho}_{n}^{T} \mathbf{b} & s_{n} \boldsymbol{\rho}_{n}^{T} \mathbf{b} & \dots & s_{n}^{n-1} \boldsymbol{\rho}_{n}^{T} \mathbf{b} \end{bmatrix}.$$
(7.16)

Da die Eigenwerte s_1, \ldots, s_n voraussetzungsgemäß voneinander verschieden sind, ist \mathbf{S}_u regulär, das System (7.1) ist somit steuerbar.

Man beachte, dass die hier für den Fall verschiedener Eigenwerte hergeleiteten Ergebnisse auch uneingeschränkt für den Fall mehrfacher Eigenwerte gelten. Für den Fall mehrfacher Eigenwerte ist (7.12) eine notwendige Bedingung für die Steuerbarkeit des Systems. Das bedeutet, dass zu jedem mehrfachen Eigenwert nur *ein* linear unabhängiger Eigenvektor existieren darf und in weiterer Konsequenz in der Dynamikmatrix des transformierten Systems nur *ein* entsprechender Jordanblock vorkommt. Die Bedingung (7.15) bedeutet, dass das zur letzten Zeile eines Jordanblocks gehörige Element des (transformierten) Eingangsvektors von Null verschieden sein muss.

Zusammenfassend kann das Hautus-Kriterium folgendermaßen formuliert werden: Das System (7.1) ist genau dann steuerbar, wenn kein Links-Eigenvektor der Matrix **A** auf den Eingangsvektor **b** normal steht.

Alternative Formulierung des Hautus-Kriteriums

Einer alternativen Formulierung des Kriteriums liegt die Betrachtung der Eigenwertgleichung

$$\boldsymbol{\rho}_i^T \left(s_i \mathbf{E} - \mathbf{A} \right) = \mathbf{0}^T \tag{7.17}$$

zugrunde, d.h. der Links-Eigenvektor ρ_i steht normal auf die Spalten der Matrix $(s_i \mathbf{E} - \mathbf{A})$, wobei i = 1, ..., n. Aufgrund von (7.12) wird durch die Bedingung

$$\operatorname{rang}\left(s_i \mathbf{E} - \mathbf{A} \stackrel{\cdot}{:} \mathbf{b}\right) = n \tag{7.18}$$

gewährleistet, dass der Links-Eigenvektor nicht orthogonal zu b ist.

Damit lautet die alternative Formulierung des Hautus-Kriteriums: Das System (7.1) ist genau dann steuerbar, wenn für jeden Eigenwert s_i der Matrix **A** die Bedingung (7.18) erfüllt ist.

7.3 Beobachtbarkeit

Man nennt das System

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \quad y = \mathbf{c}^T \mathbf{x} + du$$
(7.19)

beobachtbar, wenn aus der Kenntnis von u(t) und y(t) in einem *endlichen* Zeitintervall [0, T] der unbekannte Anfangszustand \mathbf{x}_0 bestimmt werden kann.¹

Der Verlauf der Ausgangsgröße als Reaktion auf den Anfangszustand und die Eingangsgröße lautet

$$y(t) = \mathbf{c}^T \boldsymbol{\phi}(t) \mathbf{x}_0 + \int_0^t \mathbf{c}^T \boldsymbol{\phi}(t-\tau) \mathbf{b} u(\tau) d\tau + du(t),$$

wobei $\phi(t)$ die zu (7.19) gehörige Transitionsmatrix ist. Die von der (gegebenen) Eingangsgröße u abhängigen Anteile des Ausdruckes sind ebenso bekannt wie die Ausgangsgröße y. Stellt man die obige Gleichung entsprechend um, so erhält man

$$\mathbf{c}^{T}\boldsymbol{\phi}(t)\mathbf{x}_{0} = \underbrace{y(t) - \int_{0}^{t} \mathbf{c}^{T}\boldsymbol{\phi}(t-\tau)\mathbf{b}u(\tau)d\tau - du(t)}_{:=\hat{y}(t)}.$$

Das bedeutet, dass aus der Relation $\mathbf{c}^T \boldsymbol{\phi}(t) \mathbf{x}_0 = \hat{y}(t)$ (über ein endliche Intervall betrachtet) der Anfangszustand ermittelt werden soll. Diese Aufgabenstellung entspricht formal der Aufgabe, aus dem Verlauf der Ausgangsgröße des autonomen Systems

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}, \quad y = \mathbf{c}^T \mathbf{x}$$
(7.20)

den Anfangszustand \mathbf{x}_0 zu ermitteln. Die Beobachtbarkeit von (7.19) kann also anhand des Systems (7.20) untersucht werden.

 $^{^1\}mathrm{Man}$ beachte, dass dabe
iT prinzipiell beliebig klein gemacht werden kann.

7.3.1 Kriterium nach Kalman

Differenziert man die Ausgangsgröße

$$y(t) = \mathbf{c}^T \mathbf{x}$$

nach der Zeit, so erhält man mit (7.20)

$$rac{dy}{dt} = \mathbf{c}^T \mathbf{A} \mathbf{x}, \qquad rac{d^2 y}{dt^2} = \mathbf{c}^T \mathbf{A}^2 \mathbf{x}, \qquad \dots \quad rac{d^{(n-1)} y}{dt^{(n-1)}} = \mathbf{c}^T \mathbf{A}^{n-1} \mathbf{x},$$

bzw. in Matrixnotation

$$\begin{bmatrix} y \\ rac{dy}{dt} \\ \vdots \\ rac{d^{(n-1)}y}{dt^{(n-1)}} \end{bmatrix} = \begin{bmatrix} \mathbf{c}^T \\ \mathbf{c}^T \mathbf{A} \\ \vdots \\ \mathbf{c}^T \mathbf{A}^{n-1} \end{bmatrix} \mathbf{x}$$

Dieses Ergebnisse besagt, dass der Zustand zu einem beliebigen Zeitpunkt t, also auch für t = 0 genau dann eindeutig ermittelt werden kann, wenn die so genannte **Beobachtbarkeitsmatrix**

$$B_y := \begin{bmatrix} \mathbf{c}^T \\ \mathbf{c}^T \mathbf{A} \\ \vdots \\ \mathbf{c}^T \mathbf{A}^{n-1} \end{bmatrix}$$
(7.21)

den Höchstrang besitzt. Damit lautet das Beobachtbarkeitskiterium nach Kalman: Das System (7.19) ist genau dann beobachtbar, wenn die Beobachtbarkeitmatrix (7.21) regulär ist. Man sagt dann auch, dass das Paar (\mathbf{A}, \mathbf{c}) beobachtbar ist.

B Die Systembeschreibung

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 3\\ 2 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x}$$

soll auf Beobachtbarkeit untersucht werden. Für die Beobachtbarkeitsmatrix findet man

$$\mathbf{B}_y = \left[\begin{array}{cc} 1 & 2\\ 5 & 1 \end{array} \right],$$

aus ihrer Regularität folgt die Beobachtbarkeit des Systems.

Invarianz bezüglich einer regulären Zustandstransformation

Die reguläre Zustandstransformation der Form $\mathbf{x} = \mathbf{T} \mathbf{z}$ führt auf die Beschreibung

$$\frac{d\mathbf{z}}{dt} = \underbrace{\mathbf{T}^{-1}\mathbf{A}\mathbf{T}}_{\tilde{\mathbf{A}}}\mathbf{z}, \quad y = \underbrace{\mathbf{c}^{T}\mathbf{T}}_{\tilde{\mathbf{c}}^{T}}\mathbf{z}.$$
(7.22)

Institut für Regelungsund Automatisierungstechnik Die zugehörige Beobachtbarkeitsmatrix gilt dann

$$\tilde{\mathbf{B}}_{y} = \begin{bmatrix} \tilde{\mathbf{c}}^{T} \\ \tilde{\mathbf{c}}^{T} \tilde{\mathbf{A}} \\ \vdots \\ \tilde{\mathbf{c}}^{T} \tilde{\mathbf{A}}^{n-1} \end{bmatrix} \stackrel{(7.22)}{=} \begin{bmatrix} \mathbf{c}^{T} \mathbf{T} \\ \mathbf{c}^{T} \mathbf{A} \mathbf{T} \\ \vdots \\ \mathbf{c}^{T} \mathbf{A}^{n-1} \mathbf{T} \end{bmatrix} = \mathbf{B}_{y} \mathbf{T}$$

Das bedeutet, dass $\tilde{\mathbf{B}}_y$ genau dann regulär ist, wenn die Beobachtbarkeitsmatrix \mathbf{B}_y des Originalsystems regulär ist.

7.3.2 Kriterium nach Hautus

Mit analogen Überlegungen wie bei der Steuerbarkeit kann das Beobachtbarkeitskriterium nach Hautus hergeleitet werden. Es zeigt sich, dass das System (7.19) genau dann beobachtbar ist, wenn kein Eigenvektor \mathbf{p}_i der Matrix **A** normal auf den Ausgangsvektor \mathbf{c}^T steht.

Äquivalent ist die alternative Formulierung des Kriteriums nach Hautus: Das System (7.19) ist genau dann beobachtbar, wenn die Bedingung

rang
$$\begin{pmatrix} \mathbf{c}^T \\ s_i \mathbf{E} - \mathbf{A} \end{pmatrix} = n$$
 (7.23)

für alle Eigenwerte s_i von **A** erfüllt ist.

Kapitel 8

Entwurf von Zustandsreglern

8.1 Einführung

Gegeben sei das lineare und zeitinvariante Zustandsmodell n-ter Ordnung

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \qquad y = \mathbf{c}^T \mathbf{x}$$
(8.1)

einer Regelstrecke. Für den Durchgriffsterm wird hier d = 0 angenommen, wie es bei realen technischen Systemen häufig der Fall ist. Das Verhalten der Regelstrecke kann mittels der Stellgröße u beeinflusst werden. Weiters wirkt auf die Strecke der Anfangszustand \mathbf{x}_0 ein, der auch als unbekannte "Anfangsstörung" interpretiert werden kann.

Durch geeignete Wahl der Stellgröße u soll der Regelstrecke ein gewünschtes dynamisches Verhalten verliehen werden. Dies umfasst einerseits die Beseitigung der Wirkung des Anfangszustandes \mathbf{x}_0 durch eine Stabilisierung des geschlossenen Regelkreises. Andererseits ist man häufig daran interessiert, dass die Ausgangsgröße y einem in Form der Referenzgröße r vorgegebenen Wunschverlauf "möglichst gut" folgt. Damit gliedert sich der Reglerentwurf in zwei Schritte, nämlich in die **Stabilisierung** und die **Nachführung**.

8.2 Stabilisierung des Regelkreises

Die Stabilisierung des Regelkreises erfolgt durch eine geeignete Rückführung des als *messbar* vorausgesetzten Zustandsvektors \mathbf{x} . Im vorliegenden Fall handelt es sich um eine Zustandsrückführung der Form

$$u = -\mathbf{k}^T \mathbf{x}.\tag{8.2}$$

Hierbei umfasst der Vektor

$$\mathbf{k}^T = \begin{bmatrix} k_1 & k_2 & \dots & k_n \end{bmatrix}$$
(8.3)

die zu bestimmenden (konstanten) reellen Reglerparameter. Die Stellgröße u wird demnach als Linearkombination der Zustandsgrößen angesetzt, man nennt (8.2) daher auch einen **linearen Zustandsregler**.

Bild 8.1: Stabilisierung mit Hilfe einer Zustandsregelung

In Bild 8.1 ist der Regelkreis, bestehend aus Regelstrecke und Zustandsregler dargestellt. Das mathematische Modell des Regelkreises ergibt sich aus (8.1) und (8.2) zu

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} - \mathbf{b}\mathbf{k}^T\mathbf{x} = \left(\mathbf{A} - \mathbf{b}\mathbf{k}^T\right)\mathbf{x}.$$
(8.4)

Da die Ausgangsgleichung bei der Stabilisierung des Regelkreises keine Rolle spielt, bleibt sie hier auch unberücksichtigt. Das Ziel des Entwurfes besteht nun darin, den Vektor \mathbf{k}^T so zu bestimmen, dass der Regelkreis asymptotisch stabil ist. Das bedeutet, dass die Dynamikmatrix $(\mathbf{A} - \mathbf{bk}^T)$ des Regelkreises eine Hurwitzmatrix sein muss, all ihre Eigenwerte besitzen also einen negativen Realteil. Der Entwurf des Zustandsreglers läuft somit darauf hinaus, durch geschickte Wahl von \mathbf{k}^T die Eigenwerte der Matrix $(\mathbf{A} - \mathbf{bk}^T)$ in gewünschter Weise zu platzieren, man spricht in diesem Zusammenhang auch von der **Eigenwertvorgabe**.

8.2.1 Prinzip der Eigenwertvorgabe

Die Aufgabe besteht darin, den Vektor \mathbf{k}^T so zu bestimmen, dass die *n* Eigenwerte der Matrix $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ vorgebbare Werte λ_i annehmen. Das bedeutet, dass das charakteristische Polynom von $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ einem vorgegebenen Wunschpolynom w(s) ensprechen muss, d.h.

$$\det(s\mathbf{E} - (\mathbf{A} - \mathbf{b}\mathbf{k}^T)) \stackrel{!}{=} w(s) = \prod_{i=1}^n (s - \lambda_i) = s^n + w_{n-1}s^{n-1} + \ldots + w_1s + w_0.$$
(8.5)

Hierbei sind w_0, \ldots, w_{n-1} die *reellen* Koeffizienten des Wunschpolynom, d.h. die vorgebbaren Eigenwerte von $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ müssen reell und/oder paarweise konjugiert komplex sein.

B Gegeben sei das mathematische Modell einer Regelstrecke und ein Zustandsregler der Form (8.2), d.h.

$$\frac{dx}{dt} = 2x + u$$
 und $u = -kx$.

Das Modell des Regelkreises lautet somit

$$\frac{dx}{dt} = (2-k)x.$$

Wählt man

$$k = 2 - \lambda_{s}$$

so besitzt der Regelkreis einen Eigenwert an einer beliebig vorgebbaren Stelle $s = \lambda$.

Es stellt sich die Frage, ob stets alle Eigenwerte von $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ beliebig platziert werden können. Zur Beantwortung dieser Frage wird angenommen, dass s_i ein Eigenwert von \mathbf{A} ist und $\boldsymbol{\rho}_i^T$ ein zugehöriger Links-Eigenvektor, d.h. es gilt die Eigenwertgleichung

$$\boldsymbol{\rho}_i^T \mathbf{A} = s_i \, \boldsymbol{\rho}_i^T. \tag{8.6}$$

Multipliziert man nun die Dynamikmatrix des Regelkreises mit dem Vektor ρ_i^T , so findet man

$$\boldsymbol{\rho}_{i}^{T}(\mathbf{A} - \mathbf{b}\mathbf{k}^{T}) = \boldsymbol{\rho}_{i}^{T}\mathbf{A} - \boldsymbol{\rho}_{i}^{T}\mathbf{b}\mathbf{k}^{T} \stackrel{(8.6)}{=} s_{i} \boldsymbol{\rho}_{i}^{T} - \boldsymbol{\rho}_{i}^{T}\mathbf{b}\mathbf{k}^{T}.$$
(8.7)

Wenn der Vektor ρ_i normal auf den Eingangsvektor steht, d.h.

$$\boldsymbol{\rho}_i^T \mathbf{b} = 0, \tag{8.8}$$

so vereinfacht sich (8.7) zu

$$\boldsymbol{\rho}_i^T \left(\mathbf{A} - \mathbf{b} \mathbf{k}^T \right) = s_i \, \boldsymbol{\rho}_i^T. \tag{8.9}$$

Das bedeutet, dass s_i auf jeden Fall, d.h. für jede beliebige Wahl von \mathbf{k}^T auch ein Eigenwert von $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ ist. Die Eigenwerte von $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ sind in diesem Fall somit *nicht* beliebig vorgebbar! Dies ist offensichtlich auf (8.8) zurückzuführen, was gemäß dem Hautus-Kriterium bedeutet, dass die Regelstrecke *nicht* steuerbar ist. Erst die Eigenschaft der Steuerbarkeit der Strecke erlaubt die beliebige Vorgabe aller Eigenwerte des Regelkreises.

B Gegeben sei das mathematische Modell einer Regelstrecke und ein Regler der Form (8.2), d.h.

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 0\\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} -1\\ 1 \end{bmatrix} u \quad \text{und} \quad u = -\mathbf{k}^T \mathbf{x} = -\begin{bmatrix} k_1 & k_2 \end{bmatrix} \mathbf{x}$$

Wie man mit Hilfe der Steuerbarkeitmatrix

$$\mathbf{S}_u = \begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} \end{bmatrix} = \begin{bmatrix} -1 & 0\\ 1 & -2 \end{bmatrix}$$

leicht überprüfen kann, ist die Regelstrecke steuerbar, die Eigenwerte des Regelkreises können also beliebig vorgegeben werden. Die Dynamikmatrix des Regelkreises lautet

$$\mathbf{A} - \mathbf{b}\mathbf{k}^{T} = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} k_{1} & k_{2} \end{bmatrix} = \begin{bmatrix} k_{1} & k_{2} \\ 1 - k_{1} & -1 - k_{2} \end{bmatrix}.$$

Ihr charakteristisches Polynom soll einem Wunschpolynom

$$w(s) = (s - \lambda_1) (s - \lambda_2) = s^2 - (\lambda_1 + \lambda_2) s + \lambda_1 \lambda_2$$

entsprechen, d.h.

$$\det \begin{bmatrix} s - k_1 & -k_2 \\ k_1 - 1 & s + 1 + k_2 \end{bmatrix} = s^2 + (1 - k_1 + k_2) s - (k_1 + k_2) \stackrel{!}{=} w(s).$$

Der Koeffizientenvergleich

$$1 - k_1 + k_2 \stackrel{!}{=} -(\lambda_1 + \lambda_2)$$
 und $-(k_1 + k_2) \stackrel{!}{=} \lambda_1 \lambda_2$

liefert die Relationen

$$k_1 = \frac{1}{2} \left(1 + \lambda_1 + \lambda_2 - \lambda_1 \lambda_2 \right) \quad \text{und} \quad k_2 = -\frac{1}{2} \left(1 + \lambda_1 + \lambda_2 + \lambda_1 \lambda_2 \right)$$

zur Berechnung der Reglerparameter.

Üblicherweise wird mit einem der in Abschnitt 7 beschriebenen Verfahren zunächst überprüft, ob das Streckenmodell (8.1) steuerbar ist. Üblicherweise wird dabei aber *nicht* hinterfragt, wie "gut" oder "schlecht" das betrachtete System steuerbar ist, man begnügt sich mit einer ja/nein-Aussage. Intuitiv wird man ein steuerbares System als "schlecht" steuerbar klassifizieren, wenn es eines unverhältnismäßig großen Stellaufwandes bedarf, um die Zustandsgrößen gezielt zu beeinflussen¹. Dies manifestiert sich im Regelgesetz (8.2) durch betragsmäßig große Elemente im Vektor \mathbf{k}^{T} .

B Gegeben sei das (steuerbare) mathematische Modell einer Regelstrecke

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 5 & 15\\ -2 & -6 \end{bmatrix} \mathbf{x} + \begin{bmatrix} -4.47\\ 1.79 \end{bmatrix} u.$$

Wählt man für die Eigenwerte des geschlossenen Kreises beispielsweise $s_1 = s_2 = -3$, so erhält man

$$\mathbf{k}^T = \begin{bmatrix} 1795.6 & 4486.7 \end{bmatrix}.$$

Der im obigen Beispiel beobachtete Effekt großer Reglerparameter lässt sich anschaulich deuten. Vereinfachend wird hierzu angenommen, dass die Dynamikmatrix der steuerbaren Regelstrecke (8.1) lauter verschiedene Eigenwerte s_1, s_2, \ldots, s_n besitzt. Die zugehörigen Links-Eigenvektoren werden mit $\rho_1^T, \rho_2^T, \ldots, \rho_n^T$ bezeichnet, gemäß dem Hautus-Kriterium gilt $\rho_i^T \mathbf{b} \neq 0$ für $i = 1, \ldots n$. Es soll nun ein Zustandsregler (8.2) entworfen werden, der den Eigenwert s_1 an die Stelle $s = \lambda$ verschiebt, die restlichen Eigenwerte jedoch unverändert lässt, d.h. die Eigenwerte des geschlossenen Kreises lauten $\lambda, s_2, \ldots, s_n$. Es gilt nun

$$\boldsymbol{\rho}_1^T \left(\mathbf{A} - \mathbf{b} \mathbf{k}^T \right) = \boldsymbol{\rho}_1^T \mathbf{A} - \boldsymbol{\rho}_1^T \mathbf{b} \mathbf{k}^T = s_1 \boldsymbol{\rho}_1^T - \boldsymbol{\rho}_1^T \mathbf{b} \mathbf{k}^T.$$

¹Mit Hilfe so genannter Steuerbarkeit-Maße kann die Eigenschaft der Steuerbarkeit bezüglich ihrer "Güte" quantifiziert werden.

Setzt man nun

$$\mathbf{k}^T = \frac{s_1 - \lambda}{\boldsymbol{\rho}_1^T \, \mathbf{b}} \, \boldsymbol{\rho}_1^T, \tag{8.10}$$

so erhält man

$$\boldsymbol{\rho}_1^T \left(\mathbf{A} - \mathbf{b} \mathbf{k}^T \right) = \lambda \, \boldsymbol{\rho}_1^T,$$

d.h. λ ist wie gewünscht ein Eigenwert des geschlossenen Regelkreises. Offensichtlich nehmen gemäß (8.10) die Elemente von \mathbf{k}^T betragsmäßig große Werte an, wenn das Skalarprodukt $\boldsymbol{\rho}_1^T \mathbf{b}$ betragsmäßig sehr klein ist, was auf "schlechte Steuerbarkeit" des Eigenwertes s_1 schließen lässt. Transformiert man die Regelstrecke auf Diagonalform, so erkennt "man, dass der Einfluss von u auf das zum Eigenwert s_1 gehörige Teilsystem aufgrund des kleinen Betrages von $\boldsymbol{\rho}_1^T \mathbf{b}$ nur sehr gering ist.

B Fortsetzung. Zu den Eigenwerten $s_1 = 0$ und $s_2 = -1$ der Dynamikmatrix **A** gehörigen Links-Eigenvektoren sind durch

$$\boldsymbol{\rho}_1^T = \begin{bmatrix} 6.3246 & 15.8114 \end{bmatrix} \quad \text{und} \quad \boldsymbol{\rho}_2^T = \begin{bmatrix} 5.3852 & 16.1555 \end{bmatrix}$$

gegeben. Für die Skalarprodukte $\boldsymbol{\rho}_i^T \mathbf{b}$ findet man

$$\rho_1^T \mathbf{b} = 0.0316$$
 und $\rho_2^T \mathbf{b} = 4.8466$.

Daraus kann gefolgert werden, dass die großen Werte der Reglerparameter auf die "schlechte Steuerbarkeit" des Eigenwertes $s_1 = 0$ zurückzuführen sind.

8.2.2 Entwurf für ein System in Regelungsnormalform

Besonders elegant ist die Ermittlung des Reglers, wenn das Modell der Regelstrecke in erster Normalform vorliegt. Zum einen ist das Modell dann jedenfalls steuerbar, zum anderen erlaubt die Tatsache, dass die Dynamikmatrix des Regelkreises in Begleitform vorliegt eine besonders einfache Berechnung der Reglerparameter. Aus diesem Grund nennt man die erste Normalform häufig auch **Regelungsnormalform**.

Das Modell der Strecke n-ter Ordnung liege in erster Normalform vor, d.h.

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 1 & \dots & 0\\ \vdots & \ddots & \ddots & \vdots\\ 0 & \dots & 0 & 1\\ -\alpha_0 & -\alpha_1 & \dots & -\alpha_{n-1} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ \vdots\\ 0\\ 1 \end{bmatrix} u.$$

Für einen Zustandsregler der Form (8.2) folgt dann für die Dynamikmatrix des Regelkreises

$$\mathbf{A} - \mathbf{b} \mathbf{k}^{T} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \\ -\alpha_{0} - k_{1} & -\alpha_{1} - k_{2} & \dots & -\alpha_{n-1} - k_{n} \end{bmatrix}$$

Man erkennt, dass die Matrix $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ wiederum in Begleitform vorliegt, d.h. ihr charakteristisches Polynom

$$\det\left(s\mathbf{E} - \left(\mathbf{A} - \mathbf{b}\mathbf{k}^{T}\right)\right) = s^{n} + \left(\alpha_{n-1} + k_{n}\right)s^{n-1} + \ldots + \left(\alpha_{1} + k_{2}\right)s + \left(\alpha_{0} + k_{1}\right)$$

kann direkt abgelesen werden. Im Sinne der Eigenwertvorgabe muss das charakteristische Polynom von $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ einem vorgebbaren Polynom (8.5) entsprechen, d.h.

$$\det\left(s\mathbf{E} - \left(\mathbf{A} - \mathbf{b}\mathbf{k}^{T}\right)\right) \stackrel{!}{=} w(s) = s^{n} + w_{n-1}s^{n-1} + \ldots + w_{1}s + w_{0}.$$

Der Koeffizientenvergleich liefert

$$w_0 = \alpha_0 + k_1, \quad w_1 = \alpha_1 + k_2, \quad \dots \quad , w_{n-1} = \alpha_{n-1} + k_n,$$

woraus sich unmittelbar die gesuchten Reglerparameter

$$k_i = w_{i-1} - \alpha_{i-1}$$
 wobei $i = 1, \dots, n$ (8.11)

ergeben.

B Gegeben sei das mathematische Modell einer Regelstrecke in erster Normalform und ein Zustandsregler der Form (8.2), d.h.

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 1\\ 1 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u \quad \text{und} \quad u = -\mathbf{k}^T \mathbf{x} = -\begin{bmatrix} k_1 & k_2 \end{bmatrix} \mathbf{x}.$$

Die Dynamikmatrix des Regelkreises lautet

$$\mathbf{A} - \mathbf{b}\mathbf{k}^T = \begin{bmatrix} 0 & 1\\ 1 - k_1 & 1 - k_2 \end{bmatrix}.$$

Unter der Annahme, dass $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ zwei Eigenwerte an der Stelle s = -1 besitzen soll, d.h.

$$w(s) = (s+1)^2 = s^2 + w_1s + w_0 = s^2 + 2s + 1$$

ergeben sich gemäß (8.11) die Reglerparamter

$$k_1 = w_0 - \alpha_0 = 1 + 1 = 2$$
 und $k_2 = w_1 - \alpha_1 = 2 + 1 = 3.$

Der lineare Zustandsregler (8.2) lautet somit

$$u = -2 x_1 - 3 x_2.$$

Liegt das Modell der (steuerbaren) Regelstrecke nicht in Regelungsnormalform vor, so bietet sich im Sinne einer systematischen Berechnung der Reglerparameter eine reguläre Zustandstransformation in diese vorteilhafte Normalform an. Für das transformierte System kann der Zustandsregler mit Hilfe (8.11) problemlos angegeben werden. Der gesuchte Zustandsregler für das Originalsystem errechnet sich mit Hilfe der Transformationsmatrix \mathbf{T} . Wie in den nächsten Abschnitten gezeigt wird, kann der beschriebene Reglerentwurf sehr effizient mit Hilfe der Formel von Ackermann bewerkstelligt werden.

8.2.3 Transformation auf Regelungsnormalform

Unterwirft man das Modell der Regelstrecke (8.1) einer Zustandstransformation der Form

$$\mathbf{z} = \mathbf{T}\mathbf{x},\tag{8.12}$$

so ergibt sich das transformierte Modell

$$\frac{d\mathbf{z}}{dt} = \mathbf{T}\mathbf{A}\mathbf{T}^{-1}\mathbf{z} + \mathbf{T}\mathbf{b}u. \tag{8.13}$$

Dieses Modell soll in Regelungsnormalform vorliegen, d.h. es müssen die Relationen

$$\mathbf{TAT}^{-1} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \\ -\alpha_0 & -\alpha_1 & \dots & -\alpha_{n-1} \end{bmatrix} \quad \text{und} \quad \mathbf{Tb} = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$
(8.14)

gelten. Aus der ersten Bedingung in (8.14) folgt nach Multiplikation mit der Transformationsmatrix \mathbf{T} von rechts

$$\mathbf{TA} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \\ -\alpha_0 & -\alpha_1 & \dots & -\alpha_{n-1} \end{bmatrix} \mathbf{T}.$$
 (8.15)

Stellt man nun die Matrix ${\bf T}$ durch ihre Zeilenvektoren dar, d.h.

$$\mathbf{T} = \left[egin{array}{c} \mathbf{t}_1^T \ \mathbf{t}_2^T \ dots \ \mathbf{t}_n^T \end{array}
ight],$$

so geht (8.15) in die Form

$$\begin{bmatrix} \mathbf{t}_{1}^{T} \\ \mathbf{t}_{2}^{T} \\ \vdots \\ \mathbf{t}_{n}^{T} \end{bmatrix} \mathbf{A} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 \\ -\alpha_{0} & -\alpha_{1} & \dots & -\alpha_{n-1} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{1}^{T} \\ \mathbf{t}_{2}^{T} \\ \vdots \\ \mathbf{t}_{n}^{T} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{t}_{1}^{T} \mathbf{A} \\ \mathbf{t}_{2}^{T} \mathbf{A} \\ \vdots \\ \mathbf{t}_{n-1}^{T} \mathbf{A} \\ \mathbf{t}_{n}^{T} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_{2}^{T} \\ \mathbf{t}_{3}^{T} \\ \vdots \\ \mathbf{t}_{n}^{T} \\ -\alpha_{0} \mathbf{t}_{1}^{T} - \alpha_{1} \mathbf{t}_{2}^{T} - \dots - \alpha_{n-1} \mathbf{t}_{n}^{T} \end{bmatrix}$$
(8.16)

bzw.

über. Ein Vergleich der ersten (n-1) Zeilen ergibt

$$\mathbf{t}_2^T = \mathbf{t}_1^T \mathbf{A}, \quad \mathbf{t}_3^T = \mathbf{t}_2^T \mathbf{A}, \quad \dots \quad , \mathbf{t}_n^T = \mathbf{t}_{n-1}^T \mathbf{A},$$

woraus durch Einsetzen unmittelbar der Zusammenhang

$$\mathbf{t}_{2}^{T} = \mathbf{t}_{1}^{T}\mathbf{A}, \quad \mathbf{t}_{3}^{T} = \mathbf{t}_{1}^{T}\mathbf{A}^{2}, \quad \dots \quad , \mathbf{t}_{n}^{T} = \mathbf{t}_{1}^{T}\mathbf{A}^{n-1}$$
(8.17)

folgt. Das bedeutet, dass die Transformationsmatrix den bemerkenswerten Aufbau

$$\mathbf{T} = \begin{bmatrix} \mathbf{t}_{1}^{T} \\ \mathbf{t}_{1}^{T} \mathbf{A} \\ \mathbf{t}_{1}^{T} \mathbf{A}^{2} \\ \vdots \\ \mathbf{t}_{1}^{T} \mathbf{A}^{n-1} \end{bmatrix}$$
(8.18)

besitzt. Aus der ersten Zeile \mathbf{t}_1^T von \mathbf{T} können somit alle übrigen Zeilen durch sukzessive Multiplikation mit \mathbf{A} berechnet werden. Die zweite Bedingung in (8.14) nimmt nun die Form

$$\mathbf{T}\mathbf{b} = \begin{bmatrix} \mathbf{t}_1^T \\ \mathbf{t}_1^T \mathbf{A} \\ \vdots \\ \mathbf{t}_1^T \mathbf{A}^{n-1} \end{bmatrix} \mathbf{b} = \begin{bmatrix} \mathbf{t}_1^T \mathbf{b} \\ \mathbf{t}_1^T \mathbf{A} \mathbf{b} \\ \vdots \\ \mathbf{t}_1^T \mathbf{A}^{n-1} \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$

an. Durch Transposition obiger Gleichung erhält man

$$\begin{bmatrix} \mathbf{t}_1^T \mathbf{b} & \mathbf{t}_1^T \mathbf{A} \mathbf{b} & \dots & \mathbf{t}_1^T \mathbf{A}^{n-1} \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix}$$

bzw.

$$\mathbf{t}_1^T \begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{n-1}\mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix}.$$

Man beachte, dass in obiger Relation der Zeilenvektor \mathbf{t}_1^T mit der in (7.10) eingeführten Steuerbarkeitsmatrix \mathbf{S}_u multipliziert wird, d.h.

$$\mathbf{t}_1^T \mathbf{S}_u = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix}.$$

Da die Regelstrecke voraussetzungsgemäß steuerbar ist, kann die erste Zeile von ${f T}$ mittels

$$\mathbf{t}_1^T = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix} \mathbf{S}_u^{-1} \tag{8.19}$$

berechnet werden. Das Ergebnis in (8.19) bedeutet, dass \mathbf{t}_1^T die letzte Zeile der inversen Steuerbarkeitsmatrix ist. Somit kann die Transformationsmatrix **T** geradlinig ermittelt werden. Zunächst wird ihre erste Zeile gemäß (8.19) berechnet, die restliche Zeilen ergeben sich nach dem in (8.18) angegebenen Bildungsgesetz.

Man beachte, dass die letzte Zeile der ersten Bedingung in (8.16), also

$$\mathbf{t}_n^T \mathbf{A} = -\alpha_0 \mathbf{t}_1^T - \alpha_1 \mathbf{t}_2^T - \dots - \alpha_{n-1} \mathbf{t}_n^T$$
(8.20)

8.2. STABILISIERUNG DES REGELKREISES

bisher nicht betrachtet wurde. Setzt man die in (8.17) gefundenen Zusammenhänge ein, so erhält man

$$\mathbf{t}_1^T \mathbf{A}^n = -\alpha_0 \mathbf{t}_1^T - \alpha_1 \mathbf{t}_1^T \mathbf{A} - \dots - \alpha_{n-1} \mathbf{t}_1^T \mathbf{A}^{n-1}$$

bzw.

$$\mathbf{t}_{1}^{T}\left(\alpha_{0}\mathbf{E}+\alpha_{1}\mathbf{A}+\ldots+\alpha_{n-1}\mathbf{A}^{n-1}+\mathbf{A}^{n}\right)=\mathbf{0}.$$
(8.21)

Gemäß dem Satz von Cayley und Hamilton erfüllt *jede* quadratische Matrix ihre eigene charakteristische Gleichung. Das charakteristische Polynom von \mathbf{A} lautet

$$\Delta(s) = s^{n} + \alpha_{n-1}s^{n-1} + \ldots + \alpha_{1}s + \alpha_{0}, \qquad (8.22)$$

d.h. für Klammerausdruck in (8.21) gilt

$$\Delta(\mathbf{A}) = \alpha_0 \mathbf{E} + \alpha_1 \mathbf{A} + \ldots + \alpha_{n-1} \mathbf{A}^{n-1} + \mathbf{A}^n = \mathbf{0}, \qquad (8.23)$$

die Bedingung (8.20) ist somit auf jeden Fall erfüllt und bedarf keiner weiteren Beachtung.

B Gegeben sei das steuerbare mathematische Modell einer Regelstrecke

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 2 & 2\\ 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 0 \end{bmatrix} u,$$

das in die Regelungsnormalform transformiert werden soll. Dazu wird die Steuerbarkeitsmatrix und deren Inverse ermittelt, d.h.

$$\mathbf{S}_u = \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} \qquad \Rightarrow \qquad \mathbf{S}_u^{-1} = \begin{bmatrix} 1 & -2\\ 0 & 1 \end{bmatrix}.$$

Die letzte Zeile der inversen Steuerbarkeitsmatrix lautet

$$\mathbf{t}_1^T = \left[egin{array}{cc} 0 & 1 \end{array}
ight],$$

woraus unmittelbar

$$\mathbf{t}_2^T = \mathbf{t}_1^T \mathbf{A} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

folgt. Die Transformationsmatrix \mathbf{T} lautet somit

$$\mathbf{T} = \left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight].$$

Diese besagt, dass man beim vorliegenden System nur die beiden Zustandsgrößen vertauschen muss, um die Beschreibung in die erste Normalform überzuführen.

8.2.4 Formel von Ackermann

In den bisherigen Ausführungen wurde gezeigt, wie ein beliebiges (steuerbares) System (8.1) in die Regelungsnormalform transformiert werden kann. Für das zugehörige transformierte System (8.13) gestaltet sich der Zustandsreglerentwurf

$$u = -\mathbf{h}^T \mathbf{z} \tag{8.24}$$

dann äußerst einfach. Die Ermittlung des Zustandsreglers für das Originalsystem (8.1) mittels (8.12) liefert schließlich

$$u = -\mathbf{h}^T \mathbf{T} \mathbf{x} = -\mathbf{k}^T \mathbf{x}.$$
 (8.25)

Fasst man die soeben beschriebenen Verfahrensschritte geschickt zusammen, so zeigt sich, dass für die Ermittlung von \mathbf{k}^T in (8.25) die Ermittlung von \mathbf{T} bzw. die explizite Durchführung der Zustandstransformation gar nicht erforderlich ist.

Der Reglerentwurf für das transformierte System in Regelungsnormalform kann analog zu (8.11) durchgeführt werden, d.h. für den Vektor \mathbf{h}^T in (8.24) gilt

$$\mathbf{h}^{T} = \begin{bmatrix} w_0 - \alpha_0 & w_1 - \alpha_1 & \dots & w_{n-1} - \alpha_{n-1} \end{bmatrix}.$$
(8.26)

Hierbei sind w_0, \ldots, w_{n-1} die Koeffizienten des Wunschpolynoms (8.5) und $\alpha_0, \ldots, \alpha_{n-1}$ die Koeffizienten des charakteristischen Polynoms (8.21) von **A**. Die Berechnung von \mathbf{k}^T erfolgt gemäß (8.25), d.h. mit (8.26) und (8.18) folgt

$$\mathbf{k}^{T} = \mathbf{h}^{T} \mathbf{T} = \begin{bmatrix} w_{0} - \alpha_{0} & w_{1} - \alpha_{1} & \dots & w_{n-1} - \alpha_{n-1} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{1}^{T} \mathbf{A} \\ \mathbf{t}_{1}^{T} \mathbf{A}^{2} \\ \vdots \\ \mathbf{t}_{1}^{T} \mathbf{A}^{n-1} \end{bmatrix}$$

Nach Ausführung der Multiplikation

$$\mathbf{k}^{T} = \mathbf{t}_{1}^{T} \left(w_{0} \mathbf{E} + w_{1} \mathbf{A} + \ldots + w_{n-1} \mathbf{A}^{n-1} \right) - \mathbf{t}_{1}^{T} \left(\alpha_{0} \mathbf{E} + \alpha_{1} \mathbf{A} + \ldots + \alpha_{n-1} \mathbf{A}^{n-1} \right)$$

und Addition des "Nullterms" $\mathbf{t}_1^T (\mathbf{A}^n - \mathbf{A}^n)$ erhält man schließlich

$$\mathbf{k}^{T} = \mathbf{t}_{1}^{T} \left(w_{0} \mathbf{E} + w_{1} \mathbf{A} + \ldots + w_{n-1} \mathbf{A}^{n-1} + \mathbf{A}^{n} \right) - \mathbf{t}_{1}^{T} \left(\alpha_{0} \mathbf{E} + \alpha_{1} \mathbf{A} + \ldots + \alpha_{n-1} \mathbf{A}^{n-1} + \mathbf{A}^{n} \right).$$

Ein Vergleich mit (8.23) zeigt, dass der zweite Klammerausdruck in obiger Gleichung dem Matrixpolynom $\Delta(\mathbf{A})$ entspricht, d.h. es gilt

$$\mathbf{k}^{T} = \mathbf{t}_{1}^{T} \left(w_{0}\mathbf{E} + w_{1}\mathbf{A} + \ldots + w_{n-1}\mathbf{A}^{n-1} + \mathbf{A}^{n} \right).$$

Der Vektor \mathbf{k}^T entspricht also dem Produkt aus \mathbf{t}_1^T und dem Wunschpolynom w(s), in dem s durch \mathbf{A} ersetzt wird. Diese Erkenntnis wird durch die so genannte Formel von Ackermann

$$\mathbf{k}^T = \mathbf{t}_1^T \, w(\mathbf{A}) \tag{8.27}$$

in prägnanter Weise widergespiegelt.

B Gegeben sei das steuerbare mathematische Modell einer Regelstrecke

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u.$$

Es soll mit der Formel von Ackermann ein Zustandsregler der Form (8.2) so berechnet werden, dass die Eigenwerte der Matrix $(\mathbf{A} - \mathbf{bk}^T)$ bei

$$\lambda_1 = \lambda_2 = -3$$

liegen, d.h. das Wunschpolynom lautet

$$w(s) = (s+3)^2 = s^2 + 6s + 9.$$

Die Steuerbarkeitsmatrix und ihre Inverse lauten

$$\mathbf{S}_u = \begin{bmatrix} 0 & 2\\ 1 & 1 \end{bmatrix} \quad \text{bzw.} \quad \mathbf{S}_u^{-1} = \begin{bmatrix} -\frac{1}{2} & 1\\ \frac{1}{2} & 0 \end{bmatrix},$$

d.h. die letzte Zeile der inversen Steuerbarkeitsmatrix ergibt sich zu

$$\mathbf{t}_1^T = \begin{bmatrix} \frac{1}{2} & 0 \end{bmatrix}$$

Der Ausdruck $w(\mathbf{A})$ berechnet sich zu

$$w(\mathbf{A}) = \mathbf{A}^2 + 6\mathbf{A} + \mathbf{9E} = \begin{bmatrix} 16 & 16\\ 0 & 16 \end{bmatrix},$$

d.h. die Auswertung von (8.27) liefert

$$\mathbf{k}^{T} = \mathbf{t}_{1}^{T} w(\mathbf{A}) = \begin{bmatrix} \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 16 & 16 \\ 0 & 16 \end{bmatrix} = \begin{bmatrix} 8 & 8 \end{bmatrix}.$$

Der gesuchte Zustandsregler lautet somit

$$u = -\begin{bmatrix} 8 & 8 \end{bmatrix} \mathbf{x} = -8x_1 - 8x_2$$

8.2.5 Stabilisierung beliebiger Arbeitspunkte

Mit dem vorgestellten Konzept des Zustandsreglers (8.2) kann man prinzipiell beliebige Arbeitspunkte, also Ruhelagen der Regelstrecke (8.1) stabilisieren. Ein solche Ruhelage ist durch die konstanten Größen \mathbf{x}_R und u_R charakterisiert, wobei bekanntlich $\mathbf{A}\mathbf{x}_R + \mathbf{b}u_R = 0$ erfüllt sein muss. Mit

$$\boldsymbol{\xi} = \mathbf{x} - \mathbf{x}_R \quad \text{und} \quad v = u - u_R \tag{8.28}$$

werden die Abweichungen des Zustandes \mathbf{x} und der Stellgröße u von ihren konstanten Werten im Arbeitspunkt bezeichnet. Für (8.1) ergibt sich dann

$$\frac{d\boldsymbol{\xi}}{dt} = \mathbf{A}\left(\boldsymbol{\xi} + \mathbf{x}_R\right) + \mathbf{b}\left(v + u_R\right) = \mathbf{A}\boldsymbol{\xi} + \mathbf{b}v.$$
(8.29)

Mit der Zustandsrückführung

$$v = -\mathbf{k}^T \,\boldsymbol{\xi} \tag{8.30}$$

erhält man

$$\frac{d\boldsymbol{\xi}}{dt} = \left(\mathbf{A} - \mathbf{b}\mathbf{k}^{T}\right) \,\boldsymbol{\xi}. \tag{8.31}$$

Genau dann, wenn $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ eine Hurwitzmatrix ist, gilt für jeden beliebigen Anfangswert $\boldsymbol{\xi}_0 := \boldsymbol{\xi}(t=0)$, also $\mathbf{x}_0 = \mathbf{x}_R + \boldsymbol{\xi}_0$

$$\lim_{t \to \infty} \boldsymbol{\xi}(t) = \mathbf{0} \qquad \Rightarrow \qquad \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{x}_R.$$
(8.32)

Das bedeutet, dass der durch \mathbf{x}_R und u_R charakterisierte Arbeitspunkt asymptotisch stabil ist. Aus (8.30) und (8.28) erhält man den Zustandsregler

$$u = u_R - \mathbf{k}^T \left(\mathbf{x} - \mathbf{x}_R \right), \tag{8.33}$$

siehe auch Bild 8.2.

Bild 8.2: Stabilisierung eines beliebigen Arbeitspunktes

B Für die Regelstrecke

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u$$

soll ein Zustandsregler (8.33) so entworfen werden, dass die Eigenwerte des geschlossenen Regelkreises bei $s_1 = s_2 = -2$ liegen, d.h.

$$\mathbf{k}^T = \left[\begin{array}{cc} 1\frac{2}{3} & 7\frac{1}{3} \end{array} \right].$$

Für t < 1 soll die Ruhelage $\mathbf{x}_A = \begin{bmatrix} -2 & 1 \end{bmatrix}^T$, $u_A = 0$ stabilisiert werden, für $t \ge 1$ soll die Ruhelage $\mathbf{x}_E = \begin{bmatrix} 1 & -0.5 \end{bmatrix}^T$, $u_E = 0$ angefahren und stabilisiert werden. Das bedeutet, dass für die in Bild 8.2 eingezeichneten Größen \mathbf{x}_R und u_R gilt

$$\mathbf{x}_{R} = \begin{cases} \mathbf{x}_{A} & \text{für } t < 1 \\ \mathbf{x}_{E} & \text{für } t \ge 1 \end{cases} \quad \text{bzw.} \quad u_{R} = \begin{cases} u_{A} & \text{für } t < 1 \\ u_{E} & \text{für } t \ge 1 \end{cases}$$

8.3. NACHFÜHRUNG

In Bild 8.3 sind die resultierenden Verläufe der Zustandsgrößen und der Stellgröße dargestellt, der gewünschte Arbeitspunktwechsel ist deutlich zu erkennen.

Bild 8.3: Übergang von \mathbf{x}_A nach \mathbf{x}_E mit Hilfe eines Zustandsreglers

8.3 Nachführung

Zusätzlich zur Stabilität des Regelkreises wird nun gefordert, dass die Ausgangsgröße y(t)asymptotisch gegen einen vorgebbaren konstanten Wert r_0 strebt. Die Größe y(t) wird also einer konstanten Referenzgröße $r(t) = r_0$ asymptotisch nachgeführt. Dazu wird das Regelgesetz (8.2) um einen zu r proportionalen Anteil ergänzt, d.h.

$$u = -\mathbf{k}^T \mathbf{x} + V \, r. \tag{8.34}$$

Dabei ist V ein entsprechend zu bestimmender reeller, skalarer Reglerparameter. Das mathematische Modell des in Bild 8.4 dargestellten Regelkreises lautet somit

$$\frac{d\mathbf{x}}{dt} = \left(\mathbf{A} - \mathbf{b}\mathbf{k}^T\right)\mathbf{x} + \mathbf{b}Vr, \qquad y = \mathbf{c}^T\mathbf{x}.$$
(8.35)

Man beachte, dass die oben formulierte Forderung

$$\lim_{t \to \infty} y(t) = y_{\infty} = \lim_{t \to \infty} \mathbf{c}^T \mathbf{x} = \mathbf{c}^T \mathbf{x}_{\infty} \stackrel{!}{=} r_0$$
(8.36)

Bild 8.4: Prinzip der Nachführung

impliziert, dass der Zustandsvektor \mathbf{x} für $t \to \infty$ ebenfalls gegen einen konstanten Wert \mathbf{x}_{∞} strebt, d.h. die Trajektorie $\mathbf{x}(t)$ strebt asymptotisch in die Ruhelage \mathbf{x}_{∞} . Aus (8.35) folgt dann unmittelbar

$$\frac{d\mathbf{x}_{\infty}}{dt} = \mathbf{0} = \left(\mathbf{A} - \mathbf{b}\mathbf{k}^{T}\right)\mathbf{x}_{\infty} + \mathbf{b}V r_{0},$$

da $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ als Hurwitzmatrix vorausgesetzt werden kann, gilt für die Ruhelage

$$\mathbf{x}_{\infty} = -\left(\mathbf{A} - \mathbf{b}\mathbf{k}^{T}\right)^{-1} \mathbf{b}V r_{0}.$$
(8.37)

Durch Einsetzen in (8.36) findet man

$$y_{\infty} = \mathbf{c}^T \mathbf{x}_{\infty} = -\mathbf{c}^T \left(\mathbf{A} - \mathbf{b}\mathbf{k}^T\right)^{-1} \mathbf{b}V r_0 \stackrel{!}{=} r_0.$$

Daraus ergibt sich unmittelbar die Berechnungsvorschrift

$$V = -\frac{1}{\mathbf{c}^T \left(\mathbf{A} - \mathbf{b}\mathbf{k}^T\right)^{-1} \mathbf{b}}$$
(8.38)

für den gesuchten Reglerparameter. Eine Veränderung von \mathbf{k}^T macht also eine entsprechende Anpassung von V erforderlich.

Hinweis: Bei Regelstrecken mit einer *Nullstelle* bei s = 0 ist die beschriebene Nachführung *nicht* anwendbar. Um die Ausgangsgröße y auf einem konstanten Wert zu halten ist hier eine rampenförmig ansteigende Stellgröße erforderlich, was aufgrund von Stellgrößenbeschränkungen praktisch nicht realisierbar ist.

B Fortsetzung. Der Zustandsregler aus dem vorangegangenen Beispiel wird gemäß (8.34) erweitert. Die Ausgangsgröße

$$y = x_1 + x_2 = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x}$$

soll einer (konstanten) Referenzgröße asymptotisch nachgeführt werden. Die Auswertung von (8.38) ergibt den Reglerparameter

$$V = -\frac{1}{\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -8 & -7 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}} = 9.$$

Mit Hilfe des Parameters V wird also der Verstärkungsfaktor der Führungsübertragungsfunktion

$$T(s) = \frac{\bar{y}(s)}{\bar{r}(s)} = \mathbf{c}^T \left(s\mathbf{E} - \left(\mathbf{A} - \mathbf{b}\mathbf{k}^T\right) \right)^{-1} \mathbf{b}V$$

des Regelkreises (8.35) auf den Wert eins korrigiert, d.h.

$$T(0) = -\mathbf{c}^T \left(\mathbf{A} - \mathbf{b}\mathbf{k}^T\right)^{-1} \mathbf{b}V \stackrel{!}{=} 1,$$

woraus unmittelbar (8.38) folgt.

Man beachte, dass die Nachführung (8.36) nur bei *exakter* Kenntnis von **A**, **b** und \mathbf{c}^T gewährleistet ist. Bei Variationen von Streckenparametern oder aufgrund von Modellierungsungenauigkeiten geht im praktischen Einsatz die Eigenschaft (8.36) des Regelkreises verloren. Eine "robuste" Nachführung kann hingegen mit dem im folgenden Abschnitt vorgestellten PI - Zustandsregler erzielt werden.

B Gegeben sei das steuerbare Modell

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 10 & -10 \end{bmatrix} \mathbf{x}$$

einer Regelstrecke. Es wird ein Zustandsregler der Form (8.34) so entworfen, dass die Eigenwerte des Regelkreises bei $s_1 = s_2 = -2$ liegen und die Bedingung (8.36) erfüllt ist. Die zuvor beschriebenen Methoden lieferen die Reglerparameter

$$\mathbf{k}^T = \begin{bmatrix} 5 & -1 \end{bmatrix} \quad \text{und} \quad V = 0.4 \tag{8.39}$$

Zunächst wird das Verhalten des Regelkreises für den Anfangszustand

$$\mathbf{x}_0^T = \begin{bmatrix} -0.8 & -2.5 \end{bmatrix}$$

und die Referenzgröße r(t) = 0 untersucht. Die zugehörigen Verläufe der Zustandsvariablen x_1 und x_2 sind in Bild 8.5 dargestellt. In Bild 8.6 ist für $\mathbf{x}_0 = \mathbf{0}$ und $r = \sigma(t)$ der Verlauf der Ausgangsgröße y dargestellt. In der oberen Abbildung ist zu erkennen, dass y wie gewünscht asymptotisch den Wert der Referenzgröße annimmt. Der in der unteren Abbildung dargestellte Verlauf von y ergibt sich, wenn bei Verwendung des Reglers (8.39) im Simulationsmodell der Regelstrecke das erste Element der ersten Zeile von \mathbf{A} auf den Wert 0.9 geändert wird. Man erkennt, dass in diesem Fall die stationäre Genauigkeit verloren geht.

Mit Hilfe des Zustandsreglers (8.34) werden die Eigenwerte der Dynamikmatrix des geschlossenen Regelkreises platziert und die stationäre Verstärkung wird entsprechend angepasst. Das bedeutet, die Führungsübertragungsfunktion des Regelkreises lautet

$$T(s) = V \mathbf{c}^T (s\mathbf{E} - (\mathbf{A} - \mathbf{b}\mathbf{k}^T))^{-1}\mathbf{b} = V \frac{\mu(s)}{w(s)}.$$
(8.40)

Bild 8.5: Verlauf der Zustandsgrößen für $\mathbf{x}_0^T = \begin{bmatrix} -0.8 & -2.5 \end{bmatrix}$ und r(t) = 0 bei Verwendung eines Zustandsreglers der Form (8.34)

Das Zählerpolynom der ungekürzten Führungsübertragungsfunktion entspricht - bis auf den Faktor V - dem Zählerpolynom der Regelstrecke. Das Nennerpolynom w(s) ist das charakteristische Polynom von $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ und kann beliebig gewählt werden. Die Nullstellen von T(s) entsprechen also den Streckennullstellen, ggf. sind Kürzungen von Streckennullstellen mit entsprechenden Nullstellen von $\det(s\mathbf{E} - (\mathbf{A} - \mathbf{b}\mathbf{k}^T))$ zu berücksichtigen. Diese Tatsache ist besonders leicht zu erkennen, wenn das Streckenmodell in Regelungsnormalform vorliegt.

B Gegeben sei das Streckenmodell

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 3 \end{bmatrix} \mathbf{x}, \text{ d.h. } P(s) = \frac{\bar{y}(s)}{\bar{u}(s)} \Big|_{\mathbf{x}_0 = \mathbf{0}} = \frac{s+3}{s^2 - 1}.$$

Für den geschlossenen Regelkreis, bestehend aus Strecke und Regler (8.34) gilt dann

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 1\\ 1 - k_1 & -k_2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ V \end{bmatrix} r, \quad y = \begin{bmatrix} 1 & 3 \end{bmatrix} \mathbf{x},$$

d.h. die Führungsübertragungsfunktion lautet

$$T(s) = \frac{V(s+3)}{s^2 + k_2 s + (k_1 - 1)}.$$

Bild 8.6: Verlauf der Ausgangsgröße für $\mathbf{x}_0 = \mathbf{0}$ und $r(t) = \sigma(t)$ bei Verwendung eines Zustandsreglers der Form (8.34)

Für die Wahl $k_1 = k_2 = 2$ besitzt der geschlossene Regelkreis zwei Eigenwerte bei $s_1 = s_2 = -1$ und es gilt mit $V = \frac{1}{3}$

$$T(s) = \frac{1}{3} \frac{(s+3)}{(s+1)^2}$$

Wählt man hingegen $k_1 = k_2 = 4$, so gilt $s_1 = -1$ und $s_2 = -3$ und mit V = 1 folgt für die Führungsübertragungsfunktion

$$T(s) = \frac{1}{s+1}.$$

8.4 PI - Zustandsregler

Die Struktur eines Regelkreises mit einem PI - Zustandsregler ist in Bild 8.7 dargestellt. Zur Erzielung der stationären Genauigkeit (8.36) wird in den offenen Kreis ein Integrator eingefügt.

Bezeichnet man die Ausgangsgröße des Integrators mit ε , so gilt

$$\frac{d\varepsilon}{dt} = r - y = r - \mathbf{c}^T \mathbf{x}.$$
(8.41)

Die Stellgröße wird über die Relation

Bild 8.7: Regelkreis mit PI - Zustandsregler

$$u = -\mathbf{k}^T \mathbf{x} - k_i \varepsilon - k_p \left(r - \mathbf{c}^T \mathbf{x} \right) = -\left(\mathbf{k}^T - k_p \mathbf{c}^T \right) \mathbf{x} - k_i \varepsilon - k_p r$$
(8.42)

gebildet, wobe
i $\mathbf{k}^T,\,k_i$ und k_p die (n+2)Regler
parameter repäsentieren. Durch Einsetzen in (8.1) erhält man

$$\frac{d\mathbf{x}}{dt} = \left(\mathbf{A} - \mathbf{b}\left(\mathbf{k}^{T} - k_{p}\mathbf{c}^{T}\right)\right)\mathbf{x} - k_{i}\mathbf{b}\varepsilon - k_{p}\mathbf{b}r.$$
(8.43)

Fasst man ε und **x** zu einem Vektor zusammen, so erhält man das Zustandsmodell

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \varepsilon \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{b} \left(\mathbf{k}^T - k_p \mathbf{c}^T \right) & -k_i \mathbf{b} \\ -\mathbf{c}^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \varepsilon \end{bmatrix} + \begin{bmatrix} -k_p \mathbf{b} \\ 1 \end{bmatrix} r$$
(8.44)

für den in Bild 8.7 dargestellten Regelkreis. Ist die Dynamikmatrix des Regelkreises eine Hurwitzmatrix, so ist aufgrund der Regelkreisstruktur die stationäre Genauigkeit (8.36) gewährleistet. Die Reglerparameter sollen nun so bestimmt werden, dass die Dynamikmatrix

$$\begin{bmatrix} \mathbf{A} - \mathbf{b} \begin{pmatrix} \mathbf{k}^T - k_p \mathbf{c}^T \end{pmatrix} & -k_i \mathbf{b} \\ -\mathbf{c}^T & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & 0 \\ -\mathbf{c}^T & 0 \end{bmatrix} - \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{k}^T - k_p \mathbf{c}^T & k_i \end{bmatrix}$$

beliebig vorgegebbare Eigenwerte besitzt. Mit den Definitionen

$$\tilde{\mathbf{A}} := \begin{bmatrix} \mathbf{A} & 0 \\ -\mathbf{c}^T & 0 \end{bmatrix}, \quad \tilde{\mathbf{b}} := \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix} \quad \text{und} \quad \tilde{\mathbf{k}}^T := \begin{bmatrix} \mathbf{k}^T - k_p \mathbf{c}^T & k_i \end{bmatrix}$$
(8.45)

ist der Entwurf des PI - Zustandsreglers auf ein Eigenwertvorgabeproblem wie in den vorigen Abschnitten zurückgeführt. Damit die Eigenwerte der Matrix $(\mathbf{\tilde{A}} - \mathbf{\tilde{b}}\mathbf{\tilde{k}}^T)$ beliebig vorgegeben werden können, muss also das System

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \varepsilon \end{bmatrix} = \begin{bmatrix} \mathbf{A} & 0 \\ -\mathbf{c}^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \varepsilon \end{bmatrix} + \begin{bmatrix} \mathbf{b} \\ 0 \end{bmatrix} u$$

d.h. die Serienschaltung aus Strecke und Integrator steuerbar sein. Das ist genau dann der Fall, wenn die steuerbare Strecke (8.1) keine Nullstellen bei s = 0 besitzt.

8.4. PI - ZUSTANDSREGLER

Zu beachten ist, dass nun (n+1) Eigenwerte vorgegeben werden müssen. Der Vektor $\tilde{\mathbf{k}}^T$ kann mit den bereits bekannten Methoden zur Eigenwertvorgabe ermittelt werden. Wie aus (8.45) hervorgeht, entspricht die letzte Komponente von $\tilde{\mathbf{k}}^T$ dem Reglerparameter k_i . Im Gegensatz dazu gehen \mathbf{k}^T und k_p aus den ersten *n* Komponenten von $\tilde{\mathbf{k}}^T$ *nicht* eindeutig hervor. In vielen Fällen wird zunächst der Parameter k_p gewählt und danach der Vektor \mathbf{k}^T gemäß

$$\mathbf{k}^{T} = \begin{bmatrix} \tilde{k}_{1} & \dots & \tilde{k}_{n} \end{bmatrix} + k_{p} \mathbf{c}^{T}$$
(8.46)

berechnet. Einemögliche Wahl von k_p lautet^2 beispielsweise

$$k_p = \frac{1}{\mathbf{c}^T \mathbf{A}^{-1} \mathbf{b}}.$$
(8.47)

Dadurch wird erreicht, dass der Regler bei einer konstanten Referenzgröße $r(t) = r_0$ zum Zeitpunkt t = 0 denjenigen Stellgrößenwert generiert, der dem konstanten Wert der Stellgröße u im stationären Zustand entspricht.

B Für das Modell

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 10 & -10 \end{bmatrix} \mathbf{x}$$

einer Regelstrecke wird ein PI - Zustandsregler so entworfen, dass die drei(!) Eigenwerte des Regelsreises bei $s_1 = s_2 = s_3 = -2$ liegen. Der Vektor $\tilde{\mathbf{k}}^T$ ist also so zu bestimmen, dass die Matrix

$$\tilde{\mathbf{A}} - \tilde{\mathbf{b}}\tilde{\mathbf{k}}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ -10 & 10 & 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} \tilde{k}_{1} & \tilde{k}_{2} & \tilde{k}_{3} \end{bmatrix}$$

die gewünschten Eigenwerte besitzt. Diese Berechnung liefert

$$\tilde{\mathbf{k}}^T = \begin{bmatrix} 13 & -7 & -0.8 \end{bmatrix},$$

d.h. es gilt $k_i = -0.8$. Für den Parameter k_p wird der Wert $k_p = -0.3$ gewählt, woraus sich über (8.46) der Vektor

$$\mathbf{k}^T = \left[\begin{array}{cc} 13 & -7 \end{array} \right] - 0.3 \cdot \left[\begin{array}{cc} 10 & -10 \end{array} \right] = \left[\begin{array}{cc} 10 & -4 \end{array} \right]$$

ergibt. In Bild 8.8 ist der Verlauf der Ausgangsgröße y für $\mathbf{x}_0 = \mathbf{0}$ und $r = \sigma(t)$ dargestellt. Der oberen Abbildung ist zu entnehmen, dass y asymptotisch den Wert der Referenzgröße annimmt. Der in der unteren Abbildung dargestellte Verlauf von y ergibt sich, wenn bei Verwendung des gleichen Reglers im Simulationsmodell der Regelstrecke das erste Element der ersten Zeile von \mathbf{A} auf den Wert 0.9 geändert wird. Man erkennt deutlich, dass in diesem Fall die stationäre Genauigkeit erhalten bleibt.

²dabei wird vorausgesetzt, dass die Strecke keinen Eigenwert bei s = 0 besitzt, d.h. A ist regulär.

Bild 8.8: Verlauf der Ausgangsgröße y für $\mathbf{x}_0 = \mathbf{0}$ und $r(t) = \sigma(t)$ bei Verwendung eines PI - Zustandsreglers

Eine weitere Möglichkeit, einen PI-Zustandsregler auszulegen, besteht darin, seine (n + 2)Reglerparameter so zu bestimmen, dass die Führungsübertragungsfunktion T(s) derjenigen Führungsübertragungsfunktion entspricht, die sich mit einem klassischen Zustandsregler ergibt. Gemäß (8.40) soll also

$$T(s) \stackrel{!}{=} V \frac{\mu(s)}{w(s)} \tag{8.48}$$

gelten. Hierbei ist $\mu(s)$ das Zählerpolynom der Regelstrecke und w(s) ist ein frei vorgebbares Hurwitzpolynom. Mit dem reellen Faktor V wird gewährleistet, dass T(0) = 1 gilt, d.h.

$$V = \frac{w(0)}{\mu(0)}.$$
 (8.49)

Der in Bild 8.7 dargestellte Regelkreis entspricht einem Standardregelkreis, bei dem der offene Kreis die Serienschaltung des PI-Reglers

$$R(s) = -\frac{k_p s + k_i}{s}$$

und der Regelstrecke mit Zustandsrückführung, also

$$G(s) = \mathbf{c}^T \left(s\mathbf{E} - \left(\mathbf{A} - \mathbf{b}\mathbf{k}^T\right) \right)^{-1} \mathbf{b} = \frac{\mu(s)}{\tilde{w}(s)}$$

8.4. PI - ZUSTANDSREGLER

ist. Das Zählerpolynom der ungekürzten Übertragungsfunktion G(s) entspricht dabei dem Zählerpolynom der Regelstrecke, das Polynom $\tilde{w}(s)$ kann mittels \mathbf{k}^T beliebig vorgegeben werden. Für die Übertragungsfunktion des offenen Kreises gilt somit

$$L(s) = R(s)G(s) = -\frac{(k_p s + k_i)}{s} \frac{\mu(s)}{\tilde{w}(s)} = \frac{-k_p \left(s + \frac{k_i}{k_p}\right)\mu(s)}{s \,\tilde{w}(s)}.$$
(8.50)

Um die in (8.48)angegebene Forderung zu erfüllen, muss L(s) der Bedingung

$$L(s) = \frac{T(s)}{1 - T(s)} \stackrel{!}{=} \frac{V\,\mu(s)}{w(s) - V\,\mu(s)}$$
(8.51)

genügen. Ein Vergleich von (8.50) und (8.51) verdeulicht, dass

$$k_p \stackrel{!}{=} -V \tag{8.52}$$

und dass der Linearfaktor $\left(s + \frac{k_i}{k_p}\right)$ ein Teiler von $\tilde{w}(s)$ sein muss, d.h.

$$\tilde{w}(s) = \left(s + \frac{k_i}{k_p}\right) w^*(s).$$
(8.53)

Setzt man (8.52) und (8.53) in (8.50) ein, so erhält man

$$L(s) = \frac{V\left(s + \frac{k_i}{k_p}\right)\mu(s)}{s\left(s + \frac{k_i}{k_p}\right)w^*(s)} \stackrel{\text{Kürzung}}{=} \frac{V\mu(s)}{sw^*(s)}.$$
(8.54)

Man beachte, dass die in (8.54) angedeutete Kürzung natürlich nur dann zulässig ist, wenn die Bedingung

$$\gamma := \frac{k_i}{k_p} > 0 \tag{8.55}$$

erfüllt ist. Aus (8.51) und (8.54) folgt nun unmittelbar, dass

$$s w^*(s) \stackrel{!}{=} w(s) - V \mu(s)$$

gelten muss. Da das Polynom $(w(s) - V \mu(s))$ wegen T(0) = 1 eine Nullstelle bei s = 0 besitzen muss, kann $w^*(s)$ über die Relation

$$w^*(s) = \frac{w(s) - V\,\mu(s)}{s}.$$
(8.56)

ermittelt werden. Mit (8.53) gilt für das Polynom $\tilde{w}(s)$ somit

$$\tilde{w}(s) = (s + \gamma) w^*(s).$$
 (8.57)

Der beschriebene Entwurfsprozess kann folgendermaßen zusammengefasst werden:

I) Setze
$$k_p = -V = -\frac{w(0)}{\mu(0)}$$

II) Wähle $\gamma > 0$ und berechne $k_i = k_p \gamma$

III) Setze
$$\tilde{w}(s) = \frac{w(s) + k_p \mu(s)}{s} (s + \gamma)$$

IV) Berechne \mathbf{k}^T so, dass det $(s\mathbf{E} - (\mathbf{A} - \mathbf{b}\mathbf{k}^T)) = \tilde{w}(s)$

 $\langle \alpha \rangle$

B Gegeben sei das Modell

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 10 & -10 \end{bmatrix} \mathbf{x}$$

einer Regelstrecke mit der Übertragungsfunktion

$$P(s) = \frac{10}{s^2 - 1}.$$

Es soll ein PI - Zustandsregler so entworfen werden, dass der Regelkreis die Führungsübertragungsfunktion

$$T(s) = \frac{4}{s^2 + 2.4s + 4}$$

besitzt. Gemäß obigem Entwurfsschema (\mathbf{I}) setzt man zunächst

$$k_p = -\frac{w(0)}{\mu(0)} = -\frac{4}{10} = -0.4.$$

Mit der Wahl $\gamma = 2$ erhält man mit (**II**) dann

$$k_i = -0.8.$$

Für das Polynom $\tilde{w}(s)$ ergibt sich nach (**III**)

$$\tilde{w}(s) = \frac{s^2 + 2.4s + 4 - 0.4 \cdot 10}{s}(s+2) = (s+2.4)(s+2).$$

Aus (IV) folgt dann

$$\mathbf{k}^T = \left[\begin{array}{cc} 5.8 & -1.4 \end{array} \right].$$

8.5 Wahl der Eigenwerte

In diesem Abschnitt werden Hinweise zur Wahl der Eigenwertkonfiguration des geschlossenen Regekreises gegeben. Es wird die Vorgabe eines so genannten dominanten Eigenwertpaares erläutert. Aus dem gewünschten prozentualen Überschwingen und der Anstiegszeit für die Sprungantwort des Regelkreises kann die erforderliche Lage der Eigenwertpaares ermittelt werden.

8.5.1 Dominantes Eigenwertpaar

Eine Möglichkeit, die Eigenwerte des geschlossenen Kreises zu wählen, beruht auf der Annahme, dass das dynamische Verhalten des geschlossenen Regelkreises durch ein dominantes Eigenwertpaar geprägt ist, siehe hierzu auch Abschnitt 5.2.1. Hierbei ist zu beachten, dass bei dieser Vorgangsweise prinzipiell vorausgesetzt werden muss, dass die Regelstrecke *keine* Nullstellen besitzt.

Man geht davon aus, dass die Führungsübertragungsfunktion des Regelkreises näherungsweise die Form

$$T(s) = \frac{\bar{y}(s)}{\bar{r}(s)} = \frac{\omega_n^2}{s^2 + 2d\omega_n s + \omega_n^2} \quad \text{mit} \quad 0 < d < 1 \text{ und } \omega_n > 0$$
(8.58)

besitzt. Die dominanten Eigenwerte $s_{1,2}$ sind die Pole von T(s), d.h.

$$s_{1,2} = -d\,\omega_n \pm j\omega_n \sqrt{1 - d^2}.$$
(8.59)

Analog zu Kapitel 5 wird das gewünschte Verhalten des Regelkreises bei einem Sprung der Referenzgröße r durch das prozentuale Überschwingen \ddot{u} und die Anstiegszeit t_r spezifiziert. Die "Form" der Sprungantwort wird dabei ausschließlich durch den Parameter d festgelegt, d.h. der Zusammenhang zwischen Überschwingen \ddot{u} und Dämpfungsgrad d ist eindeutig. Aus dem Bild 8.9, oben kann zu vorgegebenem Überschwingen der zugehörige Dämpfungsgrad dabgelesen werden. Der Parameter ω_n ist ein Maß für die "Reaktionsfreudigkeit" des Systems. Eine Verzehnfachung von ω_n bedeutet beispielsweise, dass die Sprungantwort um den Faktor 10 "gestaucht" wird, eine Verkleinerung des Parameters entspricht einer Verlangsamung, d.h. einer "Streckung" des Sprungantwort. Mit Hilfe von Bild 8.9 (Mitte) kann bei bekanntem dund vorgegebenem t_r der Parameter ω_n ermittelt werden.

B Die Parameter d und ω_n sollen so bestimmt werden, dass die Sprungantwort von (8.58) ein prozentuales Überschwingen $\ddot{u} = 10\%$ und eine Anstiegszeit $t_r = 2$ besitzt.

Gemäß Bild 8.9 folgt aus der vorgegebenen Überschwingweite unmittelbar d = 0.6. und $\omega_n t_r \approx 2$, d.h. $\omega_n \approx 1$.

Die Lage der dominanten Eigenwerte $s_{1,2}$ in der komplexen Ebene ist in Bild 8.10, links eingezeichnet. Wie man leicht überprüfen kann, gilt $|s_{1,2}| = \omega_n$ und es folgt für den eingezeichneten Winkel Θ unmittelbar

$$\Theta = \cos^{-1} d. \tag{8.60}$$

Das bedeutet, dass zu jedem Wert von \ddot{u} ein Winkel Θ berechnet werden kann, siehe Bild 8.9, unten. Will man also beispielsweise erreichen, dass für die Sprungsantwort des Regelkreises $\ddot{u} \leq 10\%$ gilt, so müssen die dominanten Eigenwerte in dem im mittleren Bild 8.10 grau dargestellten Bereich liegen. Häufig wird auch noch die so genannte Ausregelzeit t_s ("settling time") angegeben, ab der sich die Regelgröße y in einem 2%-Band um ihren stationären Endwert y_{∞} befindet, d.h. $0.98 y_{\infty} \leq y(t) \leq 1.02 y_{\infty}$ für $t \geq t_s$. Wie man zeigen kann, müssen - unter Annahme von $d \leq 0.9$ - die Parameter d und ω_n der Bedingung

$$d\,\omega_n \ge \frac{4.7}{t_s} \tag{8.61}$$

Bild 8.9: Zur Ermittlung von d, ω_n und θ aus \ddot{u} und t_r

genügen. Die zusätzliche Forderung (8.61) schränkt den zulässigen Bereich für die Lage der dominanten Eigenwerte weiter ein, siehe rechtes Bild 8.10.

B Für das Modell

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 10 & -10 \end{bmatrix} \mathbf{x}$$

einer Regelstrecke soll ein PI - Zustandsregler so entworfen werden, dass die Sprungantwort des Regelkreises die Eigenschaften $\ddot{u} = 10\%$ und $t_r = 1$ erfüllt. Man beachte, dass der offene Kreis für $k_p \neq 0$ eine Nullstelle an der Stelle $s = -\frac{k_p}{k_i}$ besitzt. Um die beschriebene Methodik der Wahl verwenden zu können, wird daher $k_p = 0$ gewählt³.

Aus Bild 8.9 können die Parameterwerte

$$d = 0.6$$
 und $\omega_n = 2$

abgelesen werden, d.h. das dominante Eigenwertpaar soll bei

$$s_{1,2} = -1.2 \pm j1.6$$

³Alternativ könnte auch das im vorigen Abschnitt beschriebene Entwurfsschema verwendet werden.

Bild 8.10: Zur Lage der dominanten Eigenwerte in der komplexen Ebene

liegen. Der dritte Eigenwerte s_3 darf das Übertragungsverhalten des Regelkreises nicht signifikant beeinflussen, d.h. er muss hinreichend weit nach "links" geschoben werden. Wie Bild 8.11 zu entnehmen ist, führt eine betragsmäßige Vergößerung von s_3 zu einer Erhöhung der Stellgröße. Im vorliegenden Fall stellt $s_3 = -4$ einen guten Kompromiss dar, die vorgegebenen Spezifikationen werden zufriedenstellend erfüllt. Für den Vektor der Reglerparameter $\tilde{\mathbf{k}}^T$ erhält

Bild 8.11: Sprungantwort des Regelkreises für verschiedene Werte von s_3 .

 man

$$\tilde{\mathbf{k}}^T = \begin{bmatrix} 14.6 & -8.2 & -1.6 \end{bmatrix},$$

d.h. der PI-Zustandsregler ist durch

$$\mathbf{k}^{T} = \begin{bmatrix} 14.6 & -8.2 \end{bmatrix}, \quad k_{p} = 0 \quad \text{und} \quad k_{i} = -1.6$$

gegeben.

Kapitel 9 Entwurf von Zustandsbeobachtern

9.1 Einführung

Bei den Überlegungen im vorigen Kapitel wurde stets angenommen, dass *alle* Zustandsgrößen der Regelstrecke messbar sind, d.h. der gesamte Vektor \mathbf{x} steht dem Regler zur Verfügung. Bei praktischen Anwendungen ist diese Annahme häufig nicht gerechtfertigt. Oft ist die messtechnische Erfassung bestimmter Zustandsgrößen aufgrund kostspieliger Sensorik unwirtschaftlich oder sie ist technisch sogar unmöglich. Die Grundidee des so genannten **Zustandsbeobachters** besteht nun darin, auf Basis des mathematischen Modells *n*-ter Ordnung der Regelstrecke

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u \qquad \text{mit} \qquad \mathbf{x}_0 \dots \text{unbekannt}$$

$$y = \mathbf{c}^T \mathbf{x}$$
(9.1)

nicht-messbare Zustandsgrößen zu rekonstruieren.

Im vorliegenden Fall wird angenommen, dass die Ausgangsgröße y messbar ist und *alle n* Zustandsgrößen mit Hilfe eines Beobachters geschätzt werden müssen. Der Zustand $\hat{\mathbf{x}}$ des Beobachters soll sich *asymptotisch* dem Streckenzustand nähern, d.h.

$$\lim_{t \to \infty} \mathbf{\hat{x}}(t) = \lim_{t \to \infty} \mathbf{x}(t).$$

Anstelle der bisher als messbar voausgesetzten Zustandsgrößen x_i werden deren Schätzwerte \hat{x}_i im Regelgesetz verwendet, d.h. der Zustandsregler (8.34) lautet dann

$$u = -\sum_{i=1}^{n} k_i \,\hat{x}_i + V \,r = -\mathbf{k}^T \mathbf{\hat{x}} + V \,r.$$
(9.2)

9.2 Trivialer Beobachter

Eine sehr naheliegende Idee zur Rekonstruktion des Zustandsvektors besteht darin, den Beobachter als Kopie des Streckenmodells anzusetzen, d.h.

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}\,u.\tag{9.3}$$

Wie in Bild 9.1 angedeutet, wird dieses Modell mit der gleichen Stellgröße u wie die Regelstrecke angesteuert und zur Berechnung von $\hat{\mathbf{x}}$ genützt, wobei üblicherweise $\hat{\mathbf{x}}_0 = \mathbf{0}$ gesetzt wird. Der Schätzfehler

Bild 9.1: Prinzip des trivialen Beobachters

$$\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}} \tag{9.4}$$

charakterisiert die Abweichung des Schätzwertes $\hat{\mathbf{x}}$ vom tatsächlichen Zustand \mathbf{x} . Sein zeitliches Verhalten wird durch

$$\frac{d\mathbf{e}}{dt} = \frac{d\mathbf{x}}{dt} - \frac{d\hat{\mathbf{x}}}{dt} \stackrel{(9.1,)}{=} \mathbf{A}\mathbf{x} + \mathbf{b}u - \mathbf{A}\hat{\mathbf{x}} - \mathbf{b}u = \mathbf{A}\mathbf{e}$$
(9.5)

beschrieben, wobei $\mathbf{e}_0 = \mathbf{x}_0 - \hat{\mathbf{x}}_0$ gilt. Aus der Schätzfehlerdynamik (9.5) folgt unmittelbar, dass der Schätzfehler ausgehend von beliebigem \mathbf{e}_0 genau dann asymptotisch gegen Null strebt, d.h.

$$\lim_{t \to \infty} \mathbf{e}(t) = \mathbf{0},$$

wenn die Matrix **A** eine Hurwitzmatrix ist. Das bedeutet, dass die Zustandsgrößen des **triv**ialen Beobachters (9.3) genau dann asymptotisch gegen die Zustandsgrößen der Regelstrecke konvergieren, wenn die Regelstrecke (9.1) asymptotisch stabil ist, d.h. die Schätzfehlerdynamik ist starr vorgegeben. Weiters besteht keinerlei Möglichkeit, bei der Beobachtung den Einfluss von Störungen, Parameterschwankungen und Modellierungsfehlern zu berücksichtigen. All diese Tatsachen schränken die Anwendbarkeit des trivialen Beobachters sehr stark ein, er ist daher für den praktischen Einsatz de facto ungeeignet.

9.3 Luenberger-Beobachter

Auch der so genannte Luenberger-Beobachter nützt das mathematische Modell (9.1) zur Schätzung des Streckenzustandes. Im Gegensatz zum trivialen Beobachter wird hier aber auch die messbare Ausgangsgröße y für die Ermittlung von $\hat{\mathbf{x}}$ verwendet. Dazu wird y mit der Ausgangsgröße $\hat{y} = \mathbf{c}^T \hat{\mathbf{x}}$ des Beobachters verglichen und die Differenz $(y - \hat{y})$ zur "Korrektur" von $\hat{\mathbf{x}}$ verwendet. Wie in Bild 9.2 zu erkennen ist, ensteht so eine Rückkopplung innerhalb des Beobachters.

Bild 9.2: Beobachter nach Luenberger

Das mathematische Modell des Beobachters lautet somit

$$\frac{d\hat{\mathbf{x}}}{dt} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{b}u + \mathbf{l}\left(y - \hat{y}\right),$$

$$\hat{y} = \mathbf{c}^{T}\hat{\mathbf{x}}$$
(9.6)

bzw.

$$\frac{d\hat{\mathbf{x}}}{dt} = \left(\mathbf{A} - \mathbf{l}\mathbf{c}^{T}\right)\hat{\mathbf{x}} + \mathbf{b}u + \mathbf{l}y$$
(9.7)

wobei

$$\mathbf{l}^T = \begin{bmatrix} l_1 & l_2 & \dots & l_n \end{bmatrix}$$
(9.8)

der geeignet zu bestimmende Vektor der Beobachterparameter bzw. "Beobachterverstärkungen" ist. Setzt man nun $\hat{y} = \mathbf{c}^T \hat{\mathbf{x}}$ und $y = \mathbf{c}^T \mathbf{x}$ in (9.6) ein, so erhält man

$$\frac{d\hat{\mathbf{x}}}{dt} = \left(\mathbf{A} - \mathbf{l}\mathbf{c}^T\right)\hat{\mathbf{x}} + \mathbf{l}\mathbf{c}^T\mathbf{x} + \mathbf{b}u.$$

Für die Dynamik des Schätzfehlers (9.4) ergibt sich damit

$$\frac{d\mathbf{e}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u - \left(\mathbf{A} - \mathbf{l}\mathbf{c}^{T}\right)\hat{\mathbf{x}} - \mathbf{l}\mathbf{c}^{T}\mathbf{x} - \mathbf{b}u = \left(\mathbf{A} - \mathbf{l}\mathbf{c}^{T}\right)\mathbf{x} - \left(\mathbf{A} - \mathbf{l}\mathbf{c}^{T}\right)\hat{\mathbf{x}} = \left(\mathbf{A} - \mathbf{l}\mathbf{c}^{T}\right)\mathbf{e} \quad (9.9)$$

Wie zu erkennen ist, kann die Schätzfehlerdynamik (9.9) über der Vektor I gezielt beeinflusst werden. Analog zum Zustandsreglerentwurf soll der Vektor I so bestimmt werden, dass die Dynamikmatrix des Schätzfehlers $(\mathbf{A} - \mathbf{lc}^T)$ beliebig vorgebbare Eigenwerte besitzt.

Ein Vergleich von (9.9) mit (8.4) verdeutlicht, dass der Beobachterentwurf, also die Ermittlung von l, sehr ähnlich strukturiert ist wie der Zustandsreglerentwurf, also die Ermittlung von \mathbf{k}^T . In der Tat unterscheiden sich die Dynamikmatrizen des Schätzfehlers $(\mathbf{A} - \mathbf{l}\mathbf{c}^T)$ und des geschlossenen Regelkreises $(\mathbf{A} - \mathbf{b}\mathbf{k}^T)$ nur dadurch, dass der Vektor l der "linke Faktor" des dyadischen Produktes $(\mathbf{l}\mathbf{c}^T)$ ist, während \mathbf{k}^T der "rechte Faktor" des dyadischen Produktes $(\mathbf{b}\mathbf{k}^T)$ ist. Sehr hilfreich erweist sich an dieser Stelle die Tatsache, dass die Eigenwerte einer

quadratischen Matrix W identisch sind mit den Eigenwerten der transponierten Matrix \mathbf{W}^T . Wenn man also bei der Eigenwertvorgabe anstelle von $(\mathbf{A} - \mathbf{l}\mathbf{c}^T)$ die Matrix $(\mathbf{A} - \mathbf{l}\mathbf{c}^T)^T = (\mathbf{A}^T - \mathbf{c}\mathbf{l}^T)$ betrachtet, dann sind Beobachterentwurf und Zustandsreglerentwurf strukturell identisch! Der Beobachterentwurf kann somit auch so interpretiert werden, dass für das so genannte **duale System**

$$\frac{d\mathbf{z}}{dt} = \mathbf{A}^T \mathbf{z} + \mathbf{c} \, v \tag{9.10}$$

ein Zustandsregler der Form

$$v = -\mathbf{l}^T \mathbf{z} \tag{9.11}$$

ermittelt wird. Alle Überlegungen aus dem vorigen Kapitel zum Zustandsreglerentwurf können also unverändert auf den Beobachterentwurf übertragen werden.

Notwendig und hinreichend dafür, dass die Eigenwerte von $(\mathbf{A}^T - \mathbf{c} \mathbf{l}^T)$ bzw. $(\mathbf{A} - \mathbf{l} \mathbf{c}^T)$ beliebig platziert werden können, ist die Steuerbarkeit des dualen Systems (9.10). Das bedeutet, dass die zugehörige Steuerbarkeitsmatrix

$$\hat{\mathbf{S}}_{u} = \begin{bmatrix} \mathbf{c} & \mathbf{A}^{T}\mathbf{c} & \dots & \left(\mathbf{A}^{T}\right)^{n-1}\mathbf{c} \end{bmatrix}$$
(9.12)

regulär sein muss. Durch Bildung der transponierten Matrix

$$\hat{\mathbf{S}}_{u}^{T} = \begin{bmatrix} \mathbf{c}^{T} \\ \mathbf{c}^{T} \mathbf{A} \\ \vdots \\ \mathbf{c}^{T} \mathbf{A}^{n-1} \end{bmatrix} \stackrel{(7.21)}{=} \mathbf{B}_{y}$$
(9.13)

erkennt man, dass das duale System genau dann steuerbar ist, wenn die Regelstrecke (9.1) beobachtbar ist.

B Gegeben sei das mathematische Modell einer Regelstrecke

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 0 & 1\\ 1 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}.$$

Es soll ein Zustandsbeobachter der Form (9.7) so entworfen werden, dass die Dynamikmatrix der Schätzfehlerdynamik (9.9) zwei Eigenwerte an der Stelle s = -1 besitzt.

Zunächst wird mit Hilfe der regulären Beobachtbarkeitsmatrix

$$\mathbf{B}_{y} = \begin{bmatrix} \mathbf{c}^{T} \\ \mathbf{c}^{T} \mathbf{A} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

gezeigt, dass die Beobachtbarkeit des Streckenmodells gegeben ist. Die Eigenwerte der Matrix

$$\left(\mathbf{A} - \mathbf{l}\,\mathbf{c}^{T}\right) = \begin{bmatrix} 0 & 1\\ 1 & 2 \end{bmatrix} - \begin{bmatrix} l_{1}\\ l_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} -l_{1} & 1\\ 1 - l_{2} & 2 \end{bmatrix}$$

können somit beliebig platziert werden. Die reellen Konstanten l_1 und l_2 müssen so bestimmt werden, dass das charakteristische Polynom von $(\mathbf{A} - \mathbf{l}\mathbf{c}^T)$ dem Wunschpolynom

$$w(s) = (s+1)^2 = s^2 + 2s + 1$$

entspricht, d.h.

$$\det \begin{bmatrix} s+l_1 & -1\\ l_2-1 & s-2 \end{bmatrix} = s^2 + (l_1-2)s + (l_2-2l_1-1) \stackrel{!}{=} s^2 + 2s + 1.$$

Der Koeffizientenvergleich liefert $l_1 = 4$ und $l_2 = 10$, d.h. das Beobachtermodell ist durch

$$\frac{d\hat{\mathbf{x}}}{dt} = \begin{bmatrix} -4 & 1\\ -9 & 2 \end{bmatrix} \hat{\mathbf{x}} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u + \begin{bmatrix} 4\\ 10 \end{bmatrix} y$$

gegeben.

Natürlich kann auch die im vorigen Kapitel hergeleitete Formel von Ackermann für den Beobachterentwurf eingesetzt werden. Hierfür sind in (8.27) die entsprechenden Größen des dualen Systems (9.10) einzusetzen, d.h.

$$\mathbf{l}^T = \hat{\mathbf{t}}_1^T w(\mathbf{A}^T), \tag{9.14}$$

wobei $\mathbf{\hat{t}}_1^T$ die letzte Zeile der inversen "dualen" Steuerbarkeitsmatrix (9.12) ist.

B Fortsetzung. Verwendet man zur Lösung des vorigen Beispiels die Formel von Ackermann, so ist zunächst $\hat{\mathbf{t}}_1^T$ zu ermitteln, d.h.

$$\hat{\mathbf{t}}_1^T = \begin{bmatrix} 0 & 1 \end{bmatrix} \hat{\mathbf{S}}_u^{-1} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{pmatrix} \mathbf{B}_y^T \end{pmatrix}^{-1} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$

Mit (9.14) folgt dann

$$\mathbf{l}^{T} = \mathbf{\hat{t}}_{1}^{T} \left(\left(\mathbf{A}^{T} \right)^{2} + 2\mathbf{A}^{T} + \mathbf{E} \right) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 4 & 10 \end{bmatrix} = \begin{bmatrix} 4 & 10 \end{bmatrix}.$$

9.4 Der Beobachter im Regelkreis

Der Schätzwert $\hat{\mathbf{x}}$ für den tatsächlichen Zustand \mathbf{x} der Regelstrecke wird nun zur Regelung der steuerbaren und beobachtbaren Strecke mittels eines Zustandsreglers der Form

$$u = -\mathbf{k}^T \hat{\mathbf{x}} + Vr \tag{9.15}$$

verwendet. Der resultierende Regelkreis, bestehend aus Strecke, Beobachter und Zustandsregler ist in Bild 9.3 dargestellt.

Bild 9.3: Regelkreis, bestehend aus Strecke, Zustandsregler und Beobachter

Setzt man das Regelgesetz (9.15) in das Streckenmodell (9.1) und den Beobachter (9.7) ein, so erhält man

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} - \mathbf{b}\mathbf{k}^T\hat{\mathbf{x}} + \mathbf{b}Vr, \quad y = \mathbf{c}^T\mathbf{x}$$

und

$$\frac{d\hat{\mathbf{x}}}{dt} = \left(\mathbf{A} - \mathbf{l}\mathbf{c}^{T} - \mathbf{b}\mathbf{k}^{T}\right)\hat{\mathbf{x}} + \mathbf{l}\mathbf{c}^{T}\mathbf{x} + \mathbf{b}Vr.$$

Das mathematische Modell des Gesamtsystems kann auch in der kompakten Form

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{b}\mathbf{k}^T \\ \mathbf{l}\mathbf{c}^T & \mathbf{A} - \mathbf{l}\mathbf{c}^T - \mathbf{b}\mathbf{k}^T \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix} + \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix} V r$$

$$y = \begin{bmatrix} \mathbf{c}^T & \mathbf{0}^T \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix}$$
(9.16)

angeschrieben werden. Die Systemordnung des Regelkreises beträgt also 2n, entspricht also der doppelten Streckenordnung. Die Dynamikmatrix des Gesamtsystems wird offensichtlich maßgeblich von den Vektoren \mathbf{k}^T und \mathbf{l} beeinflusst. Es ist eine äußerst bemerkenswerte Eigenschaft dieser Matrix, dass sich ihre 2n Eigenwerte aus den Eigenwerten von $(\mathbf{A} - \mathbf{b} \mathbf{k}^T)$ und $(\mathbf{A} - \mathbf{l} \mathbf{c}^T)$ zusammensetzen. Das bedeutet, dass man Zustandsregler- und Beobachterentwurf voneinander unabhängig durchführen kann! Dies ist das so genannte Separationstheorem, das im nächsten Abschnitt bewiesen wird.

9.4.1 Separationstheorem

Zur Herleitung des Separationstheorems wird das System (9.16) der regulären Zustandstransformation

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{E} & -\mathbf{E} \end{bmatrix}}_{=\mathbf{T}} \begin{bmatrix} \mathbf{x} \\ \hat{\mathbf{x}} \end{bmatrix}$$
(9.17)

unterworfen, d.h. in (9.16) wird $\mathbf{\hat{x}} = \mathbf{x} - \mathbf{e}$ gesetzt. Daraus folgt

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} - \mathbf{b}\mathbf{k}^{T}(\mathbf{x} - \mathbf{e}) + \mathbf{b}Vr = (\mathbf{A} - \mathbf{b}\mathbf{k}^{T})\mathbf{x} + \mathbf{b}\mathbf{k}^{T}\mathbf{e} + \mathbf{b}Vr,$$

die Schätzfehlerdynamik lautet nach (9.9)

$$\frac{d\mathbf{e}}{dt} = \left(\mathbf{A} - \mathbf{l}\mathbf{c}^T\right)\mathbf{e}.$$

In kompakter Schreibweise lautet das transformierte System somit

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{b}\mathbf{k}^T & \mathbf{b}\mathbf{k}^T \\ \mathbf{0} & \mathbf{A} - \mathbf{l}\mathbf{c}^T \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} + \begin{bmatrix} \mathbf{b}V \\ \mathbf{0} \end{bmatrix} r$$

$$y = \begin{bmatrix} \mathbf{c}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix}$$
(9.18)

Die transformierte Dynamikmatrix besitzt eine eine so genannte Block-Dreieckstruktur, d.h. für ihr charakteristisches Polynom $\Delta(s)$ gilt

$$\Delta(s) = \det \left[s\mathbf{E} - \left(\mathbf{A} - \mathbf{b} \, \mathbf{k}^T \right) \right] \cdot \det \left[s\mathbf{E} - \left(\mathbf{A} - \mathbf{l} \, \mathbf{c}^T \right) \right].$$

Da die Eigenwerte der Block-Dreiecksmatrix identisch sind mit den Eigenwerten der Dynamikmatrix des Originalsystems (9.16), ist damit das Separationstheorem bewiesen.

B Gegeben sei das steuerbare Modell

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 10 & -10 \end{bmatrix} \mathbf{x}$$

einer Regelstrecke. Es wird ein Zustandsregler der Form (8.2) so entworfen, dass die Eigenwerte des Regelkreises bei $s_1 = s_2 = -2$ liegen. Wie im vorigen Kapitel gezeigt wurde, besitzt der Zustandsregler die Parameter

$$\mathbf{k}^T = \left[\begin{array}{cc} 5 & -1 \end{array} \right].$$

Zur Schätzung der Zustandsgrößen wird ein Zustandsbeobachter der Form (9.7) eingesetzt. Der Vektor l wird so bestimmt, dass die Eigenwerte der Schätzfehlerdynamik (9.9) bei $s_3 = s_4 = -6$ liegen, man findet

$$\mathbf{l}^T = \begin{bmatrix} 4.9 & 3.7 \end{bmatrix}.$$

In Bild 9.4 sind die Verläufe der Zustandsgrößen der Regelstrecke für

$$\mathbf{x}_0^T = \begin{bmatrix} -0.8 & -2.5 \end{bmatrix}$$

dargestellt, die zugehörigen Schätzwerte sind punktiert eingezeichnet.

Bild 9.4: Verläufe der Zustandsgrößen x_1, x_2 der Regelstrecke und der zugehörigen Schätzwerte (punktiert).

Kapitel 10 Entwurf von Vorsteuerungen

10.1 Einführung

Das Führungsverhalten eines Regelkreises kann durch Einsatz einer so genannten Vorsteuerung stark verbessert werden. Die grundlegende Idee einer modellbasierten Vorsteuerung besteht darin, auf Basis des Streckenmodells den Stellgrößenverlauf so zu berechnen, dass die Regelgröße der vorgegebenen Referenzgröße entspricht. In den folgenden Abschnitten wird der Entwurf von modellbasierten Vorsteuerungen für den Standardregelkreis und für Zustandsregelungen vorgestellt. Dabei erweisen sich so genannte flachheitsbasierte Steuerungen als besonders einfach und leistungsfähig.

10.2 Entwurf für den Standardregelkreis

Im bisher behandelten Standardregelkreis aus Bild 10.1 gilt die Relation

Bild 10.1: Standardregelkreis

$$\bar{y}(s) = T(s)\,\bar{r}(s) + S(s)\,\bar{d}(s) = \frac{R(s)P(s)}{1+R(s)P(s)}\,\bar{r}(s) + \frac{1}{1+R(s)P(s)}\bar{d}(s). \tag{10.1}$$

Führungsübertragungsfunktion T(s) und Störübertragungsfunktion S(s) können offensichtlich nicht unabhängig voneinander gewählt werden, denn es gilt

$$T(s) + S(s) = 1.$$

Erweitert man nun den Standardregelkreis, wie in Bild 10.2 dargestellt, um einen Vors-

Bild 10.2: Regelkreis mit zwei Freiheitsgraden

teuerungszweig mit der Übertragungsfunktion V(s), so gilt

$$\bar{y}(s) = \frac{R(s)P(s) + V(s)P(s)}{1 + R(s)P(s)}\bar{r}(s) + \frac{1}{1 + R(s)P(s)}\bar{d}(s).$$
(10.2)

In Form der Übertragungsfunktion V(s) steht somit ein zusätzlicher Freiheitsgrad zur Verbesserung des Regelkreisverhaltens zur Verfügung. Aus diesem Grund spricht man auch von einem Regelkreis mit zwei Freiheitsgraden. Diese Regelkreisstruktur, die auch in industriellen Anwendungen häufig eingesetzt wird, besitzt einige interessante Eigenschaften: Mittels V(s) kann das Führungsverhalten verbessert werden, ohne die Stabilität des Regelkreises zu beeinflussen. Das bedeutet weiters, dass die Vorsteuerung V(s) und der Regler R(s) weitgehend unabhängig voneinander entworfen werden können.

Ausgangspunkt der Betrachtungen ist die Streckenübertragungsfunktion

$$P(s) = \frac{\mu(s)}{\nu(s)} = \frac{\mu_0 + \mu_1 s + \mu_2 s^2 + \ldots + \mu_m s^m}{\nu_0 + \nu_1 s + \nu_2 s^2 + \ldots + \nu_n s^n} \quad \text{mit} \quad m < n,$$
(10.3)

wobei die Koeffizienten von Zählerpolynom $\mu(s)$ und Nennerpolynoms $\nu(s)$ als reell vorausgesetzt werden. Die Differenz von Nennergrad und Zählergrad, also

$$\delta := n - m \tag{10.4}$$

nennt man auch den relativen Grad des Systems, wobei offensichtlich $0 < \delta \leq n$ gilt. Zur Ermittlung der Vorsteuerung wird nun untersucht, wie - unter Annahme von $u_R = 0$ - das Signal u_V gewählt werden muss, damit die Regelgröße y der vorgegebenen Referenzgröße r entspricht.

10.2.1 Entwurf durch "direkte Inversion" der Regelstrecke

Es wird die in Bild 10.3 dargestellte Anordnung betrachtet, d.h. es gilt

$$\bar{y}(s) = P(s)\,\bar{u}_V(s) = P(s)\,V(s)\,\bar{r}(s).$$
 (10.5)

Offensichtlich stimmen Regel- und Referenzgröße überein, wenn die Bedingung

$$V(s) = P^{-1}(s) = \frac{\nu(s)}{\mu(s)} = \frac{\nu_0 + \nu_1 s + \nu_2 s^2 + \dots + \nu_n s^n}{\mu_0 + \mu_1 s + \mu_2 s^2 + \dots + \mu_m s^m}$$
(10.6)

Bild 10.3: Ermittlung des Stellsignals u_V

erfüllt ist. Daraus folgt unmittelbar

$$\bar{u}_V(s) = V(s)\,\bar{r}(s) = \frac{\nu(s)}{\mu(s)}\,\bar{r}(s) \tag{10.7}$$

bzw.

$$\left(\mu_0 + \mu_1 s + \mu_2 s^2 + \ldots + \mu_m s^m\right) \bar{u}_V(s) \stackrel{!}{=} \left(\nu_0 + \nu_1 s + \nu_2 s^2 + \ldots + \nu_n s^n\right) \bar{r}(s).$$
(10.8)

Im Zeitbereich wird der Zusammenhang zwischen der zu ermittelnden Größe u_V und der vorgegebenen Referenzgröße r also durch die Differentialgleichung

$$\mu_0 u_V + \mu_1 \frac{du_V}{dt} + \dots + \mu_m \frac{d^m u_V}{dt^m} = \nu_0 r + \nu_1 \frac{dr}{dt} + \dots + \nu_n \frac{d^n r}{dt^n}$$
(10.9)

beschrieben. Die zeitlichen Ableitungen von r können aus dem vorgegebenen Verlauf der Referenzgröße ermittelt werden, d.h. die rechte Seite der Differentialgleichung (10.9) kann als

$$w := \nu_0 r + \nu_1 \frac{dr}{dt} + \dots + \nu_n \frac{d^n r}{dt^n} \quad \text{bzw.} \quad \bar{w}(s) = \nu(s)\bar{r}(s)$$
(10.10)

zusammengefasst werden. Damit lautet die Berechnungsvorschrift für u_V im Zeitbereich

$$\mu_0 u_V + \mu_1 \frac{du_V}{dt} + \dots + \mu_m \frac{d^m u_V}{dt^m} = w, \qquad (10.11)$$

bzw. im Bildbereich

$$\bar{u}_V(s) = \frac{1}{\mu_0 + \mu_1 s + \mu_2 s^2 + \ldots + \mu_m s^m} \,\bar{w}(s).$$
(10.12)

Die Struktur des resultierenden Regelkreises ist in Bild 10.4 dargestellt, wobei die geeignete Wahl der hinreichend of differenzierbaren Referenzgröße r hier als "Planung" bezeichnet wird. Man beachte, dass vorausgesetzt werden muss, dass das charakteristische Polynom der Differentialgleichung (10.11), also das Zählerpolynom von P(s) ein Hurwitzpolynom ist. Anderenfalls führt die numerische Ermittlung von u_V zu exponentiell wachsenden numerischen Fehlern. Außerdem kann die Größe u_V sehr große Werte annehmen bzw. über alle Grenzen wachsen, was die Methodik praktisch unbrauchbar macht.

B Gegeben sei die Übertragungsfunktion einer Regelstrecke

$$P(s) = \frac{s+1}{s(s-2)} = \frac{\mu(s)}{\nu(s)}$$

Die Differentialgleichung zur Ermittlung von u_V lautet somit

$$u_V + \frac{du_V}{dt} = -2\frac{dr}{dt} + \frac{d^2r}{dt^2}.$$

Bild 10.4: Mögliche Ermittlung von u_V , wenn $\mu(s)$ ein Hurwitzpolynom ist

10.2.2 Flachheitsbasierter Entwurf

Die Vorgangsweise zum Entwurf einer Vorsteuerung wird nun so modifiziert, dass auch eine Anwendung auf Regelstrecken möglich ist, deren Zählerpolynom kein Hurwitzpolynom ist. Es wird - wieder unter der Annahme $u_R = 0$ - ermittelt, wie denn u_V gewählt werden muss, damit der Verlauf der Regelgröße y zufriedenstellend ist. So soll beispielsweise bei einem Arbeitspunktwechsel die Regelgröße innerhalb einer vorgebbaren "Transitzeit" T_T von einem konstanten Ausgangswert y_A in einen konstanten Endwert y_E übergeführt werden.

Bild 10.5: Einführung der Hilfsgröße z

Dazu wird gemäß Bild 10.5 eine Hilfsgröße z so eingeführt, dass gilt

$$\bar{z}(s) := \frac{1}{\nu(s)} \bar{u}_V(s) = \frac{1}{\mu(s)} \bar{y}(s).$$
 (10.13)

Interpretiert man z als Ausgang der Strecke, so besitzt das zugehörige Eingangs-, Ausgangsverhalten den relativen Grad n. Ein solcher Ausgang wird auch *flacher* Ausgang bezeichnet.

Man kann nun Regelgröße y und Stellsignal u_V im Bild- und Zeitbereich als Funktion der Hilfsgröße z darstellen, es gilt

$$\bar{y}(s) = \left(\mu_0 + \mu_1 s + \mu_2 s^2 + \ldots + \mu_m s^m\right) \bar{z}(s) \quad \text{bzw.} \quad y = \mu_0 z + \mu_1 \frac{dz}{dt} + \ldots + \mu_m \frac{d^m z}{dt^m} \quad (10.14)$$

und

$$\bar{u}_V(s) = \left(\nu_0 + \nu_1 s + \nu_2 s^2 + \ldots + \nu_n s^n\right) \bar{z}(s) \quad \text{bzw.} \quad u_V = \nu_0 z + \nu_1 \frac{dz}{dt} + \ldots + \nu_n \frac{d^n z}{dt^n}.$$
(10.15)

Die Idee der Methodik besteht nun darin, mit Hilfe von (10.14) einen Soll-Verlauf z^* für die Größe z zu konstruieren, der mit den gewünschten Eigenschaften von y konsistent ist. Mittels (10.15) wird dann das zur Erreichung von $z = z^*$ erforderliche Stellsignal ermittelt. Eine zentrale Bedeutung kommt somit der geschickten Konstruktion der Zeitfunktion z^* zu, man spricht in diesem Zusammenhang auch von "Trajektorienplanung".

Trajektorienplanung

Eine Möglichkeit besteht darin, z^* als Polynom

$$z^{*}(t) = \gamma_{0} + \gamma_{1}t + \gamma_{2}t^{2} + \ldots + \gamma_{p}t^{p}$$
(10.16)

mit einem geeigneten Polynomgrad p anzusetzen. Die Polynomkoeffizienten γ_i müssen so bestimmt werden, dass - unter Annahme von $z = z^*$ - die Regelgröße y einen zufriedenstellenden Verlauf besitzt. Bei einem durch y_A , y_E und T_T charakterisierten Arbeitspunktwechsel sind gemäß (10.14) die Polynomkoeffizienten also so zu bestimmen, dass die Bedingungen

$$z^*(0) = \frac{y_A}{\mu_0} =: z_A^*, \qquad z^*(T_T) = \frac{y_E}{\mu_0} =: z_E^*$$
 (10.17)

und - im Sinne eines hinreichend glatten Verlaufes von z^* und y -

$$\frac{d^{i}z^{*}}{dt^{i}}\Big|_{t=0} = \frac{d^{i}z^{*}}{dt^{i}}\Big|_{t=T_{T}} = 0 \quad \text{für} \quad i = 1, \dots \varkappa.$$
(10.18)

erfüllt sind. Die Erfüllung der obigen $(2\varkappa + 1)$ Bedingungen ist prinzipiell nur dann möglich, wenn für den Polynomgrad $p \ge 2\varkappa + 1$ gilt. Setzt man $\varkappa = n$ und wählt p = 2n + 1, so besitzt gemäß (10.14) die Größe y die Eigenschaften

$$y(0) = y_A, \quad y(T_T) = y_E \quad \text{und} \quad \left. \frac{d^i y}{dt^i} \right|_{t=0} = \left. \frac{d^i y}{dt^i} \right|_{t=T_T} = 0 \quad \text{für} \quad i = 1, \dots \delta, \qquad (10.19)$$

wobei δ der relative Grad ist, siehe (10.4). Nimmt man an, dass für $t \geq T_T$ die Regelgröße y den konstanten Wert y_E beibehalten soll, d.h. $z^*(t) = \frac{y_E}{\mu_0}$ für $t \geq T_T$, so weist für die Wahl p = 2n + 1 gemäß (10.15) das Stellsignal u_V an der Stelle $t = T_T$ keine Unstetigkeit auf, da dann alle Ableitungen von z^* bis zur Ordnung n verschwinden.

B Gegeben sei eine Regelstrecke der Ordnung n = 1. Die Ausgangsgröße y der Strecke soll ausgehend von $y(0) = y_A$ innerhalb der vorgebbaren Zeit T_T in den Wert $y(T_T) = y_E$ übergeführt werden. Für z^* wird ein Polynom (10.16) mit dem Polynomgrad p = 2n + 1 = 3 angesetzt, d.h.

$$z^{*}(t) = \gamma_0 + \gamma_1 t + \gamma_2 t^2 + \gamma_3 t^3.$$

Die vier Koeffizienten werden nun so bestimmt, dass gemäß (10.17) und (10.18) die vier Bedingungen

$$z^*(0) = z_A^* = \frac{y_A}{\mu_0}, \quad z^*(T_T) = z_E^* = \frac{y_E}{\mu_0}, \quad \frac{dz^*}{dt}\Big|_{t=0} = 0 \quad \text{und} \quad \frac{dz^*}{dt}\Big|_{t=T_T} = 0$$

erfüllt werden. Wie man leicht überprüfen kann, folgt daraus unmittelbar

$$\gamma_0 = z_A^*, \ \gamma_1 = 0, \ \gamma_2 = \frac{3}{T_T^2} \left(z_E^* - z_A^* \right), \ \gamma_3 = -\frac{2}{T_T^3} \left(z_E^* - z_A^* \right)$$

bzw.

$$z^*(t) = z^*_A + (z^*_E - z^*_A) \left(3\frac{t^2}{T^2_T} - 2\frac{t^3}{T^3_T}\right).$$
(10.20)

Allgemein ergibt sich aus (10.17) und (10.18) für eine Strecke der Ordnung n und eine Polynomordnung p = 2n + 1 eine Solltrajektorie

$$z^*(t) = z^*_A + (z^*_E - z^*_A) \sum_{i=n+1}^{2n+1} \tilde{\gamma}_i \frac{t^i}{T^i_T},$$
(10.21)

die Koeffizienten $\tilde{\gamma}_i$ sind in folgender Tabelle für n = 1 bis n = 5 angegeben. Für n = 1 entspricht $z^*(t)$ dem in (10.20) angegebenen Polynom.

Das Stellsignal u_V , das bewirkt, dass die Größe z ihrem Wunschverlauf z^* entspricht, kann mit Hilfe von (10.15) berechnet werden, es gilt

$$u_V = \nu_0 z^* + \nu_1 \frac{dz^*}{dt} + \dots + \nu_n \frac{d^n z^*}{dt^n}.$$
 (10.23)

Dabei ist natürlich zu darauf achten, dass beim Arbeitspunktwechsel der zur Verfügung stehende Stellbereich gut ausgenützt wird. Dies kann durch entsprechende Wahl der Transitzeit T_T erreicht werden.

Der resultierende Regelkreis ist in Bild 10.6 dargestellt. Die eingezeichnete "Referenzgröße" r

Bild 10.6: Prinzip der flachheitsbasierten Vorsteuerung

ist derjenige Verlauf der Regelgröße y, der sich für $z = z^*$ ergibt, d.h.

$$r(t) = y(t)|_{z=z^*} = \mu_0 z^* + \mu_1 \frac{dz^*}{dt} + \dots + \mu_m \frac{d^m z^*}{dt^m}.$$
 (10.24)

B Gegeben sei die Übertragungsfunktion einer Regelstrecke

$$P(s) = \frac{s-1}{s(s+2)} = \frac{\mu(s)}{\nu(s)},$$

d.h. n = 2. Die Ausgangsgröße soll in der Transitzeit $T_T = 3$ von einem Anfangswert $y_A = 0$ in einen Endwert $y_E = 4$ gebracht werden. Aus diesen Vorgaben ergibt sich mit (10.21) nach kurzer Rechnung die Solltrajektorie

$$z^*(t) = -\frac{40}{27}t^3 + \frac{60}{81}t^4 - \frac{24}{243}t^5.$$

Daraus können nun mit (10.23) und (10.24) das Steuersignal und die Referenzgröße für den Regelkreis berechnet werden:

$$u_V = 2\frac{dz^*}{dt} + \frac{d^2z^*}{dt^2}$$
 und $r = -z^* + \frac{dz^*}{dt}$

Die Reglerübertragungsfunktion

$$R(s) = -4\frac{s+2}{s+8}$$

wurde so ermittelt, dass die Störübertragungsfunktion zwei Pole bei s = -2 besitzt. In Bild 10.7 sind Ergebnisse einer numerischen Simulation des Regelkreises abgebildet. Es ist zu erkennen, dass durch die Vorsteuerung die Regelgröße wie gewünscht in der vorgegebenen Zeit $T_T = 3$ von $y_A = 0$ nach $y_E = 4$ gebracht wird. In dieser Phase leistet der Regler keinen sichtbaren Beitrag u_R zur Stellgröße. Erst beim Einwirken einer Störung d ab $t \ge 4$ ist ein deutlicher Reglereingriff u_R zu erkennen.

10.3 Entwurf für Zustandsregelungen

Analog zu dem oben vorgestellten Verfahren kann auch eine Zustandsregelung um eine modellbasierte Vorsteuerung ergänzt werden. Der Ausgangspunkt der Betrachtungen ist das steuerbare Streckenmodell

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \quad y = \mathbf{c}^T \mathbf{x}.$$
(10.25)

Der relative Grad δ gibt an, wie oft y nach der Zeit abgeleitet werden muss, bis eine explizite Abhängigkeit von u gegeben ist, d.h.

$$\mathbf{c}^T \mathbf{b} = 0, \ \mathbf{c}^T \mathbf{A} \mathbf{b} = 0, \ \dots \ \mathbf{c}^T \mathbf{A}^{\delta - 2} \mathbf{b} = 0 \quad \text{und} \quad \mathbf{c}^T \mathbf{A}^{\delta - 1} \mathbf{b} \neq 0.$$
 (10.26)

Man kann zeigen, dass $0 < \delta \le n$ gilt. Das System (10.25) wird *flach* genannt, wenn es einen so genannten flachen Ausgang

$$z = \boldsymbol{\lambda}^T \mathbf{x} \tag{10.27}$$

gibt, der einen relativen Grad n besitzt, d.h.

$$\boldsymbol{\lambda}^{T}\mathbf{b} = 0, \ \boldsymbol{\lambda}^{T}\mathbf{A}\mathbf{b} = 0, \ \dots \ \boldsymbol{\lambda}^{T}\mathbf{A}^{n-2}\mathbf{b} = 0 \quad \text{und} \quad \boldsymbol{\lambda}^{T}\mathbf{A}^{n-1}\mathbf{b} = \kappa \neq 0,$$
 (10.28)

Bild 10.7: Signalverläufe in einem Regelkreis gemäß Bild 10.6

wobei ohne Einschränkung der Allgemeinheit $\kappa = 1$ gesetzt werden kann. Aus (10.28) folgt, dass der gesuchte Vektor $\boldsymbol{\lambda}^T$ der Bedingung

$$\boldsymbol{\lambda}^{T} \begin{bmatrix} \mathbf{b} & \mathbf{A}\mathbf{b} & \dots & \mathbf{A}^{n-2}\mathbf{b} & \mathbf{A}^{n-1}\mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix},$$

d.h.

$$\boldsymbol{\lambda}^T \mathbf{S}_u = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$
(10.29)

genügen muss, wobei \mathbf{S}_u die zu (10.25) gehörige Steuerbarkeitsmatrix ist. Da das System (10.25) steuerbar ist, gilt

$$\boldsymbol{\lambda}^{T} = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix} \mathbf{S}_{u}^{-1}, \tag{10.30}$$

d.h. λ^T ist die letzte Zeile der inversen Steuerbarkeitsmatrix. Für Systeme der Form (10.25) ist Flachheit somit gleichbedeutend mit Steuerbarkeit.

Für die Ableitungen des gefundenen flachen Ausgangs (10.27) erhält man unter Berücksichtigung von (10.28)

$$z = \boldsymbol{\lambda}^T \mathbf{x}, \ \frac{dz}{dt} = \dot{z} = \boldsymbol{\lambda}^T \mathbf{A} \mathbf{x}, \ \frac{d^2 z}{dt^2} = \ddot{z} = \boldsymbol{\lambda}^T \mathbf{A}^2 \mathbf{x}, \dots, \frac{d^{n-1} z}{dt^{n-1}} = z^{(n-1)} = \boldsymbol{\lambda}^T \mathbf{A}^{n-1} \mathbf{x}$$

d.h.

$$\begin{bmatrix} z \\ \dot{z} \\ \ddot{z} \\ \vdots \\ z^{(n-1)} \end{bmatrix} = \begin{bmatrix} \lambda^T \\ \lambda^T A \\ \lambda^T A^2 \\ \vdots \\ \lambda^T A^{n-1} \end{bmatrix} \mathbf{x} = \mathbf{T} \mathbf{x}.$$
(10.31)

Wie aus Abschnitt 8.2.3 bekannt ist, liegt das transformierte System mit den Zustandsgrößen $z, \dot{z}, \ldots z^{(n-1)}$ in der Regelungsnormalform vor, d.h.

$$\frac{d}{dt} \begin{bmatrix} z \\ \dot{z} \\ \vdots \\ z^{(n-1)} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \vdots & 1 & \ddots & \\ \vdots & & \ddots & 0 \\ 0 & \dots & 1 \\ -\alpha_0 & -\alpha_1 & \dots & -\alpha_{n-1} \end{bmatrix} \begin{bmatrix} z \\ \dot{z} \\ \vdots \\ z^{(n-1)} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} u, \quad (10.32)$$

wobei $\alpha_0, \ldots, \alpha_{n-1}$ die Koeffizienten des charakteristischen Polynoms $\Delta(s)$ der Matrix **A** sind. Eine Ruhelage $\mathbf{x} = \mathbf{x}_R$ der Regelstrecke wird in den transformierten Zustandsgrößen durch $z = \boldsymbol{\lambda}^T \mathbf{x}_R, z^{(i)} = 0$ für i > 0 dargestellt. Das bedeutet, dass der Übergang zwischen den Ruhelagen \mathbf{x}_A und \mathbf{x}_E durch eine polynomiale Solltrajektorie z^* für den flachen Ausgang zbeschrieben werden kann, wobei das Polynom den Bedingungen (10.18) und

$$z^*(0) = z_A^* = \boldsymbol{\lambda}^T \mathbf{x}_A \quad \text{und} \quad z^*(T_T) = z_E^* = \boldsymbol{\lambda}^T \mathbf{x}_E.$$
(10.33)

genügen muss. Analog zu den Betrachtungen in den vorigen Abschnitten wird auch hier die Solltrajektorie (10.21) herangezogen, wobei die Polynomkoeffizienten der in (10.22) angegebenen Tabelle entnommen werden können.

Diejenige Stellgröße $u = u_V$, die zum geplanten Verlauf z^* der Größe z führt, kann aus der letzten Differentialgleichung in (10.32) ermittelt werden, d.h.

$$u_V = \alpha_0 z^* + \alpha_1 \frac{dz^*}{dt} + \ldots + \alpha_{n-1} \frac{d^{n-1}z^*}{dt^{n-1}} + \frac{d^n z^*}{dt^n} \quad \text{bzw.} \quad \bar{u}_v(s) = \Delta(s) \,\bar{z}^*(s). \tag{10.34}$$

Über (10.31) können die zugehörigen Verläufe des Streckenzustands und der Ausgangsgröße y ermittelt werden, es gilt

$$\mathbf{x} = \mathbf{T}^{-1} \begin{bmatrix} z & \dot{z} & \dots & z^{(n-1)} \end{bmatrix}^T$$
(10.35)

und

$$y = \mathbf{c}^T \mathbf{x} = \mathbf{c}^T \mathbf{T}^{-1} \begin{bmatrix} z & \dot{z} & \dots & z^{(n-1)} \end{bmatrix}^T = \tilde{\mathbf{c}}^T \begin{bmatrix} z & \dot{z} & \dots & z^{(n-1)} \end{bmatrix}^T.$$
(10.36)

Man beachte, dass der Vektor $\tilde{\mathbf{c}}^T$ die Struktur

besitzt, wobei aufgrund von (10.4) $c_{n-\delta} \neq 0$ gewährleistet ist. Der resultierende Regelkreis, bestehend aus einem Zustandsregler und einer Vorsteuerung ist in Bild 10.8 abgebildet.Man

Bild 10.8: Zustandsregelung, ergänzt um eine Vorsteuerung

beachte, dass die dargestellte Struktur aus dem in Bild 8.2 dargestellten Regelkreis hervorgeht. Anstelle von u_R und \mathbf{x}_R werden die von der Vorsteuerung generierten Größen (10.34) und (10.35) aufgeschalten. Im Idealfall liefert die Zustandsrückführung keinen Beitrag zur Stellgröße.

B Für die Regelstrecke zweiter Ordnung

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 0 \end{bmatrix} \mathbf{x}$$

wurde ein Zustandsregler $u = -\mathbf{k}^T \mathbf{x} = -\begin{bmatrix} 1\frac{2}{3} & 7\frac{1}{3} \end{bmatrix} \mathbf{x}$ so entworfen, dass die Eigenwerte des geschlossenen Regelkreises bei $s_1 = s_2 = -2$ liegen. Das System befindet sich zunächst in der durch $\mathbf{x}_A = \begin{bmatrix} -2 & 1 \end{bmatrix}^T$, $u_A = 0$ charakterisierten Ruhelage und soll innerhalb der Transitzeit $T_T = 2$ in die Ruhelage $\mathbf{x}_E = \begin{bmatrix} 1 & -0.5 \end{bmatrix}^T$, $u_E = 0$ übergeführt werden. Hierfür wird die Zustandsregelung um eine flachheitsbasierte Vorsteuerung ergänzt.

Gemäß (10.27) und (10.30) gilt für den flachen Ausgang

$$z = \left[\begin{array}{cc} -\frac{1}{3} & \frac{1}{3} \end{array} \right] \mathbf{x},$$

wobei der Sollverlauf z^* unter Berücksichtigung von (10.33), d.h.

$$z_A^* = \boldsymbol{\lambda}^T \mathbf{x}_A = 1$$
 und $z_E^* = \boldsymbol{\lambda}^T \mathbf{x}_E = -0.5$

gemäß (10.21) ermittelt wird, d.h.

$$z^*(t) = z^*_A + (z^*_E - z^*_A) \left(10 \frac{t^3}{T^3_T} - 15 \frac{t^4}{T^4_T} + 6 \frac{t^5}{T^5_T} \right).$$

Nach (10.34) errechnet sich die Stellgröße zu

$$u_V = \frac{d^2 z^*}{dt^2} - 5\frac{dz^*}{dt}$$

und für die zugehörigen Werte des Streckenzustands gilt gemäß (10.35)

$$\mathbf{x} = \mathbf{T}^{-1} \begin{bmatrix} z \\ \dot{z} \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}^{-1} \begin{bmatrix} z \\ \dot{z} \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} z \\ \dot{z} \end{bmatrix}.$$

In Bild 10.9 sind die Verläufe der Zustandsgrößen und der Stellgröße dargestellt. Zum Vergleich sind auch die entsprechenden Verläufe für den Regelkreis ohne Vorsteuerung eingezeichnet.

Bild 10.9: Verläufe von x_1 , x_2 und u in einem Regelkreis *mit* (blau) und *ohne* Vorsteuerung.

Man beachte auch, dass der Zusammenhang zwischen den Ruhelagen \mathbf{x}_A , u_A und \mathbf{x}_E , u_E und zugehörigen konstanten Werten y_A und y_E der Regelgröße aufgrund der Beobachtbarkeit der Regelstrecke eindeutig ist. Es gilt nämlich

$$y_A = \mathbf{c}^T \mathbf{x}_A$$
 und $y_E = \mathbf{c}^T \mathbf{x}_E$

sowie

$$\frac{dy_A}{dt} = 0 = \mathbf{c}^T \frac{d\mathbf{x}_A}{dt} = \mathbf{c}^T \mathbf{A} \mathbf{x}_A + \mathbf{c}^T \mathbf{b} u_A \quad \text{und} \quad 0 = \mathbf{c}^T \mathbf{A} \mathbf{x}_E + \mathbf{c}^T \mathbf{b} u_E,$$

d.h.

$$\begin{bmatrix} y_A \\ 0 \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{c}^T \\ \mathbf{c}^T \mathbf{A} \end{bmatrix}}_{=\mathbf{B}_y} \mathbf{x}_A + \begin{bmatrix} 0 \\ \mathbf{c}^T \mathbf{b} \end{bmatrix} u_A \quad \text{und} \quad \begin{bmatrix} y_E \\ 0 \end{bmatrix} = \mathbf{B}_y \mathbf{x}_E + \begin{bmatrix} 0 \\ \mathbf{c}^T \mathbf{b} \end{bmatrix} u_E.$$

119

Literaturverzeichnis

- [1] CHEN C.T.: Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods, Saunders College Publishing, 1993
- [2] CHEN C.T.: Linear System Theory and Design, Saunders College Publishing, 1984
- [3] HORN M., DOURDOUMAS N.: Regelungstechnik, Pearson Verlag, 2004
- [4] KAILATH T.: Linear Systems, Prentice Hall, 1980
- [5] LANDGRAF C., SCHNEIDER G.: Elemente der Regelungstechnik, Springer Verlag, 1970
- [6] LUNZE J.: Regelungstechnik 1, 3. Auflage, Springer Verlag, 2001
- [7] REINSCHKE K.: Lineare Regelungs-. und Steuerungstheorie, Springer Verlag, 2007
- [8] ZEITZ M.: Differenzielle Flachheit: Eine nützliche Methodik auch für lineare SISO-Systeme, at - Automatisierungstechnik 58, Heft 1, 2010

