


Preface

For the 19th time the Steirische Seminar über Regelungstechnik und Prozessautomatisierung (Styr-
ian Seminar on Control Systems Engineering and Process Automation) has taken place at Schloss
Retzhof, an education center run by the Austrian State of Styria. This conference is organized
every two years by the Institute of Automation and Control of Graz University of Technology, with
the goal of discussing current works and developments in the field of control systems and process
automation.

The present conference proceedings are a compilation of submissions received and presented at
Schloss Retzhof. They are divided in two parts: Part I is devoted to full papers, while Part II
contains abstracts and slides of the presentations. The organizers would like to thank the authors
for their diligence in preparing their contributions.
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Effects of the nonlinear Arc of a 20-kV-net single-line cable fault          
on the Earth-Fault-Detection and -Control 

 
Gernot Druml   Linz Austria g.druml@ieee.org 

Abstract  
The results of field tests have shown, that the behaviour of the restriking earthfault in a cable is completely different in 
isolated and well-tuned compensated networks. In this paper, the differences will be considered in detail and the impact 
on the earthfault detection and the control of the Petersen-Coil will be explained.  
 
Due to the different behaviour, there are new possibilities to reduce the current via the fault location.  
 
Actually the control of the Petersen-Coil is a preventive action during the healthy network operation. On the other side 
the control of the Petersen-Coil is currently blocked during the earth-fault. Therefore a change of the network-size during 
the earthfault will increase the current via the fault location. In this paper the new method “faulty phase earthing“ will be 
presented,which finally allows the correct tuning of the Petersen-Coil even under earth-fault conditions.  
 
In addition, the earth fault detection will be influenced by this new method. These influences and the new demands on 
the earth fault detection will be presented in detail. 

1 Introduction 
In many European countries the "resonant grounding" is 
one of the most important options in electrical network 
design, in order to obtain the optimal power supply quality. 
The main advantages of an earthfault-compensated 
network are: 
 

 Self-healing of the system without any intervention of 
protection systems  

 Continuing the network operation during a sustained 
single line earth-fault 

 Improved power quality and reliability for the 
customer 

 Reduction of the current via the fault location to   2% 
- 3% of the whole capacitive current 
 

The first main advantage of this neutral-point-treatment is 
the fact, that in most cases the system is self-healing, as the 
arc distinguishes without any intervention of the protection 
system. The second main advantage is the possibility of 
continuing the network operation during a sustained earth 
fault. As a consequence this reduces the number of 
interruptions of the customers power supply. 
 
With the increased use of cables the advantages of the 
Petersen-Coils are called into question, as the fault is 
always restriking until it becomes a line-to-line-to-ground- 
fault (LLG-fault) or a cross-country fault. 
 

2 Physic of the earthfault 
To explain the transient behaviour of a single-line earth 
fault in more detail, the scheme of a substation (Fig. 1) with 
three feeders (A, B and C) and an earth fault in line 1 of 
feeder A will be used [1]. 
 
In Fig. 2 the behaviour of the earthfault is simplified using 
phasors. The first picture shows the healthy state of the 
network. The second picture shows, that in case of an 
earthfault there will be an unsymmetrical system. Phase 1 
is zero. 

 
Fig. 1  Discharge of the faulty line via earth  

 
 

Fig. 2  Earthfault – simplified with symmetrical components  

In solid and low-impedance grounded networks this 
distorted voltage will be seen until the fault is switched of. 
In resonance grounded and isolated networks the two 
healthy feeders will be charged, which is shown in the third 
picture. In reality this description is simplified too much. 
 
The transient parts of an earthfault cannot be described 
exact using "symmetrical components". For the mathe-
matical description either the αβ-components introduced 
by Edith Clarke [11] or the space-vector description 
introduced by K.P. Kovács [10] should be used. The 
second method is widespread, in the reduced form, for the 
description of frequency converters for motor drives. 
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Reduced, because in these applications there is no zero-
sequence in use. A detailed explanation of the space vector 
theory applied to power systems can be found in [4][5][6] 
With the beginning of the earth-fault two different 
processes can be superposed [1]. The following two 
processes are starting at the same time, but with different 
duration:   
 

 discharge of the faulty line over the earth  
 charging of the two healthy lines over the earth  

 

The two processes end in the stationary state of the earth 
fault. 

2.1 Discharge of the faulty line via earth 
The lines can be considered as a distributed lattice network, 
consisting of a distributed complex serial impedance and a 
distributed ' ' 'Lxx LxxZ R j L    line-to-ground capacitance

'LxxC .  The highest probability for the first ignition is near 
the maximum of the line-to-ground voltage u1G. At this 
time the line has about the maximum charge. The discharge 
of the lattice network of line 1 will start at the fault location 
and it will spread in both directions to the ends of line 1. A 
reflection of the waves occurs at the end of the line, 
respectively at every change of the characteristic 
impedance cZ of the line. These reflections can be detected 
in form of oscillations at a high frequency in the zero-
sequence-current and in the zero-sequence-voltage. The 
oscillation frequency essentially depends on the serial 
impedance and the line-to-ground capacity, which are, in a 
first approximation, inversely proportional to the length of 
the line. Therefore, the frequency is higher for small 
networks and it is lower for large networks. 
According to the time-domain equations (1) and (2) of a 
single-conductor line [5] 
   

( , ) ( , )' ( , ) 'u x t i x t
R i x t L

x t

 
  

   
(1) 

( , ) ( , )' ( , ) 'i x t u x t
G u x t C

x t

 
  

   
(2) 

 
The velocity for a lossless line can be estimated as 
 

1 1
' ' r r r

c c

L C


   
   

 
(3) 

 
With εr  = 1 for overhead lines and εr  = 2.3 … 3.5 for cables 
[9]. For a more accurate modelling of a line, the frequency 
dependency of the line-parameters must be taken into 
account the characteristic impedance of the lossless line 
(surge impedance) is 

'
'c

L
Z

C


 
(4) 

with a value of about 400 Ohm for overhead lines and 
about 40 Ohm for cables. This surge impedance limits the 
discharge current of the line. 

 
 
Fig. 3  Discharge current of a loaded cable (11.5 kV * sqrt(2), 20 

km, NA2XS2Y 150 mm2 ) 

The simulation with SimPowerSystem using a model with 
distributed parameters confirms, that the maximum 
discharge current in a standard 20 kV cable is limited to 
about 400 A [1], as depicted in Fig. 3 

2.2 Charge of the two healthy lines via earth  
As a result of the discharge of the faulty line, the triangle 
of the line-to-ground voltages is destroyed. As the supply-
transformer is still delivering a symmetrical three- phase-
system, the two healthy lines will be charged to the line-to-
line voltage in isolated and compensated networks. 

2.3 Stationary state of the earth fault 
In an isolated network the whole capacitive current of all 
feeders flows via the fault location. 
 For compensated networks the situation is different. In this 
case, the current through the Petersen-Coil superposes and 
reduces the capacitive current over the fault location. In a 
well-tuned network the capacitive current over the fault 
location is completely compensated. 
Using a Petersen-Coil, the fundamental current over the 
fault location can be reduced to the small wattmetric part, 
which is usually in the range of 2 % to 3 % of the whole 
capacitive line-to-ground current of the network. During 
the transient state of the earthfault ignition respectively 
during the first ms, the Petersen-Coil has no or low 
compensation effect [1]. But after few periods the 
capacitive current via the fault location is compensated 
more or less completely. In a well-tuned network only the 
wattmetric part flows over the fault location. 
 

3 Restriking earthfault in a   
cable-section  

Fig. 4 shows a line-to-ground-fault (LG-fault) in a cable. 
Due to the fault, an air-channel is developing with higher 
pressure. The isolation level of the air gap is smaller than 
the one of the dielectric. In overhead lines (OHL) the air is 
self-healing after the arc has extinguished [2][3]. The self-
healing of the OHL-network is supported by the Petersen-
Coil.  
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In cables the isolation-level of the air gap is too small, so 
that there will be always a re-ignition of the arc [1]. 
 

 
 
Fig. 4 LG-fault in a cable section. 

 
Fig. 5 Voltage uL1 measured at the bus-bar 

Fig. 5 shows the behaviour of a restriking fault in a cable-
section: During the whole earth fault, the voltage uL1 is zero 
only for very short times. The low current arc extinguishes 
within few milliseconds at the zero-crossing of the current. 
As the investigated network is a compensated network, the 
phase voltage uL1 increases slowly. The increase of the 
voltage in a cable network goes up to the restriking voltage, 
which is in the range between 2 kV and 6 kV in a 20-kV-
network. This restriking voltage depends on different para-
meters and it is not constant, neither during an earth fault. 
 
Fig. 3  Discharge current of a loaded cable (11.5 kV * sqrt(2), 20 

km, NA2XS2Y 150 mm2 ) 

 shows the behaviour of the fault current via the fault 
location in case of a solid earthfault. In this simulation it 
was assumed, that there is no restriking voltage.  
Real measurements have confirmed, that in a well-tuned 
compensated network the following items are valid: 
 The arc in a cable-section with a restriking voltage 

will distinguish after the first zero-crossing of the 
current via the fault location.  

 The length of the pulse depends on the network 
length. The burning time of the arc is reduced from 
continuous burning to few ms with a replication of 
some periods 

 The burning time of the arc in the real test-network 
was, due to the well-tuned Petersen-Coil, reduced 
from ≥10 ms to 1.4 ms 

 The amplitude of the discharge-current via the 
fault location is limited by the surge impedance of 
the network (Fig. 7) and is more or less constant 
during the pulse. 

 The time for the next restrike mainly depends on: 
o the detuning of the network  
o the damping of the network 
o restriking voltage of the cable-air-gap 
o pressure, temperature and consistency of the gas 

in the cable-air-gap 
 Due to the limited amplitude of the discharge current, 

due to the reduction of the burning time and due to the 
increase of the restriking time, the converted energy 
at the fault location is reduced to some 100 W. 
Therefore also the probability of the extension of the 
LG-fault to an LLG-fault at the fault location is 
reduced dramatically. 

 
 
Fig. 8 shows the behaviour of the restriking for the case of 
an ideal tuned network. The time in-between the restrikes 
is increased.  

 
Fig. 6 Restriking fault in a cable section of a well-tuned 

compensated network 

 
Fig. 7 Zoomed window of Fig. 6 

0 50 100 150 200 250 300 350 400 450
-150

-100

-50

0

50

100

150

A
1_

U
L1

 / 
%

 

t / ms

3900 3920 3940 3960 3980 4000 4020
-150

-100

-50

0

50

100

150

U
0 / 

%

3900 3920 3940 3960 3980 4000 4020
-10

-5

0

5

10

U
L1

 / 
%

3900 3920 3940 3960 3980 4000 4020
-50

0

50

100

150

200

I F / 
A

 18: K,V,L1:      t / ms 

3864 3866 3868 3870 3872 3874 3876
-150

-100

-50

0

50

100

150

U
0 / 

%

3864 3866 3868 3870 3872 3874 3876
-6

-4

-2

0

2

4

U
L1

 / 
%

3864 3866 3868 3870 3872 3874 3876
-50

0

50

100

150

I F / 
A

 18: K,V,L1:      t / ms 

4



 
Fig. 8 Restriking fault in a cable section of an ideal tuned 

compensated network 

Up to now the classification for the network and the 
handling auf SL-faults is: 

- Networks with OHL ( cable / OHL < 10% ) 
- Mixed networks (10% < cable / OHL < 90% ) 
- Cable-Network (cable / OHL > 90% ) 

 
In the future, we should classify according to the point, 
where the fault occurs: 

- Earth-fault in the cable section => restriking 
- Earth-fault in the OHL section => quasi-stationary 

 
In case of restriking earthfaults, it is possible to improve 
the function of the Petersen-Coil with the faulty-phase-
earthing (FPE). 

4 QU-Algorithm for directional 
transient earthfault detection 

The following considerations are based on the transient 
definition of the zero-sequence-system according to the 
space-vector-theory. 
 
For example, for the healthy feeder B or C, as shown in  
Fig. 9, of our sample-network the charging can be described 
with equation (5) 
 

 
Fig. 9 Charge of one healthy feeder 

 
 

0
0 0 0

1
( )( ) ( )

eq

t

St
u u t

C
t i d     (5) 

0 0 0( )
( )( )
eq

Sq
u u t

C

t
t     (6) 

 
Starting the integration at a point where u0(t0) = 0 results 
in: 

0

( )( )
eq

Sq
u

C

t
t    (7) 

Drawing a diagram of this relation, with q0 on the ordinate 
and the zero-sequence voltage u0 on the abscissa results in 
a straight line with the gradient Ceq, which is the equivalent 
zero-sequence capacitance of the feeder. Subsequently, 
this diagram shown in Fig. 10 will be referred to as qu-
diagram. 

 
Fig. 10 qu-diagram of the three feeders in case of a low-ohmic 

fault in feeder A 

In the case of a faulty feeder this relation is no more valid. 
The sum of the charging currents of all healthy feeders 
flows out from the faulty feeder, it starts with a negative 
gradient and in compensated networks it is not a straight 
line. The last statement can be used as additional 
information for the earthfault detection. 
 
Fig. 11 and Fig. 12 shows the behaviour for a high-ohmic 
earthfault. 
 

 
Fig. 11 i0 and u0 of the three feeders in case of a high-ohmic 

earthfault 
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Fig. 12 qu-diagram of the three feeders in case of a high-ohmic 

fault in feeder A 

From Fig. 12, we see, that the faulty feeder A starts with a 
negative gradient and that the rotation of the ellipse is 
positive in the mathematical sense. 
 
The qu-algorithm can be used also for restriking 
earthfaults. 

 

 
Fig. 13 i0 and u0 of the three feeders; restriking fault 

 

 
Fig. 14 qu-diagram of the three feeders in case of a restriking 

fault in feeder A 

From Fig. 14 we see that the network is healthy between the 
arcing earthfaults. In this healthy situation the zero-
sequence voltage is decaying until the voltage in line A 
restrikes. A more detailed evaluation of restriking 
earthfaults and a presentation of the influence to other 
earthfault detection methods can be found in [12][13].  
 
With the qu-algorithm a classification of the earth-fault can 
be done (Fig. 15). This classification is a great improvement 
during the real localisation of the earthfault in mixed 

networks. This classification enables to reduce the time to 
find and to remove the earth-fault. 
 

 
a)Low-ohmic 
=> Substation  
      or pole 

b) high-ohmic 
=> OHL section 

c) restriking 
=> cable-section 

 
Fig. 15 Classification of the earthfault using the qu-algorithm 

5 Faulty-Phase-Earthing (FPE) 
Fig. 16 shows the situation in case of a single LG-fault. The 
not compensated current flows via the fault location. 
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Fig. 16 Faulty-Phase-Earthing (FPE) stand by 
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Fig. 17 Faulty-Phase-Earthing (FPE) activated 

In Fig. 17 the FPE is activated and the fault current is now 
flowing via the grounded phase in the substation. Due to 
the cable, the restriking voltage at the fault location is in 
the range of 1… 6 kV. This restriking voltage is now the 
allowed voltage drop from the substation to the fault-
location, as a result of the load current. Due to this high 
restriking voltage of the cable, the arc at the fault location 
will not re-ignite.  High restriking voltage can be find in all 
faults with an air-gap with constant gap-length like in cable 
joints, cable sealing end and so on. 
 
The resulting advantages of the FPE are:  
 

 During the active FPE, the earthfault-current is 
moved from the fault-location to the well-grounded 
substation. At the point of the damaged cable no 
current flows to the earth and therefore no power 
conversion occurs at the fault location 
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 As there is no current via the fault location, also the 
touch and step-voltage is reduced 

 As there is no current via the fault location, also the 
often discussed problems with harmonic currents in 
the residual current are eliminated. 

 The positive-sequence-system is not influenced by 
the earthfault, so that the customers on the 
LV-network do not see the isolation problem in the 
MV-system. 

 In addition, there is no more a restriking earthfault 
with corresponding voltage spikes on the two healthy 
phases. 

 Relays for the correct and reliable recognition of 
restriking earthfaults already exist. 

 As already mentioned above: during the active FPE 
the earthfault-current is moved from the fault-
location to the well-grounded substation. Therefore it 
is now possible, to measure the current via the fault 
location in the substation and to make a correct 
tuning operation with the Petersen-Coil, even 
during the earthfault. 

 Due to the control of the Petersen-Coil during the 
earthfault, it is now possible to react on changes in the 
network size and to move the Petersen-Coil to the 
correct tuning position. In all actual controllers on the 
market, the control of the Petersen-Coil is blocked 
during the earthfault. 

 For the localisation of the fault after switching 
operations the FPE must be reopened to check if the 
earthfault is removed. In case of a restrike, the 
earthfault still exists in the compensated network and 
the FPE will be closed immediately. 

 The used vacuum-switch is suitable for short-circuit-
currents, so that also cross-country-faults are under 
control. 

 The correct detection of the faulty phase under all 
possible earthfault scenarios is a challenge, but 
possible with the new E-FPE controller  

 A Petersen-Coil, well-tuned to the resonance-point, 
supports the functionality of the FPE. The restriking 
voltage is increased, due to the longer available time 
to cool down the plasma after the last flashover. 

Fig. 18 shows for example a combination of a Petersen-Coil 
with a ZigZag transformer and an integrated Faulty-Phase-
Earthing. The real implementation of this combination is 
depicted in Fig. 19. 
 
The advantage of the combination FPE and Petersen-Coil 
is, that the FPE will be activated by the new relays, when 
earthfaults occur in the cable-section.  If the earthfault is in 
the range of the OHL all the well-known advantages of the 
Petersen-Coil remain available. 
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Fig. 18 Petersen-Coil combination with ZigZag-transformer and 
integrated Faulty-Phase-Earthing (FPE) 

 
 
Fig. 19 Combination of Petersen-Coil with ZN-Transformer and 

Faulty-Phase-Earthing 

6 Summary 
Due to the new relays and the new classification of 
earthfaults: 

- Earth-fault in the cable section => restriking 
- Earth-fault in the OHL section => quasi-stationary 

a different handling of the fault situation can be initiated.  
 

If the fault is in the range of the OHL, the well-known 
advantages of the Petersen-Coil can be used.  
 

If the fault occurs in the cable-section, the fault can be 
moved from the faulty cable-section to the substation by 
using the Faulty-Phase-Earthing (FPE) device. Due to the 
nonlinearity and the high restriking voltage of the cable-
fault, there will be no restriking and therefore no fault-
current via the original fault-location. 
 

The FPE ideally complements the advantages of the 
Petersen-Coil in OHL lines in cases of earthfaults in cable 
sections.  
 

In addition, using the FPE a tuning of the Petersen-Coil 
also during the earthfault is possible. 
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Optimization-based formulations of absorbing boundary conditions in

discrete-time wave propagation problems

Alexander Schirrera Stefan Jakubeka

This contribution discusses two optimization-based methods to generate prac-
tical and efficient absorbing boundaries for discrete-time wave propagation prob-
lems. Absorbing boundary formulations are desirable when problems given on
large or infinite domains should only be studied locally at confined regions of
interest, such as the near-field solution in acoustic problems or local interaction
effects near contact points in catenaries or cable dynamics. We consider time-
discrete approximations of the solution represented by explicit time-marching
schemes.

One proposed method generates absorbing boundary conditions by direct op-
timization of the coefficients of the boundary stencil in a finite-difference dis-
cretization, such that the reflection coefficient is optimized [6]. Stability criteria
are considered to obtain optimal and stable boundary conditions. The second
proposed method shown is inspired by the “perfectly matched layer” (PML).
The PML’s absorption properties are emulated by a suitable optimal boundary
control law [5]. High absorption performance even on badly conditioned dis-
cretization grids is achieved with high computational efficiency. Additionally, it
allows the controlled modification of impedance in the boundary region, which is
not realizable with other concepts such as traditional absorbing boundary con-
ditions.

The proposed methods are widely applicable for linear system dynamics hav-
ing wave propagation and lead to simple and computationally efficient model
structures with the desired absorbing properties. These features are crucial in
problems with real-time requirements, e.g. when creating design models of online
model predictive control. One current industrial application for these models are
real-time control tasks related to railway pantograph/catenary interaction.

1 Introduction

Many engineering problems show low-damped distributed-parameter dynamics with wave
propagation effects (“wave-like problems”), such as pressure waves in fluids or oscillations
in tensioned strings or railway catenary systems. These problems may be posed on very
large (essentially unbounded) domains in reality and need to be solved, however, on lim-
ited discretization domains of interest. Truncating the computational domain and installing
trivial (e.g., clamped) boundary conditions is problematic in combination with low damping

aInstitute of Mechanics and Mechatronics, Workgroup of Control and Process Automation, Technis-
che Universität Wien, Getreidemarkt 9, 1060 Vienna, E-Mail: alexander.schirrer@tuwien.ac.at,
stefan.jakubek@tuwien.ac.at
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and wave propagation: the artificial boundary conditions generate spurious reflections of
waves back into the domain of interest – hence, the numerical solution becomes corrupted.
Introducing “absorbing” boundary conditions or suitable dissipative layers reduces or elim-
inates these spurious reflections, however they may not be easily found or computed for
complicated PDEs. A historic overview on developments in absorbing boundary conditions
and the method of “perfectly matched layers” (PMLs) is given in [2]. Absorbing boundary
conditions for various continuous as well as discretized forms of wave equations have been
derived analytically, e.g. [3, 4]. A PML formulation for an Euler-Bernoulli bending beam
with elastic support has been derived for a finite-element discretization in [1]. These results,
however, are highly specific to the considered problem and may be computationally expen-
sive. In this contribution, two optimization-based methods to construct absorbing boundary
conditions [6] or controlled boundary layers [5] are presented which are generic in the sense
that they essentially only require knowing the underlying so-called dispersion relation.

As an underlying motivation leading to the development of these methods we consider the
dynamics of railway catenaries (schematically depicted in Fig. 1 (left)).

x

carrier

contact wire

dropper

mast (carrier support)

v
pantograph

current collector
z=x +v t0

moving
catenary

absorbing boundaries

v

fixed
pantograph

Figure 1: Left: Schematic setup of a railway catenary (1 span shown); Right: catenary model
in train-fixed coordinates where absorbing boundaries are needed

The dominant dynamics therein shows wave propagation along the carrier and contact wire,
low damping, and physically correct partial wave reflections at the attachment points of
the droppers (which is formulated as a one-sided elastic constraint and point masses at the
attachment points). In time-critical applications, such as real-time model-based control of
the pantograph or real-time catenary emulation in a pantograph hardware-in-the-loop test
rig, the catenary model size needs to be kept small. One promising formulation is based on
moving coordinates (i.e., pantograph-fixed coordinates) (z, t) instead of (x, t) with z = x+vt
for constant train velocity v. Then, only a short catenary segment around the pantograph
needs to be discretized, but absorbing boundary conditions need to be implemented (see
Fig. 1 (right)).

This paper is organized as follows: Section 2 outlines the significance of the dispersion
relation in linear wave-like partial differential equations and summarizes the Finite Difference
(FD) method. The optimization based methods to obtain absorbing boundary conditions
by direct stencil optimization (summarized from [6]) and the PML-inspired approach of a
controlled boundary layer (summarized from [5]) are given in Sec. 3. Then, typical results
on the Euler-Bernoulli bending beam equation under axial load are shown in Sec. 4. A
discussion concludes the paper in Sec. 5.
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2 Fundamentals

2.1 Basic example: linear one-dimensional wave equation

When considering the second-order linear one-dimensional wave equation

∂2w

∂t2
− c2∂

2w

∂x2
= 0 (1)

with the solution w(x, t) in space x ∈ R and time t ∈ R+ ∪ {0}, note that the differential
operator can be factorized:

∂2w

∂t2
− c2∂

2w

∂x2
= 0→

(
∂

∂t
− c ∂

∂x

) (
∂

∂t
+ c

∂

∂x

)
w = 0 (2)

By inspection, two associated transport equations can be identified as suitable one-sided
boundary conditions for the restricted spatial domain x ∈ [0, L]:

∂w

∂t
(0, t) = c

∂w

∂x
(0, t),

∂w

∂t
(L, t) = −c∂w

∂x
(L, t) (3)

for which the corresponding outgoing solution components of the wave equation are a solu-
tion.

2.2 Harmonic modes and the dispersion relation

For linear constant-coefficient PDEs, fundamental solutions can be formulated by a complex
exponential form. Here, the term “harmonic wave solution” will be used, referring to purely
oscillatory waves of the form

w(x, t) = exp (iωxx) exp (iωtt) , (4)

where ωx, ωt ∈ R. Inserting (4) into the original wave equation (1), the temporal frequency ωt

and the spatial frequency (wave number) ωx have to fulfill the following dispersion relation:

ω2
t − c2ω2

x = 0→ ωt = ±cωx (5)

This relationship is illustrated in Fig. 2.

As a generalizing idea, it turns out to be beneficial to use a PDE’s dispersion relation,
which can be retrieved with little effort, when devising boundary conditions with absorbing
properties.
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t

x1

c

Figure 2: Dispersion relation of the linear scalar wave equation

2.3 Finite-Difference approximation

To numerically solve PDEs, finite-dimensional approximations (discretizations) are formu-
lated, for example via the Finite Difference (FD) or the Finite Element (FE) method. Here,
we will demonstrate the proposed methods applied to FD discretizations.

To apply the FD approximation to the wave equation (1), the approximated solution is
considered point-wise on an (equidistant) grid in space and time:

w(k∆x, n∆t) = wn
k

where n, k ∈ N ∪ {0}, 0 ≤ k∆x ≤ L, n ≥ 0 and ∆x and ∆t are the spatial and temporal
step sizes, respectively.

By substituting the PDE’s partial derivatives with approximations by central difference
quotients, for example

∂2w

∂t2
(xk, tn) ≈ wn−1

k − 2wn
k + wn+1

k

∆t2
,

a set of time- and space-discrete evolution equations are obtained:

wn+1
k = 2wn

k − wn−1
k + c2 ∆t2

∆x2

(
wn

k−1 − 2wn
k + wn

k+1

)

Similar to the PDE’s dispersion relation, an analogue relation can be obtained for the dis-
cretized problem by inserting the discrete harmonic wave solution

wn
k = exp (ikωx∆x) exp (inωt∆t)

into the FD scheme, yielding the relation between the normalized grid frequencies ωt∆t and
ωx∆x.
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2.4 Euler-Bernoulli bending beam equation under axial load

The dynamic vertical displacement of railway catenaries can be modeled well by the Euler-
Bernoulli bending beam (EBB) equations under axial load for both, carrier cable and contact
wire, coupled via stiff or elastic droppers. The underlying EBB equation reads:

ρAẅ + βẇ = −EIw′′′′ + Tw′′ + f (6)

where w = w(x, t) is the vertical wire displacement at time t ≥ 0, t ∈ R and longitudinal
coordinate x ∈ [0, L] ⊂ R, f = f(x, t) is the vertical force density field including gravity
forces, dropper coupling forces, and pantograph contact forces. The partial derivatives are
denoted ˙(·) = ∂

∂t
and (·)′ = ∂

∂x
. The constant parameters ρA, β, EI, and T are the specific

mass per unit length, the viscous damping coefficient, the bending stiffness and the axial
tensile force, respectively.

Approximation via finite differences is considered here. With an equidistant grid in time and
space, the displacement solution field is approximated at the grid points wn

k ≈ w(xk, tn) with
xk = k∆x and tn = n∆t. Utilizing central differences to approximate the partial derivatives
leads to an explicit evolution scheme:

wn+1
k = 0µ2w

n
k−2 + 0µ1w

n
k−1 + 0µ0w

n
k + −1µ0w

n−1
k + νfn

k (7)

As this scheme only defines the behavior of the domain interior, formulas for wn
0 , w

n
1 (as well

as the corresponding values at the right boundary) need to be specified to realize appropriate
boundary conditions.

Transforming the beam PDE (6) to the moving coordinates (z, t) with z = x + vt, mixed
derivatives up to second order appear, which results for the undamped case β = 0 in

ρAẅ = −EIw′′′′ + (T − ρAv2)w′′ + 2vρAẇ′ + f (8)

where (·)′ = ∂
∂z

. Using central finite differences to approximate the mixed derivatives, the
evolution scheme is no longer explicit, but an implicit scheme is obtained:

2∑

j=−2

1µjw
n+1
k+j =

0∑

l=−1

2∑

j=−2

lµjw
n+l
k−j + νfn

k (9)

Here, the resulting FD scheme’s stencil coefficients are denoted µ, µ, ν, ν.

3 Methodology

3.1 Direct Optimization of Absorbing Boundary Stencil Coefficients

To achieve absorbing boundary behavior in an FD-discretized system, suitable boundary
stencils (see Fig. 3) need to be found. In the first formulation, the stencil coefficients are
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directly considered decision variables of an optimization problem, and the objective is to
maximize boundary absorption accuracy. The main steps of this optimization-based ABC
construction are:

Step 1: Formulate finite-difference approximation of the problem interior domain as out-
lined in Sec. 2.3.

Step 2: Precompute dispersion relation of the discretized problem, see Sec. 2.3.

Step 3: Choose ABC stencil shape (i.e., define the parameters Nt,ABC, Nx,ABC as defined
in Fig. 3).

TIME

k
0 1 NABC

x − 1

n − NABC
t + 1

n − 1

n

n + 1 0µ
T
0

0µ
T
1

0µ
T
NABC

t −1

ABC stencil
interior
stencil

SPACE

un+1
0 un+1

1

a1
0

a0
2a0

−1

Figure 3: Generic form of an explicit boundary condition stencil for k = 0 (left) and an
explicit interior stencil (right), taken from [6].

.

The stencil coefficients are collected into the decision variable vector p.

Step 4: Select and configure optimization objectives. Suitable objective function(s) and
constraints are formulated:

Accuracy objective is formulated by means of the reflection coefficient, which de-
scribes the ratio of outgoing and incoming harmonic wave amplitudes

Stability objective/condition evaluates the largest magnitude of the eigenvalues of an
FD test system with ABCs in place. Eigenvalues outside the unit circle indicate
instability and are not admissible or need to be penalized in a multi-objective
optimization formulation.
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Step 5: Formulate and solve optimization problem. The optimization problem can now
be formulated either as single-objective problem,

min
p

Jaccuracy(p)

subject to ρ(A) < 1,

or as multi-objective problem,

min
p

J(p),J : RNp → R2

J =

[
Jaccuracy(p)
Jstability(p)

]

to study stability margin/accuracy trade-off sensitivity. Thereby,

Jaccuracy(p) =

NABC−1∑

k=0

∫ π
∆x

0

γ(ωx) |Rk(ωx,p)| dωx

is the accuracy error cost where Rk denotes the reflection coefficient and γ is a non-
negative frequency weighting function, and

Jstability(p) = ρ(A) = max
i
λi(A) < 1

is the stability condition formulated as second cost function.

The reflection error can be computed using the dispersion relation and the boundary stencil
coefficients and turns out to be an effective cost formulation (see [6]).

The single-objective optimization problem can be efficiently solved by standard numeric
optimization tools as the number of decision variables is reasonably low. In the multi-
objective case, dedicated multi-objective optimization codes (such as multi-objective genetic
algorithms) have been applied successfully.

3.2 Perfectly-Matched-Layer-based Boundary Layer via Control

The second proposed method is inspired by the behavior of the so-called “perfectly matched
layer” (PML): the computation domain is being surrounded by absorbing or dissipative layers
at the boundaries, see Fig. 4.

The damping properties of these additional layers are selected to produce optimal absorption
properties. State-of-the-art PML formulations rely on several involved extensions to the
problem formulation (complex coordinate stretching as sketched in Fig. 5, and auxiliary
field variables). This increases mathematical and computational complexity significantly,
especially for higher-order PDEs such as the Euler-Bernoulli beam equation.

The present approach takes a different path: the boundary layer is being controlled by a
suitable optimal control law that minimizes absorption error with respect to a reference
solution.
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Figure 4: The actual computational domain contains the domain of interest and additional
boundary layers

Figure 5: Choosing a continuous damping profile (top) leads to a smooth attenuation of
modes across the boundary layer (bottom).

3.2.1 Quasi-PML as Predictive Control Problem: Concept

Consider the discretized dynamics of the system (interior domain and boundary layer(s)) as
depicted in Fig. 6 given in a state space representation

xn+1 = Axn + Bun (10)

wn = Cxn, (11)

define the finite-horizon quadratic cost function

J = (Y ref − Y )T (Y ref − Y ) + UTRU (12)

with

Y = Fxn + ΦU (13)
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Figure 6: Schematics of controlled boundary layer system

Y =




wn+1

wn+2

...
wn+Np


 ,U =




un

un+1

...
un+Np−1


 ,F =




CA
CA2

...
CANp


 , (14)

Φ =




CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

CANp−1B CANp−2B CANp−3B . . . CB




(15)

The optimal control sequence is then found as

U ∗ =
(
ΦTΦ + R

)−1
ΦT (Y ref − Fxn) . (16)

Note: In this particular case all states xn can be measured but the “desired” reference signal
Y ref is unknown.

It remains to formulate and compute Y ref such that the boundary layer behaves like the
unbounded domain solution and thus fulfills the dispersion relation.

This can be done in a mode-wise manner: each harmonic wave mode, defined via its frequency
pair (ωt, ωx) can be predicted parametrically. The key issue now is to express the current
state xn in terms of modal coordinates and construct Y ref by the superposition of the modal
predictions.

The simple prediction per mode (index s) reads:

wn
k,s = Gn

1,s cos(kωx,s∆x) +Gn
2,s sin(kωx,s∆x) (17)
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where

wn+N,s =




cos(ωx,s∆x+Nωt,s∆t) sin(ωx,s∆x+Nωt,s∆t)
cos(2ωx,s∆x+Nωt,s∆t) sin(2ωx,s∆x+Nωt,s∆t)

...
...

cos(Kωx,s∆x+Nωt,s∆t) sin(Kωx,s∆x+Nωt,s∆t)




︸ ︷︷ ︸
TNs

[
Gn

1,s

Gn
2,s

]

︸ ︷︷ ︸
gn,s

(18)

Thereby, (K+ 1)∆x = L, N is the prediction offset, the mode prediction map TN
s is defined

a priori, and gn,s collects the real-valued modal coordinates of mode s at time step n.

The modal mapping (modal coordinates to node displacements) for a single mode s is denoted
as

wn
s =




cos(ωx,s∆x) sin(ωx,s∆x)
cos(2ωx,s∆x) sin(2ωx,s∆x)

...
...

cos(Nωx,s∆x) sin(Nωx,s∆x)




[
Gn

1,s

Gn
2,s

]
= Lsg

n
s , (19)

and aggregating over the set of considered modes s = 1, . . . ,Ω yields

wn =
Ω∑

s=1

Lsg
n
s (20)

=
[
L1 L2 . . . LΩ

]




gn
1

gn
2
...
gn

Ω


 = Lgn. (21)

Finally, the entire reference trajectory is expressed in the current modal coordinates,

Y ref = Tgn, (22)

and the current modal coordinates are retrieved by a least-squares mapping from the current
states (nodal displacements):

[
gn

gn−1

]
=

([
L 0
0 L

]T [
L 0
0 L

]
+ αI

)−1 [
L 0
0 L

]

︸ ︷︷ ︸
Kmapping

xn. (23)

Combining equations (16) and (23) results in a constant state vector feedback gain that
optimizes boundary layer absorption:

un = Kxn. (24)
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4 Numerical Results

Exemplary results for both proposed methods are shown in the following for the non-moving
beam equation under axial load: both methods achieve high absorption quality without
significantly increasing computational effort of the system equations. The beam’s physical
parameters are set to typical values of a contact wire in a high-speed railway catenary.

4.1 Direct ABC stencil coefficient optimization

As detailed in [6], Fig. 7 shows several time snapshots of the successful absorption of outgoing
wave components in the truncated beam (bottom plots) in comparison to a significantly
extended reference domain’s solution (top plots). The ABC is installed at x = 0 m in the
truncated domain, while a clamped BC is formulated at x = 100 m.

−50 0 50 100
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w
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0

0.1
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0

0.1

Beam Position in m Beam Position in m

Figure 7: Typical results for an ABC-bounded beam (adopted from [6]): initial perturbation
centered at x = 25 m (not shown) propagates in both directions and is being
absorbed by the boundary at x = 0 m. Lower plots show the ABC-bounded, small
domain (x = 0..100 m), whereas the upper plots show the reference solution on a
beam extended far to the left (shown: x = −50..100 m).

4.2 Controlled absorbing boundary layer

Figure 8 shows the high accuracy of the controlled boundary layer absorption for low and
high frequencies. The control law (24) has been found as outlined in Sec. 3.2. For detailed
results the reader is referred to Ref. [5].

Numeric studies show that the controlled boundary layer provides consistent high absorption
accuracy for various choices of time-/space-gridding and physical parameters of the EBB
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Figure 8: Controlled boundary layer absorbs low (left plot) and high (right plot) frequencies
in a beam model excited by a sine sweep on the right boundary (waves travel
leftwards).

equation. In the moving-coordinate case, this method is observed to stand out in the sense
that unlike other methods (analytic ABCs, optimization-based ABCs as in Sec. 3.1) it reliably
produces satisfying absorption results, while providing for an efficient implementation.

Finally, the finite-width boundary layer allows for great flexibility in system modeling: ap-
proaching droppers in a moving catenary description, for example, can be modeled already
when entering the boundary layer (but when still outside the “domain of interest”), resulting
in a regularized, realistic behavior.

5 Discussion & Conclusions

Absorbing boundary formulations have been presented which allow the use of small, efficient
computational domains for wave-like PDEs. The key feature of these methods is that they
essentially only rely on the dispersion relation of the underlying equation and can thus
be generically applied to various wave problems. The first proposed method formulates
an optimization problem directly in the boundary stencil coefficients as decision variables,
whereas the second method follows the ideas of the well-known “perfectly matched layer”
technique, but achieves the boundary layer’s absorption properties through an appropriate
optimal control law. Both methods produce highly computationally efficient formulations
of absorbing boundary behavior, and satisfying accuracy in the absorption task is attained.
The methods are specifically useful if analytic solutions are not available or too expensive to
be computed. One prominent case is the numerically difficult Euler-Bernoulli bending beam
equation under axial load in moving coordinates, which is successfully treated only by the
boundary control approach. One possible explanation for this observation is that detrimental
grid conditioning always occurs at the incoming side in the moving-coordinate case – the
broad boundary layer seems to be significantly more robust to bad grid conditioning, whereas
the ABC (with smaller support and region of influence) suffers significant performance loss.
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Philon von Byzanz und seine Druckwerke 

über pneumatisch-hydraulische Regelsysteme 

Prof. Emeritus Dimitrios Kalligeropoulos1 Application Prof. Soultana Vasileiadou2 

 

Philon von Byzanz lebte in dritten Jahrhundert v. Chr. in Alexandria und lehrte an ihrem berühmten 

Museum. Er schrieb das bedeutendste technische Handbuch der hellenistischen Antike, die 

sogenannte «Μεσανηθή Σύνταξηρ – Systematische Abhandlung der Mechanik», die neun Bücher 

beinhaltete. Die sechs ersten von ihnen sind Lehrbücher.  

Darunter sind: – Die «Pneumatik – Πνεςματηθά», das einzige Buch Philons, das in Fragmenten 

gerettet wurde und das Kapitel über die Theorie der Gase und die Konstruktion der pneumatischen 

und hydraulischen Maschinen beinhaltet.   

Des Weiteren: – Die «Konstruktion der Automaten – Αςτοματοποηετηθή», die besonders die Kunst 

der automatischen Theater abhandelte. 

Im Weiteren, werden wir uns mit drei Beispielen aus Philons Pneumatik befassen.  

 

Beispiel 1. Beweis der Körperlichkeit der Luft  

 

Die Luft ist eine unsichtbare und nicht greifbare Materie. Dass sie Philon für die Bewegung und die 

Regelung seiner Automaten zu benutzen konnte, musste er zuerst ihre Existenz, d.h. ihre materielle 

Substanz beweisen. Und er beweist sie, indem er ein Gefäß umdreht, seine Mündung ins Wasser 

eintaucht und es tief in das Wasser drückt.  

“Zieht man es nun allmählich heraus, so wird man finden, dass es im Inneren trocken ist und an 

keiner Stelle, mit Ausnahme der äußeren Mündung, nass geworden ist. Daraus ergibt sich also die 

Körperlichkeit der Luft.„ [2, II]   

                                                             
1
 Piraeus University of Applied Sciences, Department of Automation Engineering,  Petrou Ralli & Thivon 250, 12244 

Athens, Greece, E-mail: dkal@teipir.gr  
2
 Piraeus University of Applied Sciences, Department of Automation Engineering,  Petrou Ralli & Thivon 250, 12244 

Athens, Greece, E-mail: svasil@teipir.gr  
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Bild 1. Beweis der Körperlichkeit der Luft, nach Philon 

 

Beispiel 2. Die Regelung eines Wasserspiegels mittels der Luft 

 

Nachdem Philon die Materialität der Luft experimentell bestätigt hat, kann er sie jetzt dazu 

benutzen, um pneumatisch-hydraulische Regelungssysteme, d.h. geschlossene Regelkreise mit   

Rückkopplung, zu entwerfen.  

Charakteristisch ist das Beispiel der Regelung eines Wasserstandes mittels der Luft.  

 

Dieser Mechanismus enthält “…ein Gefäß αβ mit einem Loch δ auf seinem Boden. Durch das Loch 

geht senkrecht eine oben umgebogene Röhre εδγ. Ihr Ende γ geht zu einem anderen Gefäß γδε, 

welches unten in τ durchbohrt ist. Die zwei Gefäße stehen untereinander in Verbindung mittels der 

zwei dünnen gekrümmten Röhren εδγ und ππ. Das Gefäß αβ steht höher als das Gefäß δε, das auf 

einer hohlen Basis μν angepasst ist und mit ihr mittels der Öffnung τ in Verbindung steht. 

Wenn wir nun das Gefäß αβ mit Wasser bis zu einer gewissen Höhe, kleiner als δε, auffüllen und die 

obere Öffnung des Gefäßes dicht mit dem Deckel στ verschließen, so wird das Wasser aufhören 

durch das Rohr ππ ins Gefäß δε zu fließen, bis die hohle Basis μν mit Wasser gefüllt ist.  
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So wird allmählich der Wasserstand in der Basis sich noch mehr erhöhen, die Öffnung τ übersteigen 

und somit die Öffnung γ des Rohres γδε mit Wasser verschließen.  

Und so wird auch keine Luft mehr ins Gefäß αβ eindringen können, das Wasser wird aufhören 

durch das Rohr ππ zu fließen und solange die Öffnung γ geschlossen bleibt wird auch der 

Wasserspiegel im Gefäß δε konstant bleiben.  

Wenn wir jedoch Wasser aus der Basis μν durch die Öffnung θ entnehmen und somit der 

Wasserpegel ins Gefäß δε sinkt und die Öffnung γ öffnet, so wird Luft ins Gefäß αβ eindringen und 

Wasser durch das Rohr ππ ins Gefäß δε einfließen. Der Wasserstand wird somit in seinem 

ursprünglichen Niveau zurückgeführt und in derselben Höhe immer konstant bleiben.„ [2, XII]  

 

 

 

 

Bild 2. Regelung des Wasserspiegels mittels der Luft, nach Philon         
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Beispiel 3. Die Hausdienerin, die automatisch Wein und Wasser ausschenkt 

 

In dem Buch mit dem Titel “Le livre des appareils Pneumatique et des machines hydrauliques – 

Pneumatische Apparate und hydraulische Maschinen„ Philons von Byzanz, findet man die erste 

französische Übersetzung von Baron Carra de Vaux, aus den arabischen Ausgaben von Oxford und 

Konstantinopel, Paris 1903. Darin findet man das Thema 30 unter dem Titel: “Description d’un 

autre vase plus merveilleux que celui-là – Beschreibung einer anderen Vase, wunderbarer als die 

vorangehende.”  

Es folgt nun die deutsche Übersetzung des entsprechendes Textes: 

 

Beschreibung der äußeren Form  

des Apparates  

 

“Es handelt sich um einen Brunnen mit 

einem sich periodisch unterbrochenen Fluss. 

Der Brunnen hat die Form einer 

Hausdienerin, die einen Krug mit ihrer 

rechten Hand hält. Stellt man nun auf ihre 

linke flache Hand einen Becher auf, so gießt 

sie in den Becher Wein einer gewünschten 

Quantität ein. Und nachher gießt sie 

Wasser, das sich mit diesem Wein 

vermischt.„         

 

 

 

 

 

 

 

Bild 3. Die Hausdienerin Philons 
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Über die Konstruktion des Mechanismus  

 

“Man konstruiert zunächst aus Bronze oder aus Silber eine stehende Hausdienerin.  

Vom Kopf bis zu ihrer Brust schafft man im Inneren einen Behälter, der durch eine Scheidewand in 

zwei gleiche Kammern getrennt ist. In jeder Kammer des Behälters befindet sich je eine Luftröhre, 

die Wein oder Wasser in den Krug ableitet. Die Röhre des Weinbehälters führt direkt zum Krug, die 

Röhre des Wasserbehälters ist jedoch viel länger und im Bauch der Hausdienerin um den Behälter 

gewickelt. Die Luftröhren sind offen, sie haben also im unteren Teil des Behälters offene Eingänge 

für den Eintritt der Luft. Die linke Hand ist mit der Schulter durch eine Drehachse verbunden.„   

 

 

 

Bild 4. Der Mechanismus für die Wein- und Wasserlieferung im Becher der linken Hand  
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Die einzelnen Teile des inneren Mechanismus  

 

“Im Inneren der Figur befindet sich ein Krummstab, nach unten gerichtet, in der Form einer 

Gartenschere. Auf der Gerte, im unteren Teil dieses Stabes, sind zwei zylindrische Holzstifte 

angepasst, die als Verschluss oder Schlüssel dienen. Ihre Endungen passen genau in den Eingängen 

der Luftröhren, in denen sie mit milder Reibung eintreten. An den Stab ist unten ein kleines 

Zusatzgewicht angebracht. So strebt er natürlich nach unten und hebt somit die linke Hand hoch. Es 

heben sich so auch die zwei Holzstifte, die, als Schlüssel dienende, die zwei Eingänge der 

Luftröhren verschließen. Somit können die Flüssigkeiten nicht aus den Röhren fließen.„  

 

 

Bild 5. Mechanische Regelung des Wein- und Wasserflusses mittels Holzschlüsseln der Luftröhren     
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“Diese ganze Konstruktion befindet sich im Inneren der Hausdienerin. Das Wasser und der Wein 

fließen leicht vom oberen Teil der Hausdienerin nach unten. Ihr Schädel dient als ein sehr dichter 

Deckel. Ihre rechte Hand bleibt unbeweglich an ihrer Stelle. So auch der Krug, den sie hält. Die 

zwei Schläuche ermöglichen die Zufuhr von Wein und Wasser aus den zwei Kammern des Behälters 

zum Krug.„ 

 

Die Reihenfolge des Flusses von Wein und Wasser wird hier durch die verschiedenen Höhen der 

Schlüsseln oder der Eingängen der Luftröhren geregelt. 

          

Bezeichnungen und technische Einzelheiten des Innenraums  

 

“Durch α und β bezeichnen wir die zwei Kammern des Behälters. Mit γ und δ die Luftröhren.  

Mit ε und δ die zwei Schläuche für die Zufuhr der Flüssigkeiten zum Krug. Mit ε die Drehachse der 

linken Hand und mit ζ die Drehachse der Gerte. Die zwei hölzernen Schlüssel werden mit η und θ 

bezeichnet. Im Inneren der Hausdienerin gibt es ein Loch, verschlossen mit einem Deckel, der sich 

nach außen öffnet. Dieser Deckel bleibt während der ganzen Funktion des Mechanismus 

verschlossen, damit, wenn die Eingänge der Luftröhren sich öffnen, die Luft wieder aufgesaugt 

werden kann. Sonst würde der ganze Apparat nicht funktionieren. 

Nachdem wir all das, was wir beschreiben wollten, vollendet haben, nehmt ihr einen Becher mit 

einem Inhalt von einem oder zwei Litern, oder auch von einem beliebigen Inhalt, entsprechend zu 

den Dimensionen der Röhrenbreiten, die sie gewählt haben. Zweckmäßig ist es auch die Mischung 

der Flüssigkeiten in Dritteln aufzuteilen, es sei zwei Drittel Wein und ein Drittel Wasser. Die 

Aufnahmefähigkeit des Kruges hängt von euren übrigen Auswahlen ab. Der Becher kann schwerer 

werden durch Zusatz in seinem unteren Teil eines geeigneten Gewichtes.„                  . 
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Über die Funktion des Mechanismus  

 

“Wenn wir nun den Becher auf die linke flache 

Hand der Hausdienerin aufsetzen, fällt die 

Hand nach unten. Der dicke Stab mit der Gerte 

steigt, jedoch die Holzzapfen, die als 

Verschluss gelten, fallen nach unten und öffnen 

nacheinander die verschlossenen unteren 

Öffnungen der Wein- und Wasserröhren.  

Zuerst öffnet sich die Öffnung der kürzeren 

Weinröhre. Der Wein fließt und füllt allmählich 

den Becher. Wenn der Wein fast ganz 

ausgeflossen und die Hand tiefer gesunken ist, 

öffnet sich allmählich die untere Öffnung der 

längeren Wasserröhre und das Wasser fängt an 

aus der Wasserkammer zu fließen. Wenn beide 

Kammern leer sind, nimmt man den Becher 

weg. Die Hand kehrt dann in ihre Stellung 

zurück. Beide Öffnungen, die den Eingang der 

Luft in die Luftröhren ermöglichten, werden 

verschlossen. Nichts fließt mehr aus dem Krug 

heraus. Setzt man nun wieder den leeren 

Becher auf die Hand der Hausdienerin, so 

bewegt sich die Hand nach unten, der Wein 

und anschließend das Wasser fließen wieder 

und füllen den Becher. Und das wiederholt sich 

solange noch Wein und Wasser vorhanden ist.„ 
 

 

Bild 6. Der volle innere Mechanismus für die automatische Regelung  

der Bewegungen der Hausdienerin 
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Die Schlussfolgerung Philons   

 

“Das war, was wir erklären wollten, in Bezug auf diesen Brunnen mit dem unterbrochen 

periodischen Fluss und mit der Form einer Hausdienerin. Ich hoffe sie verstehen all das, was ich 

Ihnen beschrieben habe. Hier zeig ich Ihnen noch die Form…„  [4, 30]. 

              

 

Das war der Text über die Hausdienerin, den uns Philon hinterlassen hat. Leider ist uns diese, von 

Philon erwähnte, originelle Form der Hausdienerin nicht erhalten.  

Es existierte bis jetzt auch nicht, soviel wir wissen, eine originale deutsche Übersetzung des 

entsprechenden philonischen Textes.  

Unser Beitrag zielte also zunächst darauf ab, diese beide Lücken zu füllen, und dabei gewisse 

interessante Erfindungen der hellenistischen Zeit, d.h. in dritten Jahrhundert v. Chr., aufzuzeigen: 

1. Den Beweis der Materialität der Luft, um sie nachher für den Entwurf pneumatischer 

Systeme anzuwenden. 

2. Den Entwurf von pneumatisch-hydraulischen Regelsystemen, mit geschlossenen Regelkreis 

und Rückkopplung. 

3. Den bemerkenswerten Entwurf eines einzigartigen pneumatisch-hydraulischen und 

mechanischen Automaten mit der Form einer Wein und Wasser einschenkenden 

Hausdienerin. 

 

Es klingt alles als wie eine Vorwegnahme von Erfindungen der viel später stattfindenden 

industriellen Revolution, die zusätzlich den Wasserdampf für den Maschinenantrieb einführte.       

  

Geschichtliche Literaturangaben   

 

[1] Das originale Werk Philons von Byzanz “Πεπί Πνεςματηθών – Über Pneumatik„ in 

Altgriechisch, ist nicht erhalten.  
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[2] Es folgten, eine arabische Übersetzung, sowie die lateinischen Ausgaben von Konstantinopel 

und Oxford, mit dem Titel: “Liber Philonis de ingeniis spiritualibus – Philons Buch über 

Erfindungen der Pneumatik„. 

[3] Später kam die unvollständige deutsche Übersetzung eines Teils derer im Werke “Heron 

Alexandrinus, Band 1„ vom Wilhelm Schmidt, Leipzig, Teubner Verlag, 1899 mit dem Titel: “Die 

Druckwerke Philons von Byzanz„ veröffentlicht wurde. 

Darin ist jedoch die Beschreibung der “Hausdienerin„ nicht vorhanden. 

[4] Es folgte die französische Übersetzung vom Baron Carra de Vaux, die in Paris, 1903, unter dem 

Titel: “Le livre des appareils Pneumatique et des machines hydrauliques – Pneumatische Apparate 

und hydraulische Maschinen„ veröffentlicht wurde. 

Nur diese französische Übersetzung beinhaltet das Thema der Hausdienerin: 

“Thema 30. Description d’un autre vase plus merveilleux que celui-là – Beschreibung einer anderen 

Vase, wunderbarer als die vorangehende”. 

Das vorgehende Thema trägt den Titel:    

“Thema 29. Construction d’un vase élégant et merveilleux – Konstruktion eines eleganten und 

wunderbaren Gefäßes” und betrifft der Mechanismus für eine pneumatisch-hydraulische Regelung. 

Dasselbe Thema findet man auch in der erwähnten deutschen Übersetzung [3], als Beispiel XII mit 

dem Titel: “Ein konstanter Wasserspiegel„.    
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Lyapunov-based Design of Adaptive Sliding Mode Controllers

Alexander Bartha Markus Reichhartingerb Johann Regera Martin Hornb Kai Wulffa

Consider the nonlinear system

ẋ = f(x) + g(x)
(
∆(x, t) + u

)
(1)

where x(t) ∈ Rn is the state, u(t) ∈ R a scalar control input, f and g are known differentiable
vector fields. Assume that the matched uncertainty ∆ may be decomposed as per

∆(x, t) = ∆s(x) + ∆u(x, t) = ΘTφ(x) + ∆u(x, t) (2)

such that ∆s(x) = ΘTφ(x) represents the structured uncertainty, with unknown parameter
vector Θ and known base function φ, and ∆u(x, t) comprises the unstructured uncertainty
and external disturbances.

Let a sliding variable σ = σ(x) be selected such that a desired dynamics is imposed on the
sliding manifold σ ≡ 0. Further, let σ be of relative degree one wrt. the input u and assume
the associated internal dynamics to be stable. Thus, along the solution the derivative reads

σ̇ = ΘTa1(x) + a2(x, t)︸ ︷︷ ︸
=φ(x,t)

+ω(x, u) (3)

where a1(x), a2(x, t) as well as ω(x, u) may be expressed in terms of equations (1) and (2).
Clearly, expression φ(x, t) captures the entire uncertainty and ω is a known function, that
given x, is bijective wrt. the control input u.

The goal is to devise a controller ω that stabilizes the origin of (3).

Neglecting the knowledge about the structure within the uncertainty and requiring that the
entire uncertainty be uniformly bounded according to

|φ(x, t)| ≤ Ωφ|σ(x)| 12 (4)

for some Ωφ > 0 Shtessel et al. gave a solution to this problem [7, 8]. However, the square-root
growth bound on the uncertainty may be restrictive in many practical situations.

Therefore, we propose to treat the structurally known part ΘTa1(x) of the uncertainty φ(x, t)
separately from the unstructured part a2(x, t). This allows to relax the requirement (4)
considerably such that no upper bound is needed for the uncertainty φ(x, t). Only for the
unstructured part a2(x, t) we still require that

|a2(x, t)| ≤ Ωa2 |σ(x)| 12 (5)

uniformly for some Ωa2 > 0.

aFachgebiet Regelungstechnik, Technische Universität Ilmenau, Helmholtzplatz 5, D-98693 Ilmenau,
E-Mail: {alexander.barth,johann.reger,kai.wulff}@tu-ilmenau.de

bInstitut für Regelungs- und Automatisierungstechnik, Technische Universität Graz, Kopernikusgasse 24/II,
8010 Graz, E-Mail: {markus.reichhartinger,martin.horn}@tugraz.at
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Main result: In view of the super-twisting algorithm [4] we propose the following dynamic
state-feedback with adaptive extension:

ω = −k1 |σ(x)| 12 sign(σ(x)) + ν − Θ̂T a1(x)

ν̇ = −k2 sign(σ(x))

˙̂
Θ = γ k2 sign(σ(x)) a1(x)

(6)

with ν(0) = 0, Θ̂(0) = Θ̂0 for some Θ̂0, controller state ν, and parameters k1, k2, γ > 0.

In view of an adaptive extension of a Lyapunov-function presented in [6], employing the
weak Lyapunov-function

V (x, ν, Θ̂) = k2|σ(x)|+ 1

2
ν2 +

1

2γ
(Θ̂−Θ)T(Θ̂−Θ) (7)

we show that the origin of the closed-loop system (3) is stable.

In our approach, the gains k1 and k2 of the controller (6) may be reduced significantly
when compared, for example, with the adaptive-gain super-twisting algorithm [7] or its
modification in [8]. For further details on our proposed approach, see [1].

As a general remark note that whenever given a Lyapunov-function for the nominal system
that satisfies some continuity assumptions, e.g. in [5], the proposed approach may lead to
novel families of adaptive sliding-mode controllers.

[1] Barth, A., Reichhartinger, M., Reger, J., Horn, M., and Wulff, K.: Lyapunov-
Design for a Super-Twisting Sliding-Mode Controller using the Certainty-Equivalence
Principle. In 1st MICNON, St. Petersburg, Russia, 2015.
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Motivation

Motivation

enhance the super-twisting (STA) controller by a
certainty-equivalence approach

extend the class of disturbances / unbounded uncertainties

increase the robustness of the super-twisting algorithm

exploit all available information about the system

generate less discontinuous control action

obtain control law via Lyapunov theory
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Problem Description

Problem Description

System
ẋ = f(x) + g(x)

(
∆(x, t) + u

)

state x(t) ∈ Rn

scalar Input u(t) ∈ R

vector fields f, g known and differentiable

g(x) 6= 0, ∀x ∈ Rn

scalar uncertainty ∆(x, t) = ∆u(x, t) + ∆s(x)

structured uncertainty ∆s(x) = ΘT φ(x) :
known function φ : Rn → Rp, unknown parameter Θ ∈ Rp

unstructured uncertainty / disturbance ∆u(x, t)
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Problem Description

Sliding Variable

Sliding variable: σ = σ(x) with σ : Rn → R
desired dynamics for σ ≡ 0

relative degree 1 of σ with respect to u

stable zero dynamics

Derivation:

σ̇ =
∂σ

∂x

(
f(x) + g(x)

(
∆s(x) + ∆u(x, t) + u

))

=
∂σ

∂x
f(x)

︸ ︷︷ ︸
=:a0(x)

+ΘT φ(x)
∂σ

∂x
g(x)

︸ ︷︷ ︸
=:a1(x)

+
∂σ

∂x
g(x)∆u

︸ ︷︷ ︸
=:a2(x,t)

+
∂σ

∂x
g(x)

︸ ︷︷ ︸
=:b(x)

u

=ΘT a1(x) + a2(x, t) + ω with ω := a0(x) + b(x)u

Goal: stabilize the origin of the σ-system with control ω
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2 Problem Description

3 Controller Design
Conventional Lyapunov Function (weak)
Quadratic LF (strict)
Continuously Differentiable LF (strict)

4 Simulation Examples

5 Conclusion & Outlook
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Controller Design Conventional Lyapunov Function

Controller Design

Idea

make use of the structure of the uncertainty

exploit Lyapunov functions for SMC

System
σ̇ = ΘT a1(x) + a2(x, t) + ω

Assumptions

a1 : Rn → Rp known base function

Θ ∈ Rp unknown parameter vector

a2 bounded by |a2(x, t)| ≤ δ|σ(x)| 12 with known δ > 0
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Controller Design Conventional Lyapunov Function

Certainty Equivalence Super-Twisting

System
σ̇ = ΘT a1(x) + a2(x, t) + ω

Control Law

ω = −k1 ⌈σ⌋
1
2 + ν − Θ̂T a1(x)

ν̇ = −k2 sign (σ) , ν(0) = 0

controller parameter k1, k2 > 0.
Note: ⌈σ⌋q = sign (σ) |σ|q

Adaptation Law
˙̂
Θ = Γ k2 sign (σ) a1(x)

adaptation parameter Γ > 0
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Controller Design Conventional Lyapunov Function

Sketch of a Proof

Lyapunov Function Candidate [Orlov, 2005]
V = k2|σ|+ 1

2ν
2 + 1

2ΓΘ̃
TΘ̃

with Θ̃ = Θ̂−Θ

Adaptation Parameter Γ > 0

Derivation

V̇ =k2 sign (σ)
(
− k1|σ|

1
2 sign (σ) + a2(x, t)− Θ̃T a1

)
+

1

Γ
Θ̃T ˙̃Θ

≤
(
− k1 k2|σ|

1
2 + k2 δ|σ|

1
2

)
+ Θ̃T

(
−a1(x) k2 sign (σ) +

1

Γ
˙̂
Θ

)
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Controller Design Conventional Lyapunov Function

Comments

Adaptation Law
˙̂
Θ = Γ k2 sign (σ) a1(x)

Improvements

combines adaptive and sliding-mode control

stability is guaranteed by design

increases the robustness of the super-twisting algorithm (STA)

Drawbacks

discontinuous adaptation law

no asymptotic stability of controller state ν

9/26
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Controller Design Quadratic LF

Outline

1 Motivation

2 Problem Description

3 Controller Design
Conventional Lyapunov Function (weak)
Quadratic LF (strict)
Continuously Differentiable LF (strict)

4 Simulation Examples

5 Conclusion & Outlook
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Controller Design Quadratic LF

Quadratic LF (strict)

Addressing the drawbacks:

discontinuous adaptation law

no asymptotic stability of controller state ν

System
σ̇ = ΘT a1(x) + a2(x, t) + ω

Control Law

ω = −k1 ⌈σ⌋
1
2 + ν − Θ̂T a1(x)

ν̇ = −k2 sign (σ) , ν(0) = 0

Lyapunov Function [Moreno and Osorio, 2008]

V = zT P z +
1

2Γ
Θ̃TΘ̃

with z = (⌈σ⌋ 1
2 , ν)T , Γ > 0 and P = P T > 0

10/26
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Controller Design Quadratic LF

Quadratic LF (strict)

Derivation

V̇ (z, Θ̃) ≤ − 1

2|z1|
zTQ0z +

1

|z1|
zTPG1(x)Θ̃ +

1

Γ
˙̃ΘT Θ̃

with Q0 = −(AT P + P A) > 0

G1(x) :=

(
aT1 (x)
0

)
and A :=

(
−k1

2
1
2

−k2 0

)

Adaptation Law
˙̂
Θ =

Γ

|z1|
GT

1 (x)P z

diagonal matrix P

restrict a1 with: |a1,i(x)| ≤ |σ(x)|qi with qi >
1
2 , ∀i = 1...p
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Controller Design Quadratic LF

Quadratic LF (strict)

Advantages

possible to achieve asymptotic stability of σ and ν

increases the robustness compared to the nominal STA

allows combination with the adaptive-gain STA

Drawbacks

requires additional bounds on the known base function

otherwise the right hand side of the adaptation law becomes
unbounded
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Controller Design Quadratic LF

Review: Adaptive-Gain Super-Twisting

System
σ̇ = ΘT a1(x) + a2(x, t)︸ ︷︷ ︸

=:ϕ(x,Θ,t)

+ω

Disturbance

|ϕ(x,Θ, t)| ≤ δ∗|σ(x)| 12 , ∀x ∈ Rn, ∀t ∈ R+

Controller [Shtessel et al., 2010]

ω = −α(t)⌈σ⌋ 1
2 + ν and ν̇ = −β(t) sign (σ)

α̇(t) =

{
ω1

√
1
2γ1, if σ 6= 0,

0, if σ = 0

β(t) = 2εα+ λ+ 4ε2

13/26

R T

Controller Design Quadratic LF

Review: Adaptive-Gain Super-Twisting

Controller [Shtessel et al., 2010]

ω = −α(t)|σ| 12 sign (σ) + ν and ν̇ = −β(t) sign (σ)

α̇(t) =

{
ω1

√
1
2γ1, if σ 6= 0,

0, if σ = 0

β(t) = 2εα+ λ+ 4ε2

with γ1, ω1, λ, ε > 0

Lyapunov Function

Va(z, α, β) = zT Pa z +
1

2 γ1
(α(t)− α∗)2 +

1

2 γ2
(β(t)− β∗)2

γ2, α
∗, β∗ > 0 and Pa =

(
λ+ 4 ǫ2 −2 ǫ
−2 ǫ 1

)
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Controller Design Continuously Differentiable LF

Continuously Differentiable LF (strict)

In order to overcome the drawbacks:

no asymptotic stability of the controller state ν

discontinuous / unbounded control law

additional bounds on the base function a1 required

Idea

make use of recently discovered Lyapunov functions for
higher-order sliding-mode [Moreno and Sánchez, 2014]

V0 =
2

3
γ1 |σ|

3
2 − γ12σ ν +

1

3
γ2|ν|3

avoid unbounded / discontinuous control laws

extend the class of captured uncertainties compared to the design
with the quadratic LF

15/26
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Controller Design Continuously Differentiable LF

Continuously Differentiable LF (strict)

System
σ̇ = ΘT a1(x) + a2(x, t) + ω

Control Law
ω = −k1 ⌈σ⌋

1
2 + ν − Θ̂T a1(x)

ν̇ = −k2 sign (σ) , ν(0) = 0
Lyapunov Function

V =
2

3
k1 |σ|

3
2 − σ ν +

1 + a

k21
|ν|3 + 1

2Γ
Θ̃TΘ̃

Derivation
V̇ = Θ̃T a1(x)

(
k1⌈σ⌋

1
2 − ν

)
+ V̇0 +

1

Γ
Θ̃T ˙̃Θ

= V̇0 + Θ̃T

(
1

Γ
˙̃Θ + a1(x)

(
k1⌈σ⌋

1
2 − ν

))

Adaptation Law ˙̂
Θ = Γ a1(x)

(
k1 ⌈σ⌋

1
2 − ν

)

16/26
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Controller Design Continuously Differentiable LF

Continuously Differentiable LF (strict)

Adaptation Law
˙̂
Θ = Γ a1(x)

(
k1 ⌈σ⌋

1
2 − ν

)

Advantages

combines adaptive and sliding mode control

increases the robustness of the standard super-twisting

no further limitations to the base function a1(x)

continuous adaptation law

Drawbacks

nominal Lyapunov function limits the number of usable controller
parameter k1, k2 combinations

17/26
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Simulation Examples

Simulation Examples

Simulation System
ẋ1 = x2

ẋ2 = ΘΩ(x1, x2) + u
Sliding Surface

σ = x1 + x2
Disturbance

Ω(x1, x2) = sin(2x2)(x1 + x2) and Θ = 2

⇒ fails AGSTA-conditions [Shtessel et al., 2010, Shtessel et al., 2012]

Controller Parameter

AGSTA CESTA
ω1 γ1 λ ǫ k1 k2 Γ

0.1 2 0.5 0.5 1 2 1

18/26
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Simulation Examples

Simulation Examples

Initial condition: x0 = [2, 2]
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Simulation Examples

Quadratic Lyapunov Function

System
σ̇ = ΘT a1(x) + a2(x, t) + ω

Control Law
ω = −k1 ⌈σ⌋

1
2 + ν − Θ̂T a1(x)

ν̇ = −k2 sign (σ)
Disturbances

a1 = σ (cos(σ) + 1) , a2 = 0.2 sin(2σ)
Initial Condition

σ(0) = 10, ν(0) = 10,
Adaptation Law

˙̂
Θ =

Γ

|z1|
(
a1(x) 0

)
P z, z = (⌈σ⌋ 1

2 , ν)T

Controller AGSTA CESTA CEAGSTA
Controller Parameter k1, k2

√ √

Uncertainty Parameter Θ
√ √
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Simulation Examples

Quadratic Lyapunov Function
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Simulation Examples

Continuously Differentiable Lyapunov Function

System
σ̇ = ΘT a1(x) + a2(x, t) + ω

Control Law

ω = −k1 ⌈σ⌋
1
2 + ν − Θ̂T a1(x)

ν̇ = −k2 sign (σ)

Disturbances
a1 = (σ + 1) (cos(σ) + 1) , a2 = 0.2 sin(2σ)

Initial Condition
σ(0) = 10, ν(0) = 10,

Adaptation Law
˙̂
Θ = Γ a1(x)

(
k1 ⌈σ⌋

1
2 − ν

)
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Simulation Examples

Continuously Differentiable Lyapunov Function
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Conclusion & Outlook

Conclusion & Outlook

Conclusion

enhanced the super-twisting algorithm by an adaptive extension

Lyapunov based approach

influence of the nominal Lyapunov function for the adaptation law

simulation examples

Outlook

demonstrate finite time convergence

detailed investigation of the continuously differentiable LF

selection of controller parameters

modifications to the adaptation scheme
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Observers for non-linear MIMO descriptor systems

Robel Besrata Felix Gauscha Nenad Vrhovacb

This article presents non-linear observers for exact I/O-linearizable descriptor systems with
a specific focus on the semi-explicit form:

ẋ = a(x, z) +B(x, z)u (1a)

0 = p(x, z,u) (1b)

y = c(x, z) (1c)

where x ∈ Rn and z ∈ Rp denote the vectors of the differential and the algebraic variables
respectively. Furthermore, we assume that there are the same number of input variables
u ∈ Rm and output variables y ∈ Rm.

In addition to the constraints explicitly specified in (1b) the differential algebraic equations
(1a, 1b) include further implicit constraints for higher-index systems. All these constraints
contained in (2) describe the manifold M, where the solutions x(t) and z(t) of (1a, 1b) are
located:

0 = p̃(x, z,u) . (2)

Following the preliminary work in [1] and [3], as part of the exact I/O-linearization for des-
criptor systems, an observer is developed that incorporates the impact of all the constraints
during the estimation process.

To determine the observer structure, the explicit representation (3) of the non-linear des-
criptor system (1):

ẇ =

[
ẋ
ż

]
=




a(x, z) +B(x, z)u

−
[
∂pk−1
∂z

]−1 ∂pk−1
∂x

(a(x, z) +B(x, z)u)


 = f(w) +G(w)u

y = c(w)

(3)

is transferred to Byrnes-Isidori normal form by choosing a suitable transformation (diffeomor-

phism) ξ = ϕ (w) =
[
ζT ,ηT

]T
and subsequently introducing a state feedback u = (ζ,η,v)

with new inputs v:

ζ̇ = Aζ +Bv (4a)

η̇ = ϑ (ζ,η) (4b)

y = Cζ . (4c)

The linear subsystem (4a, 4c) is observable independent of v and ϑ, while the non-linear
subsystem (4b) describes the non-observable internal dynamics. In case of a asymptotic

aInstitut für Elektrotechnik und Informationstechnik, Universität Paderborn, Pohlweg 47-49, 33098 Pader-
born, E-Mail: robel.besrat@uni-paderborn.de, gausch@uni-paderborn.de

bFormer member of the ”‘Steuerungs- und Regelungstechnik”’ workgroup at the above
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minimum-phase system (3) the overall system (4) is detectable, and it is appropriate to
design a high-gain observer for subsystem (4a, 4c) using the Luenberger method (5):

˙̂
ζ = Aζ̂ +Bv̂ +K (y − ŷ)

˙̂η = ϑ
(
ζ̂, η̂

)

ŷ = Cζ̂ .

(5)

In the original coordinates (ŵ = ϕ̂−1(ξ̂)), the observer gain KHGR is determined via the
Moore-Penrose inverse of the reduced observability matrix, which is calculated from the time
derivatives of the (known) output variables (4c):

˙̂w = f (ŵ) +G (ŵ)u+KHGR (ŵ) (y − c (ŵ))

ŷ = c (ŵ) .
(6)

With the correction approach suggested in [2] the convergence of the high-gain observer
solution, against that of the system, can be improved. To achieve this, the observer (6) is
extended by the implicit and explicit constraints contained in the vector p̃ (w):

˙̂w = f (ŵ) +G (ŵ)u−∆PM (ŵ)Mp̃ (ŵ) +KHGR (ŵ) (y − c (ŵ))

ŷ = c (ŵ) .
(7)

In this equation M denotes a free design parameter, while ∆PM describes an orthogonal
projection of the deviations in the constraints on the tangent bundle of the solution manifold
M.

Finally the extended observer (7) is implemented using a suitable example, and the results
are discussed.

[1] Gausch, F. und N. Vrhovac: Feedback Linearization of Descriptorsystems - A Classi-
fication Approach. IJAA - International Journal Automation Austria, 18(1):1–18, 2010.

[2] Vrhovac, N.: Beobachtungsaufgabe bei nichtlinearen Deskriptorsystemen. Dissertation,
Universität Paderborn, 2015.

[3] Vrhovac, N. und F. Gausch: Beobachterentwurf für nichtlineare SISO-Deskriptor-
systeme vom Index k=1. In: Horn, M., M. Hofbaur und N. Dourdoumas (Her-
ausgeber): 16. Steirisches Seminar über Regelungstechnik und Prozessautomatisierung,
Seiten 16–28, Schloss Retzhof - Leibniz/Österreich, 2009. Institut für Regelungs- und
Automatisierungstechnik, Technische Universität Graz.
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Overview

A well known procedure for non-linear

explicit state models

differential equations

output equations

input and coord. transformation

L-Operator

Byrnes–Isidori NF

observer design for linear part

inverse transformation

set up as high-gain observer

Presented procedure for non-linear

semi-explicit descriptor models

differential equations

algebraic equations

output equations

input and coord. transformation

N-Operator

mod. shuffle algorithm

Byrnes–Isidori NF

observer design for linear part

inverse transformation

set up as high-gain observer

error affected by algebr. constraints
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Overview Descriptor Systems Feedback Linearization Observer Design SISO Observer Design MIMO

Non-Linear Descriptor Systems

Semi-Explicit Form:

ẋ = a (x, z) + B (x, z) u
0 = p (x, z, u)
y = h (x, z)

x ∈ Rn, z, p ∈ Rp, y , u ∈ Rm

Explicit Form:

ẇ = f (w , u, u̇, . . . ,
(d)
u )

y = h (w)

w = [xT , zT ]T , w ∈ Rn+p, y , u ∈ Rm

Definitions

A semi-explicit descriptor model exhibiting an explicit descriptor model is said to be regular.

An explicit descriptor model with d ≤ 1 is said to be proper.

Besrat, R. , Vrhovac, N. Observers for Non-Linear MIMO Descriptor Systems 3 / 26
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Algebraic Constraints

ẋ = a (x, z) + B (x, z) u
0 = p (x, z, u)

p(x, z, u) :=




p1,0(x, z, u)

.

.

.
pp,0(x, z, u)


 “explicit constraints”

Modified Shuffle Algorithm (For Regular and Proper Models):

0 = pi = pi,0(x) “explicit constraints”

0 = ṗi = pi,1(x) “implicit constraints”

.

.

.

0 =
(ki−1)
pi = pi,ki−1(x, z, u) “implicit constraints”

0 =
(ki )
pi =

∂pi,ki−1

∂x
ẋ +

∂pi,ki−1

∂z
ż +

∂pi,ki−1

∂u
u̇ ∀i ∈ {1, . . . , p}

1.Result: Explicit and implicit constraints

p̃(x, z, u) :=




p̃1(x, z, u)

.

.

.
p̃p(x, z, u)


 where p̃i (x, z, u) :=




pi,0(x, z, u)
pi,1(x, z, u)

.

.

.
pi,ki−1(x, z, u)


 ∀i ∈ {1, . . . , p}

Besrat, R. , Vrhovac, N. Observers for Non-Linear MIMO Descriptor Systems 4 / 26
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Explicit Model

From the last differentiation step of the shuffle algorithm:

2.Result: Differential Equation in z :

ż = −
[
∂pk−1

∂z

]−1 (∂pk−1

∂x
ẋ +

∂pk−1

∂u
u̇
)

where pk−1 :=




p1,k1−1(x, z, u)

.

.

.
pp,kp−1(x, z, u)




Non-Linear Explicit Descriptor Model (MIMO):

ẇ =

[
ẋ
ż

]
=




a(w) + B(w)u

−
[
∂pk−1

∂z

]−1 ∂pk−1

∂x
(a(w) + B(w)u)


 = f (w) + G(w)u, w ∈ Rn+p

y = h(w), u, y ∈ Rm

Besrat, R. , Vrhovac, N. Observers for Non-Linear MIMO Descriptor Systems 5 / 26
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Feedback Linearization

Non-Linear Explicit Descriptor Model (SISO)

ẇ =

[
ẋ
ż

]
=




a(w) + b(w)u

−
[
∂pk−1

∂z

]−1 ∂pk−1

∂x
(a(w) + b(w)u)


 = f (w) + g(w)u, w ∈ Rn+p

y = h(w)

Recursive Operator N:

Nνh := (Nν−1h)′ẋ mit N0h = h und (Nνh)′ :=
∂Nνh

∂x
− ∂Nνh

∂z

[
∂pk−1

∂z

]−1 ∂pk−1

∂x

Derivatives of Output:

(ν)
y = (Nν−1h)′ a ν = 1, . . . , γ − 1 nur für γ > 1

(γ)
y = (Nγ−1h)′ a + (Nγ−1h)′ b u + (Mγ−1h)′ u̇

!
= v “ γ integrators in input-output behaviour ”

Static feedback : (Mγ−1h)′ = 0 and (Mγh)′ 6= 0 =⇒ u =
1

(Nγ−1h)′ b

[
−(Nγ−1h)′ a + v

]

Besrat, R. , Vrhovac, N. Observers for Non-Linear MIMO Descriptor Systems 6 / 26
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...Feedback Linearization

ẇ =

⎡
⎣

a(w) + b(w)u

−
[
∂pk−1
∂z

]−1 ∂pk−1
∂x

(a(w) + b(w)u)

⎤
⎦

y = h(w), w =

[
x
z

]

w

w0

y
u = 1

(Nγ−1h)′b(w)

[
−

(
Nγ−1h

)′
a (w) + v

]v u

ζ̇ = Aζ + bv

η̇ = ϑ(ζ,η)

y = cTζ

ξ = ϕ (w) =

⎡
⎢⎢⎢⎢⎢⎣

N0h
N1h
...

Nγ−1h
ηγ+1

...
ηn+p

⎤
⎥⎥⎥⎥⎥⎦
=

[
ζ
η

]
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Diffeomorphism

ẇ =

⎡
⎣

a(w) + b(w)u

−
[
∂pk−1
∂z

]−1 ∂pk−1
∂x

(a(w) + b(w)u)

⎤
⎦

y = h(w), w =

[
x
z

]

w

w0

y
u = 1

(Nγ−1h)′b(w)

[
−

(
Nγ−1h

)′
a (w) + v

]v u

ζ̇ = Aζ + bv

η̇ = ϑ(ζ,η)

y = cTζ

ξ = ϕ (w) =

⎡
⎢⎢⎢⎢⎢⎣

N0h
N1h
...

Nγ−1h
ηγ+1

...
ηn+p

⎤
⎥⎥⎥⎥⎥⎦
=

[
ζ
η

]
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...Diffeomorphism

Byrnes–Isidori Normal Form

ξ = ϕ (w) =




N0h(w)

.

.

.

Nγ−1h(w)
ηγ+1

.

.

.
ηn+p




with




N0h(w)

.

.

.

Nγ−1h(w)


 = ζ and




ηγ+1

.

.

.
ηn+p


 = η :

ζ̇ = Aζ + bv
η̇ = ϑ(ζ,η)

y = cTζ

Zero Dynamics:

η̇ = ϑ(0,η) with ζ = 0

Condition:

Equilibrium η = 0 asymptotically stable
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Luenberger Observer

ẇ =

⎡
⎣

a(w) + b(w)u

−
[
∂pk−1
∂z

]−1 ∂pk−1
∂x

(a(w) + b(w)u)

⎤
⎦

y = h(w), w =

[
x
z

]

w

w0

y
u = 1

(Nγ−1h)′b(w)

[
−

(
Nγ−1h

)′
a (w) + v

]v u

ζ̇ = Aζ + bv

η̇ = ϑ(ζ,η)

y = cTζ

ξ = ϕ (w) =

⎡
⎢⎢⎢⎢⎢⎣

N0h
N1h
...

Nγ−1h
ηγ+1

...
ηn+p

⎤
⎥⎥⎥⎥⎥⎦
=

[
ζ
η

]

˙̂
ζ = Aζ̂ + bv̂ + k(y − ŷ)

˙̂η = ϑ(ζ̂, η̂)

ŷ = cT ζ̂

ξ̂0 k

cT
ξ̂ ŷ

ŵ = ϕ−1(ξ̂)

v̂
v̂ =

(
Nγ−1h

)′
a (ŵ) +

(
Nγ−1h

)′
b (ŵ)u

ŵ
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...Luenberger Observer

Luenberger Method:

ζ̇ = Aζ + bv , ζ(0) = ζ0

η̇ = ϑ(ζ,η) , η(0) = η0

y = cTζ

˙̂
ζ = Aζ̂ + bv̂ + k(y − ŷ) , ζ̂(0) = ζ̂0

˙̂η = ϑ(ζ̂, η̂) , η̂(0) = η̂0

ŷ = cT ζ̂

Error Dynamics:

ė =

[
(A− kcT )eζ + b (v − v̂)

ϑ(ζ̂, η̂)− ϑ(ζ,η)

]

mit e =

[
eζ
eη

]
=

[
ζ̂ − ζ
η̂ − η

]
und e(0) = e0 = ξ̂0 − ξ0

Condition: Constants L1, L2 ≥ 0 exist for bounded inputs u

∣∣∣v̂(ζ̂, η̂, u)− v(ζ,η, u)
∣∣∣ ≤ L1

∥∥∥ζ̂ − ζ
∥∥∥ + L2 ‖η̂ − η‖

High-Gain Observer:

Choose k so that the equilibrium e = 0 is asymptotically stable (the convergence behavior e(t)→ 0 for
t →∞ is dominated by the linear part of the system).
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High-Gain Observer

ẇ =

⎡
⎣

a(w) + b(w)u

−
[
∂pk−1
∂z

]−1 ∂pk−1
∂x

(a(w) + b(w)u)

⎤
⎦

y = h(w), w =

[
x
z

]

w

w0

y
u = 1

(Nγ−1h)′b(w)

[
−

(
Nγ−1h

)′
a (w) + v

]v u

ζ̇ = Aζ + bv

η̇ = ϑ(ζ,η)

y = cTζ

ξ = ϕ (w) =

⎡
⎢⎢⎢⎢⎢⎣

N0h
N1h
...

Nγ−1h
ηγ+1

...
ηn+p

⎤
⎥⎥⎥⎥⎥⎦
=

[
ζ
η

]

˙̂
ζ = Aζ̂ + bv̂ + k(y − ŷ)

˙̂η = ϑ(ζ̂, η̂)

ŷ = cT ζ̂

ξ̂0 k

cT
ξ̂ ŷ

ŵ = ϕ−1(ξ̂)

v̂
v̂ =

(
Nγ−1h

)′
a (ŵ) +

(
Nγ−1h

)′
b (ŵ)u

˙̂w =

⎡
⎣

a(ŵ) + b(ŵ)u

−
[
∂pk−1

∂ẑ

]−1 ∂pk−1

∂x̂
(a(ŵ) + b(ŵ)u)

⎤
⎦+ kHGR(ŵ) (y − h(ŵ))

ŷ = h(ŵ), ŵ =

[
x̂
ẑ

]

ŵ0

ŵ
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...High-Gain Observer

High-Gain Observer in
[
ζ̂
T
η̂T
]T

:

˙̂
ζ = Aζ̂ + bv̂ + k(y − ŷ) , ζ̂(0) = ζ̂0

˙̂η = ϑ(ζ̂, η̂) , η̂(0) = η̂0

ŷ = cT ζ̂

ξ̂ = ϕ(ŵ) =
[
ζ̂
T
η̂T
]T
−→ ŵ :

ξ̂ = ϕ(ŵ) ⇒ ˙̂
ξ = ∂ϕ(ŵ )

∂ŵ
˙̂w = Q(ŵ) ˙̂w ⇒ ˙̂w = Q−1(ŵ) ˙̂ξ = Q−1

[
˙̂ζT ˙̂ηT

]T

High-Gain Observer in ŵ :

˙̂w = f (ŵ) + g(ŵ)u + Q−1(ŵ)

[
k
0

]
(y − h(ŵ)) , ŵ(0) = ŵ0

ŷ = h(ŵ)
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...High-Gain Observer

Observability Matrix:

Q(ŵ) =




∂
∂ŵ N0h(ŵ)

.

.

.
∂
∂ŵ Nγ−1h(ŵ)

∂
∂ŵ ηγ+1(ŵ)

.

.

.
∂
∂ŵ ηn+p(ŵ)




=

[
QBR (ŵ)
R(ŵ)

]

Reduced Observability Matrix:

QBR (ŵ) =




∂
∂ŵ N0h(ŵ)

.

.

.
∂
∂ŵ Nγ−1h(ŵ)




Moore-Penrose-Inverse:

Q+
BR (ŵ) = QT

BR (ŵ)
(
QBR (ŵ)QT

BR (ŵ)
)−1

High-Gain Observer

˙̂w = f (ŵ) + g(ŵ)u + kHG (ŵ) (y − h(ŵ))
ŷ = h(ŵ)

kHG (ŵ) = Q−1(ŵ)

[
k
0

]

High-Gain Observer:

˙̂w = f (ŵ) + g(ŵ)u + kHGR (ŵ) (y − h(ŵ))
ŷ = h(ŵ)

kHGR (ŵ) = Q+
BR (ŵ)k

The distribution D(ŵ) has to be involutive for the diffeomorphism ξ = ϕ(w) and the observer gain to
exist (Theorem of Frobenius):

D(ŵ) = span

{[
∂

∂ŵ
N0h(ŵ)

]T
, . . . ,

[
∂

∂ŵ
Nγ−1h(ŵ)

]T}
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...High-Gain Observer

ẇ =

⎡
⎣

a(w) + b(w)u

−
[
∂pk−1
∂z

]−1 ∂pk−1
∂x

(a(w) + b(w)u)

⎤
⎦

y = h(w), w =

[
x
z

]

w

w0

y
u = 1

(Nγ−1h)′b(w)

[
−

(
Nγ−1h

)′
a (w) + v

]v u

ζ̇ = Aζ + bv

η̇ = ϑ(ζ,η)

y = cTζ

ξ = ϕ (w) =

⎡
⎢⎢⎢⎢⎢⎣

N0h
N1h
...

Nγ−1h
ηγ+1

...
ηn+p

⎤
⎥⎥⎥⎥⎥⎦
=

[
ζ
η

]

˙̂
ζ = Aζ̂ + bv̂ + k(y − ŷ)

˙̂η = ϑ(ζ̂, η̂)

ŷ = cT ζ̂

ξ̂0 k

cT
ξ̂ ŷ

ŵ = ϕ−1(ξ̂)

v̂
v̂ =

(
Nγ−1h

)′
a (ŵ) +

(
Nγ−1h

)′
b (ŵ)u

˙̂w =

⎡
⎣

a(ŵ) + b(ŵ)u

−
[
∂pk−1
∂ẑ

]−1 ∂pk−1
∂x̂

(a(ŵ) + b(ŵ)u)

⎤
⎦

+kHGR(ŵ) (y − h(ŵ)) +Mp̃(ŵ)

ŷ = h(ŵ), ŵ =

[
x̂
ẑ

]

˙̂w =

⎡
⎣

a(ŵ) + b(ŵ)u

−
[
∂pk−1

∂ẑ

]−1 ∂pk−1

∂x̂
(a(ŵ) + b(ŵ)u)

⎤
⎦+ kHGR(ŵ) (y − h(ŵ))

ŷ = h(ŵ), ŵ =

[
x̂
ẑ

]

ŵ0

ŵ

Mp̃(ŵ)
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Example: SISO

Semi-explicit Model:

ẋ =

[
x2 (z + 1)

sin(x1) + u

]

0 = z − 1
y = x1




x1

x2

z


 =




w1

w2

w3




Explicit Model:

ẇ =




w2 (w3 + 1)

sin(w1) + u

0




y = w1

Observer:

˙̂w =




ŵ2 (ŵ3 + 1)

sin(ŵ1) + u

0


 +




k1

k2
ŵ3+1

(ŵ3+1)2+ŵ2
2

k2
ŵ2

(ŵ3+1)2+ŵ2
2




(y − ŵ1) +



µ1

µ2

µ3


 (ŵ3 − 1)

︸ ︷︷ ︸
Mp̃(ŵ)

3.2 Beobachter für nichtlineare SISO–Deskriptorsysteme vom Index eins 69
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T

Abbildung 3.2: Verlauf der tatsächlichen (rot) und der geschätzten Zustandsgrößen, die
in verschiedener Weise mit algebraischer Zwangsbedingung korrigiert
wurden.
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ŵ2

ŵ3
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Mp̃(ŵ) = ? =⇒ Orthogonal Projection
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Orthogonal Projection

Explicit and implicit constraint equations

p̃(w) =




p̃1(w)

.

.

.
p̃p(w)


 , p̃i :=




pi,0(w)
pi,1(x, z, u)

.

.

.
pi,k1−1(w)


 ∀i ∈ {1, . . . , p}

span the solution manifold M:
M = {w | p̃(w) = 0}

.

..................................
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6

�
�
�
�
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�
�
���

r

M

v

vp

∆v

TM

Orthogonal projection vp of a vector v on TM:

vp = v −∆v = v −∆PM(w) v

Corrective Projection

∆PM(w) =
[
∂p̃
∂w
]T ( ∂p̃

∂w
[
∂p̃
∂w
]T)−1

∂p̃
∂w

Besrat, R. , Vrhovac, N. Observers for Non-Linear MIMO Descriptor Systems 17 / 26

Overview Descriptor Systems Feedback Linearization Observer Design SISO Observer Design MIMO

...Example: SISO

Semi-explicit Model:

ẋ =

[
x2 (z + 1)
sin(x1) + u

]

0 = z − 1
y = x1




x1

x2

z


 =




w1

w2

w3




Explicit Model:

ẇ =




w2 (w3 + 1)
sin(w1) + u

0




y = w1

Observer:

˙̂w =




ŵ2 (ŵ3 + 1)
sin(ŵ1) + u

0


 +




k1

k2
ŵ3+1

(ŵ3+1)2+ŵ2
2

k2
ŵ2

(ŵ3+1)2+ŵ2
2


 (y − ŵ1) +



µ1

µ2

µ3


 (ŵ3 − 1)

︸ ︷︷ ︸
Mp̃(ŵ)
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Mp̃(ŵ) −→ ∆PM(ŵ)Mp̃(ŵ) =




0
0
µ3


 (ŵ3 − 1)
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Modified High-Gain Observer

ẇ =

⎡
⎣

a(w) + b(w)u

−
[
∂pk−1
∂z

]−1 ∂pk−1
∂x

(a(w) + b(w)u)

⎤
⎦

y = h(w), w =

[
x
z

]

w0

yu

ζ̇ = Aζ + bv

η̇ = ϑ(ζ,η)

y = cTζ

ξ = ϕ (w) =

⎡
⎢⎢⎢⎢⎢⎣

N0h
N1h
...

Nγ−1h
ηγ+1

...
ηn+p

⎤
⎥⎥⎥⎥⎥⎦
=

[
ζ
η

]

˙̂
ζ = Aζ̂ + bv̂ + k(y − ŷ)

˙̂η = ϑ(ζ̂, η̂)

ŷ = cT ζ̂

ξ̂0 k

cT
ξ̂ ŷ

ŵ = ϕ−1(ξ̂)

v̂
v̂ =

(
Nγ−1h

)′
a (ŵ) +

(
Nγ−1h

)′
b (ŵ)u

˙̂w =

⎡
⎣

a(ŵ) + b(ŵ)u

−
[
∂pk−1
∂ẑ

]−1 ∂pk−1
∂x̂

(a(ŵ) + b(ŵ)u)

⎤
⎦

+kHGR(ŵ) (y − h(ŵ)) + ΔPM(ŵ)Mp̃(ŵ)

ŷ = h(ŵ), ŵ =

[
x̂
ẑ

]

˙̂w =

⎡
⎣

a(ŵ) + b(ŵ)u

−
[
∂pk−1

∂ẑ

]−1 ∂pk−1

∂x̂
(a(ŵ) + b(ŵ)u)

⎤
⎦+ kHGR(ŵ) (y − h(ŵ))

ŷ = h(ŵ), ŵ =

[
x̂
ẑ

]

ŵ0

ŵ

ΔPM(ŵ)Mp̃(ŵ)
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Observer Design MIMO

Similar design steps as in SISO case:

Modified High-Gain Obsverver

˙̂w = f (ŵ) + G(ŵ)u + KHGR (ŵ) (y − h(ŵ)) + ∆PM(ŵ)Mp̃(ŵ)

ŷ = h(ŵ)

ŵ ∈ Rn+p, y , u ∈ Rm

Observer Gain MIMO

KHGR (ŵ) =
[

kHGR,1(ŵ) . . . kHGR,m(ŵ)
]

With observer gain of the SISO subsystems:

kHGR,i (ŵ) = Q+
BR,i (ŵ)k i , ∀i ∈ {1, . . . ,m}

KHGR (ŵ) =
[

Q+
BR,1(ŵ) . . . Q+

BR,m(ŵ)
]




k1 0 . . . 0

0 k2

. . .
.
.
.

.

.

.
. . .

. . . 0
0 . . . 0 km




= Q+
BR (ŵ)K

Constant gain K via pole placement for matrix A - KC
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Example: MIMO

aa!!
!!aa

aa!!
!!aa

����

����

?
6
r- -

- - -

-

f10

f20

α1

α2

M

M

u2

u1

Q1

Q2

Q f

pN

pO
∆pR1 ∆pV 1

∆pR2 ∆pV 2
∆pR

∆p

Figure: Gas mixing pipe system
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...Example: MIMO

Semi-Explicit Model:

ẋ =
1

T
u

0 =

[
cR1z

2
1 + cV z

q
1 Ψ (x1) + cR (z1 + z2)2 −∆p

cR2z
2
2 + cV z

q
2 Ψ (x2) + cR (z1 + z2)2 −∆p

]
= p(x, z)

y =




1

z1 + z2
(f10z1 + f20z2)

z1 + z2




with x = [α1 α2]T , z = [Q1 Q2]T , y = [f Q]T , u = [u1 u2]T

Explicit Model:

ẇ =



ẇ1

ẇ2

w3

w4


 =




1

T
u

− 1

T

[
∂p(x, z)

∂z

]−1 [∂p(x, z)

∂x

]
u




y =




1

w3 + w4
(f10w3 + f20w4)

w3 + w4




with w =
[
xT zT

]T
, y = [f Q]T , u = [u1 u2]T
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...Example: MIMO

Observer:

˙̂w =




1

T
u

− 1

T

[
∂p(x̂, ẑ)

∂ẑ

]−1 [∂p(x̂, ẑ)

∂x̂

]
u


+

+




0 0
0 0

k1
ŵ3 + ŵ4

f10 − f20
k2

ŵ3

ŵ3 + ŵ4

−k1
ŵ3 + ŵ4

f10 − f20
k2

ŵ3

ŵ3 + ŵ4




︸ ︷︷ ︸
KHGR (ŵ )




y −




1

ŵ3 + ŵ4
(f10ŵ3 + f20ŵ4)

ŵ3 + ŵ4




︸ ︷︷ ︸
ŷ




+ ∆PM(ŵ)Mp̃(ŵ)

Index-1 system ⇒ p̃(ŵ) = p(ŵ) ⇒ ∆PM(w) =
[
∂p
∂w
]T ( ∂p

∂w
[
∂p
∂w
]T)−1

∂p
∂w

M =



µ11 µ12

µ21 µ22

µ31 µ32

µ41 µ42



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...Example: MIMO
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...Example: MIMO

M 6= 0 :
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ŵ3

0 5 10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

-3

Time in s

G
as

 fl
ow

 Q
2

 

 

 
System
Observer

ŵ4
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Design and Validation of an SOH-Algorithm for Lithium Ion Batteries

Stefan Doczya Wolfgang Topplera

The usage of modern lithium ion batteries in the hybrid powertrain of buses and commercial
vehicles allows significant fuel savings. Therefore the reliable prediction of the usable energy
window and the power limits over life time of the battery is very important for the optimal
energy management of the vehicle.

In the presented project a high voltage (700V) and high power (120kW) battery for hybrid
electric vehicles was developed. For the battery management a state of health (SOH) al-
gorithm was designed to estimate the current ageing status, which is described by several,
partially dependent values. Among these, the battery capacity, limited by the minimum cell
capacity, is representative for the usable energy window and will decrease over life time. The
internal charge resistance and discharge resistance are limiting charge power and discharge
power ability and will increase over life time. For an accurate validation of the ageing status
the battery must perform reference tests on a suitable test bench (i.e. static capacity test,
hybrid pulse power characterisation).

Figure 1: Reference test results for battery capacity (left) and ageing status (right)

Life time testing of batteries on test bench, using a customer defined power profile, started
in an early phase of the project, but was not finished at start of production. For validation
reasons several batteries used in vehicles were provided by the customer for reference tests.
Test results for some of these batteries are shown in Figure 1.

The SOH algorithm is slightly underestimating the ageing mechanisms of the batteries used
in the vehicles and therefore prevents the systems to be overloaded, which was an important
project target.

The life time requirements defined at start of the project were achieved by batteries used in
vehicles and on test bench for more than five years.

aSamsung SDI Battery Systems, Frikusweg 1, 8141 Zettling, E-Mail: s.doczy@samsung.com
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Battery Systems Zettling (AT) 

9/9/2015 SDIBS Sales & Marketing  Disclosure or duplication without consent is prohibited 3 

 

• Employees: 340 

• Plant Size: 14,060 m² 

• Functions 

Engineering, Testing and Validation 

Prototype Battery Production 

Battery Pack Production 

Zettling (HQ) 

Overview 

• System description 

 

• System requirements 
– Power ability and system resistance 

– Energy content and system capacity 

– Life time requirements   

 

• Design of algorithm 
– Cyclic ageing 

– Calendaric ageing 

– Online reference resistance determination 

– Usage logging 

 

• Validation 
– System test on test bench 

– EHEV – Eco Drive for Hybrid Electric Vehicles 

– Systems returned from customer 
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System description 

•  Technical details 
– Energy content: 4,9 kWh 

– Power: 120 kW  nom. voltage: 600 V 

– Weight: 210 kg   volume: 230 l 

– Cells: cylindrical – Li-Iron Phosphate 3,5 Ah 
• 2 cells in parallel 

• 192 cell pairs in series 

– Number of modules: 11 (10+1) 

– Dimensions (L/W/D): 740mm/615mm/505mm 

– Design start: 02/2007 

– SOP: Q3/2009 – first to market 

 

• HEV application 
– High power 

– High energy throughput 

– Up to 5000 operating hours a year 
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Power ability and system resistance 

• System power ability is depending on 
– System and cell voltage range 

– Temperature  

– State of charge (SOC)  

– Pulse duration 

 

• Voltage range 
– System: 500V to 700V 

– Cell: 2,6V to 3,65V 

 

• HPPC (Hybrid Pulse Power Characterisation) 
– Same current profile to be used for entire system life 

time  
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tRcha1

tRcha3

tRcha2

UOCV,cha

Ucha1

Ucha3

Ucha2

HPPC reference test 

70% SOC, 75A, 10s, 31°

Power ability and system resistance 

• System power ability is depending on 
– System and cell voltage range 

– Temperature  

– State of charge (SOC)  

– Pulse duration 

 

• Voltage range 
– System: 500V to 700V 

– Cell: 2,6V to 3,65V 

 

• Internal resistance 

– 𝑅10𝑠 =
𝑈10𝑠−𝑈𝑂𝐶𝑉

𝐼
 

 

• Maximum power ability 

– 𝑃10𝑠,𝑚𝑎𝑥 =
𝑈𝑚𝑎𝑥−𝑈𝑂𝐶𝑉

𝑅10𝑠
𝑈𝑚𝑎𝑥 
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Energy content and system capacity 

• System energy content is depending on 
– Cell voltage range 

– Temperature 

– Current (C-rate) 

 

• Voltage range 
– Cell: 2,2V to 3,6V 

 

• Energy window 

 

 

 
 

 

 
 

• SOC window is chosen according to power 
demand and power ability 
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1.2kWh energy window

70kW 60s cha 
1,17kWh

90kW 10s cha
 0.25kWh

120kW 10s dcha
 0.33kWh

70kW 60s dcha 
1,17kWh

1.2kWh
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Life time requirements 

• Begin of Life (BoL)  
– Discharge power 120kW, 31°C, 10s 

– Charge power 90kW, 31°C, 10s 

– Energy window 1.200Wh  
• SOC window 30% to 60% of BoL capacity 

 

• End of Life (EoL) 
– Discharge power 90kW, 31°C, 10s 

– Charge power 67.5kW, 31°C,10s 

– Energy window 600Wh 
• SOC window of 30% to 45% of BoL capacity 

 

• 15.000 operating hours 
– 5.000 operating hours a year 

 

• Cycle definition – reference driving cycle 
– CBR85 (city bus route Gothenburg) 

– Average power 22kW 

 

• Energy throughput 330MWh 
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Design of algorithm – cyclic ageing  
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• Usage of the system in real application must be mapped to ageing caused by 
reference driving cycle 
– Open loop determination of resistance growth based on ageing hours 

 

• Main influencing parameters 
– Temperature 

– Power 

– SOC 

 

• Data base 
– Cell testing results 

– System testing results 

 

 

 

time Window

temperature

power

average 

temperature 

determination

accelerated ageing 

due to temperature

accelerated ageing 

due to power

factor for 

accelerated 

ageing

FctAcclTemp

SOC

FctAcclPow

power acceleration 

parameters 
SOC acceleration 

parameters 

reference cycle 

acceleration 

parameters 

average power 

determination

accelerated ageing 

due to SOC

FctAcclSoc

temperature 

acceleration 

parameters 

* * +

trigger

z
-1

AgeingHours

average SOC 

determination
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Design of algorithm – updates 

• Calendaric ageing 
– Ageing based on storage test data on 

cell level 

– Main influencing parameters 
• temperature 

• SOC  

– Real time clock (RTC) necessary  

 

• Online reference resistance 
determination 
– Determination of system (cell) 

resistance during operation  
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Open loop resistance growth

In

SOC

Temperature

time

Calendaric 

ageing

Cyclic ageing

In

PackCurrent

Cell voltages

Temperature

SOC

time

Charge and 

discharge 

resistance 

growth

Online 

reference 

resistance 

determination

Out

Feedback loop resistance correction mechanism

Out

AgeingHoursResCh

AgeingHoursResDch

SOHResCh

SOHResDch

Cell resistances

Confidence level

filter buffer

Ri determination 

(variable time 

values)

pulse 

determination

OCV

 determination

confidence 

level

trigger

Ri mapping
comparison 

and weighting

SOH 

determination

Ri reference 

In Out

PackCurrent

Cell voltages

Temperature

SOC

time

AgeingHoursResCh

AgeingHoursResDch

SOHResCh

SOHResDch

Cell resistances

Confidence level

Design of algorithm – usage logging 

• Data stored during operation to ensure proper usage of the system 
– Cell temperature histogram  

– SOC histogram 

– Power limit violation 

– Cell voltage violation  
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Validation – system test on test bench 

• Test start April 2009 
– 3 systems using different coolant inlet temperature 

– Reference driving cycle CBR85 

 

• ESS 002 
– Coolant inlet temperature up to 47°C 

– Same temperature for 2 reference driving cycles (2,5h) 

• ESS 025 
– Coolant inlet temperature 27°C 

• ESS 026 
– Coolant inlet temperature up to 52°C 

– Same temperature for approx. 2 weeks 
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BoT

EoT

cycling

cell balancing

extended reference 

testing

reference testing

Validation – system test on test bench 

• Test start April 2009 
– 3 systems using different coolant inlet temperature 

– Reference driving cycle CBR85 

 

• First part finished August 2010 
– 200MWh 

– 9.000 operating hours 

 

• ESS 002 
– Test stopped August 2010 

 

• ESS 025 
– Test continued to April 2015 

– 315MWh 

– 14.000 operating hours 

 

• ESS 026 
– Test stopped August 2010 

– Disassembled 

– Capacity check for 192 cell pairs  
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Validation – EHEV 

• EHEV - Eco Drive for Hybrid Electric Vehicles 
– Analysis of system usage in the vehicle 

– Analysis of battery ageing  

– Analysis of influence of different driving styles on 
ageing of the battery 

 

• ESS 170 - System equipped with additional 
measurement devices  
– GPS module 

– UMTS data module for data exchange 
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Validation – EHEV 

• Influence of different driving styles 
on ageing of the battery 

 

 

 

 

 

 

• Conclusion 
– Passive driving style 

• predicted life time 11% or 1.650 
operating hours longer 

• energy throughput 300MWh 

– Aggressive driving 
• predicted life time 7% or 1.050 

operating hours shorter 

• energy throughput 326MWh 
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Passive driving style Aggressive driving style 

duration in s, for a pulse being above a certain C-rate 

619 pulses 633 

pulses 

Battery energy throughput 

1.22 kWhel/km; 17.6 kWhel/h 1.46 kWhel/km ; 22.5 kWhel/h 

(Dis-)Charging characteristic 

duration temp_avg SOC_avg P_avg energy rel ageing

[s] [°C] [%] [kW] [kWh] [1]

pass_T1 5320 27,9 38,4 17,1 25,56 0,813

pass_T2 5050 32,1 38,8 18,8 26,61 0,956

aggr_T1 4870 33,2 37,9 23,3 31,75 1,120

aggr_T3 4625 31,2 37,4 23,5 30,28 1,062
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Validation – EHEV 

• 3 reference measurements on test bench 
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date

operating 

hours

energy 

throughput capacity 

[h] [MWh] [Ah]

20101222 0,0 0,0 6,83

20120502 2344,5 27,9 6,46

20130723 5251,4 65,2 5,98

Validation – systems returned from customer  

• 3 systems returned April to June 2013 

• 1 system returned June 2015 

• Reference measurements 
– Capacity determination 

– HPPC 
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operating 

hours

energy 

throughput capacity

production 

date

reference 

measurement

[h] [MWh] [Ah]

ESS165 13626,3 184 5,67 20100608 20130614

ESS169 9932,5 143,6 6,06 20100616 20130426

ESS183 10177,4 137,0 5,61 20100817 20130426

ESS144 23994,2 338,6 4,00 20100505 20150707
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Validation – summary  

• Capacity vs. energy throughput  
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Validation – summary  

• Capacity vs. time  
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Validation – summary  

• Energy throughput vs. time  
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Validation – SOH algorithm  

• Comparison of ageing hours value determined during usage of the battery in the 
vehicle to ageing hours values determined due to reference measurements on 
test bench 
– SOHcapacity   AgeingHoursCap 

– SOHResCh   AgeingHoursResCh 

– SOHResDch   AgeingHoursResDch 
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capacity

operating AgeingHours

AgeingHours 

Cap

AgeingHours 

ResCh

AgeingHours 

ResDch

[h] [h] [h] [h] [h]

ESS 165 13626 10913 5905 9497 9359

ESS 169 9933 8861 4318 6529 6648

ESS 183 10177 8442 6164 7090 7137

ESS 144 23994 18284 14062 16436 11589

ESS 170 5251 4048 4621 5533 5404

SOH algorithm

reference measurements

HPPC test
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Validation – SOH algorithm  

• Comparison of ageing hours value determined during usage of the battery in the 
vehicle to ageing hours values determined due to reference measurements on 
test bench 
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Control-oriented Turbocharger Modeling

Markus Freistätterab Robert Bauerb Nicolaos Dourdoumasa

Wilfried Rosseggerb

The use of turbochargers in the automotive industry has grown significantly over the past
years. Almost every Diesel engine and an increasing number of gasoline engines are equipped
with a turbocharger. Research and testing of turbochargers is often done using hot gas test
beds. In such an unit a mixture of natural gas and air is burnt in a combustion chamber and
the hot burnt gas is used to drive the turbine. Models are needed of the test bench itself as
well as of the device under test (the turbocharger).

There already exists a variety of turbocharger models of differing complexity. Kessel presents
in [1] very detailed models for turbine and compressor. However, they don’t fit the measured
data obtained on the test bench very well. The newly developed model resembles one of
the methods of Moraals overview in [2] as physical modeling is combined with curve fitting.
The modeled quantities include mass flow, pressure ratio, efficiency and temperatures of
compressor and turbine. Compressor instabilities, the influence of Wastegate valves and
Variable Geometry Turbines are considered as well.

[1] Kessel, Jens-Achim: Modellbildung von Abgasturboladern mit variabler Turbinengeo-
metrie an schnellaufenden Dieselmotoren. Doktorarbeit, TU Darmstadt, Mai 2004.

[2] Moraal, Paul und Ilya Kolmanovsky: Turbocharger modeling for automotive con-
trol applications. Technischer Bericht, SAE Technical Paper, 1999.

aInstitut für Regelungs- und Automatisierungstechnik, Technische Universität Graz, Kopernikusgasse 24/II,
8010 Graz, E-Mail: markus.freistaetter@tugraz.at, nicolaos.dourdoumas@tugraz.at

bKristl, Seibt & Co GmbH, Baiernstraße 122a, 8052 Graz, E-Mail: robert.bauer@ksengineers.at,
wilfried.rossegger@ksengineers.at
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Control-oriented 

Turbocharger Modelling

09.09.2015

Markus Freistätter, Institute of Automation and Control

1

Turbocharger

09.09.2015

Markus Freistätter, Institute of Automation and Control

2

Turbine and compressor wheel

Exhaust gas drives turbine

Turbine drives compressor

• Compressed air leads to increase of power or 

efficiency
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Hot gas test bed

Relevant quantities (control):

• Turbine mass flow (speed)

• Hot gas temperature

• Compressor mass flow

09.09.2015

Markus Freistätter, Institute of Automation and Control

3

Hot gas test bed control

Modelling:

• Temperature

• Mass flow and pressure

• Turbocharger

09.09.2015

Markus Freistätter, Institute of Automation and Control

4
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Turbocharger maps

Turbine map Compressor map

09.09.2015

Markus Freistätter, Institute of Automation and Control

5

Model

• Simple models

• Few parameters

• Cover the essential effects

Turbocharger maps

Turbine map Compressor map

09.09.2015

Markus Freistätter, Institute of Automation and Control

6

Model

• Simple models

• Few parameters

• Cover the essential effects
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Motivation for new model

Models based on turbine and compressor power 

balance [1] don‘t fit well

09.09.2015

Markus Freistätter, Institute of Automation and Control

7

[1] Kessel, J.-K.: Modellbildung von Abgasturboladern mit variabler Turbinengeometrie an schnellaufenden

Dieselmotoren. PhD Thesis. TU Darmstadt, 2003.

with

Approximation:

Basic models

Orifice:

… flow coefficient

Fan:

09.09.2015

Markus Freistätter, Institute of Automation and Control

8
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Turbine mass flow (1/2)

Orifice:

Turbine mass flow:

Problem: Choke line

09.09.2015

Markus Freistätter, Institute of Automation and Control

9

Turbine mass flow (2/2)

Choke line virtual mass flow (no physical meaning)

Neglect compressor influence

09.09.2015

Markus Freistätter, Institute of Automation and Control

10
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Turbocharger speed

Power balance model:

09.09.2015

Markus Freistätter, Institute of Automation and Control

11

New model:

Dynamic behaviour: Low pass

Turbocharger modelling

Speed and compressor mass flow control

Turbine and compressor models

09.09.2015

Markus Freistätter, Institute of Automation and Control

12
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Compressor pressure (1/3)

Combine orifice with fan

Approximation:

Good:

• Low speeds

• Maximum pressure rise

Bad:

• Choke line

09.09.2015

Markus Freistätter, Institute of Automation and Control
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Compressor pressure (2/3)

Choke line virtual mass flow (no physical meaning)

Good:

• Choke line

Bad:

• Speed dependency

09.09.2015

Markus Freistätter, Institute of Automation and Control

14
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Compressor pressure (3/3)

Speed dependent weighting:

with

Cause – Effect?

Input: Mass flow

Output: Pressure ratio

Dynamic behaviour: Low pass

09.09.2015

Markus Freistätter, Institute of Automation and Control

15

Isentropic compressor efficiency (1/2)

Points of maximum 

efficiency

Maximum efficiency 

against speed

09.09.2015

Markus Freistätter, Institute of Automation and Control

16
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Isentropic compressor efficiency (2/2)

Maximum efficiency and distance to it

09.09.2015

Markus Freistätter, Institute of Automation and Control

17

Compressor outlet temperature (1/2)

Ideal gas law: 

Isentropic change:

… isentropic exponent

Isentropic efficiency (compressor):

09.09.2015

Markus Freistätter, Institute of Automation and Control

18
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Compressor outlet temperature (2/2)

Dynamic behaviour is modelled similar to thermal model 

of combustion chamber [2]

with

09.09.2015

Markus Freistätter, Institute of Automation and Control

19

[2] Bauer, R.: Modellierung und modellbasierte Regelungsstrategien am Beispiel einer Biomasse-

Feuerungsanlage

Conclusion

Hot gas test beds and turbocharger testing

Necessity of turbocharger modelling

Turbocharger model consisting of

• Pressure ratio

• Efficiency

• Temperature

for turbine and compressor

09.09.2015

Markus Freistätter, Institute of Automation and Control

20
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HOSM Based Observation, Identification

and Output Based Control

Leonid Fridman
Departamento de Ingenieria de Control y Robotica,

Facultad de Ingenieria UNAM, Mexico

The key point of this study are Robust Exact Differentiators[1,2]. Such dif-
ferentiators in the absence of noise, converge to the true derivatives of the signal
after a finite time. Moreover, they provide best possible asymptotic precision
with respect to sampling steps and measurement noise.

The paper presents The presentation contains the overview of results of
Sliding Mode Control Laboratory on higher order sliding mode observation.

Fixed-time robust exact differentiators[3,4].An arbitrary order differentiator
that, in the absence of noise, converges to the true derivatives of the signal after
a fixed time independent of the initial differentiator error is presented.

Robust exact observation of strongly observable and detectable systems[5-7].
A global observer is designed for strongly detectable LTI systems with bounded
unknown inputs. The design of the observer is based on three steps. Firstly,
the system is extended taking the unknown inputs (and possibly some of their
derivatives) as a new state; then, using a HSOM differentiator, a new output of
the system is generated in order to fulfil, what we will call, the strong observ-
ability condition, which finally decomposing the system, in new coordinates,
into two subsystems; the first one being unaffected directly by the unknown
inputs, and the state vector of the second subsystem is obtained directly from
the original system output.

Such decomposition permits designing of a Luenberger observer for the first
subsystem, which satisfies the strong observabiliry condition, i.e. all the outputs
have relative degree one w.r.t. the unknown inputs. This procedure enables
one to estimate the state and the unknown inputs using the least number of
differentiations possible.

Robust exact output control based on HOSM observation[8.9]. Semi-global
finite-time exact stabilization of linear time-invariant systems with matched
disturbances is attained using a dynamic output feedback, provided the system
is controllable, strongly observable and the disturbance has a bound affine in
the state norm. The novel non-homogeneous HOSM control strategy is based
on the gain adaptation of both the controller and the differentiator included in
the feedback. A robust criterion is developed for the detection of differentiator
convergence to turn on the controller at a proper time.

Robust exact output control based on HOSM identification of perturbation[10-
12].The problem of robust exact output control for linear systems with smooth
bounded matched unknown inputs is considered. The higher order sliding mode
observers provide both theoretically exact observation and unknown input iden-
tification. A methodology is proposed to select the most adequate output control
strategy for matched perturbations compensation. The possibility for theoret-
ically exact uncertainties compensation using signals identified by HOSM ob-
servers. Towards this aim, we modify the hierarchical super-twisting observer in
order to have the best possible observation and identification accuracy. Then,
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two controllers are compared. The first one is an integral sliding mode con-
troller based on the observed values of the state variables. The other strategy
is based on the direct compensation of matched perturbations using their iden-
tified values. The performance of both controllers is estimated in terms of the
deterministic noise upper bounds, sampling step and execution time. Based on
these estimations, the designer may select the proper controller for the system.

A collection of the papers with different type of HOSM based observers, can
be found on the web site http://verona.fi-p.unam.mx/˜lfridman/
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Fig. 4. Precision of [rad] using OISMC applying a (left) first-order
HOSM differentiator and a (right) second-order HOSM differentiator.

• two robust output feedback control strategies were com-
pared:
— continuous compensation control based on the es-

timated states and the compensation of identified
unknown inputs (EOFS);

— output integral sliding mode control based on estimated
states (OISMC).

• a methodology is suggested for the selection of an ap-
propriate controller based on the comparison of both con-
trol strategies considering the accuracy of observation and
identification algorithms as well as the actuator time con-
stant;

• the proposed methodology is experimentally validated in
an inverted rotary pendulum system.
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Linear systems with unknown inputs

The system.

Consider

Σ :

{
ẋ = Ax + Bu + Dw , x(0) = x0,
y = Cx ,

(1)

where

x(t) ∈ Rn is the state, w(t) ∈ Rm is the unknown input;

u(t) ∈ Rq is the control, y(t) ∈ Rp is the measured output.

Strong Observability:

The system is strongly observable if for any x(0) and w(t) it follows from
y(t) ≡ 0 ∀ t ≥ 0 that x(t) ≡ 0 [Hautus: 83].

Strong Detectability:

The system is strongly detectable if for any x(0) and w(t) it follows from
y(t) ≡ 0 ∀ t ≥ 0 that x(t)→ 0 as t → 0 [Hautus: 83].

6
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Invariant zeros

The Rosenbrock of (A, C , D):

R(s) =

[
sI − A −D
C 0

]
.

The values s0 ∈ C such that rank R(s0) < n + m are called invariant zeros
of (A, C , D).

7

Linear systems with unknown inputs

Problem formulation:

Estimate x(t) based on output measurements only {y(t), t ∈ [0,T ]}.

State reconstruction without differentiation[Hautus: 1983]

The system does not have invariant zeroes.

All the matrices are known i.e.,A, B, C , D.

C and D are full rank matrices.

If rank(C ) = p and rank(D) = m, then p ≥ m.

rank(CD) = m Relative degree condition.

Canonical form




dy⊥/dt
dy1/dt
dy2/dt


 =




A11 A12 A13

A21 A22 A23

A31 A32 A33






y⊥

y1
y2


+ Bu +




0
0

w(t)




8
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Mechanical system

Let us consider the following mechanical system:

M(q)q̈ + C (q, q̇)q̇ + P(q̇) + G (q) + ∆(t, q, q̇) = τ

State space form x1 = q, x2 = q̇, u = τ

ẋ1 = x2,

ẋ2 = f (t, x1, x2, u) + w(t, x1, x2); y = x1

Relative degree condition(linearized case)

C = [1 0], D =

[
0
1

]
, CD = 0.

Remark:

When the relative degree of w(t) w.r.t. y(t) is higher than one, i.e.
rank(CD) < m, output differentiations are necessary.

10
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A simple observer for Mechanical Systems

Formulation of the problem:

Estimate the velocity trough position, when acceleration is bounded.

ẋ1 = x2, ẋ2 = f (x1, x2, t) + w , y = x1.

A simple observer [Davila et.al. 05].

The observer

˙̂x1 = −1,5
√
L|y − x̂1|

1
2 sign(y − x̂1) + x̂2,

˙̂x2 = f (x1, x̂2, t)− 1,1L sign(y − x̂1), |f (x1, x̂2, t)− f (x1, x2, t) + w | < L

The terms depending on x1 only are not taken into account!!!

finite-time estimation of x2, i.e., x̂2(t) = x2(t),∀t ≥ T ;

the best asymptotic precision in the sense of [Kolmogorov:62].

11
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Single Unknown Input- Single Output Case

Strong Observability - Invariant Zeros Relation

Strong observability requires that for any input w , the equality y ≡ 0
implies x ≡ 0. The existence of invariant zeros s0 implies the existence of
inputs w(s0) such that y ≡ 0 for x 6= 0

Absence of invariant zeros is sufficient and necessary condition for
strong observability(Hautus,1983)

13

Single Unknown Input- Single Output Case

Strong Observability - Relative Degree Relation

Taking the first n − 1 derivatives of the output

y = Cx

ẏ = Cẋ = CAx(t) + CDw
...

y (n−1) = CAn−1x + CAn−2Dw + ...+ CDw (n−2)

Relative degree n is required

to obtain a set of n equations independent on w :




CD
CAD

...
CAn−2D


 =




0
0
...
0




14
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Single Unknown Input- Single Output Case

Invariant zeros - Relative Degree Relation

Rosenbrock matrix for the tuple (A, C , D):

R(s) =

[
sI − A −D
C 0

]
.

Determinant of the Rosenbrock matrix
det(R) = (sn−1 + ans

n−2 + ...+ a2)CD+
(sn−2 + ans

n−3 + ...+ a3)CAD + ...+ (s + an)CAn−2D + CAn−1D

Relative degree n is necessary:

The determinant does not dependent on s iff:




CD
...

CAn−2D


 =




0
...
0




15

Methodology

The Unknown Input Observer (UIO) design problem for strongly observable
systems is reduced to evaluate in real-time derivatives of the output.

The k-th order HOSM differentiator for yj

ż0 = ν0 = −λkL
1

k+1 |z0 − yj |
k

k+1 sign(z0 − yj) + z1,

ż1 = ν1 = −λk−1L
1
k |z1 − ν0|

k−1
k sign(z1 − ν0) + z2,

...

żk−1 = νk−1 = −λ1L
1
2 |zk−1 − νk−2|

1
2 sign(zk−1 − νk−2) + zk ,

żk = −λ0L sign(zk − νk−1),

(2)

λ0 = 1,1, λ1 = 1,5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8.

Convergence of the HOSM differentiator [Levant:03].

If the gain L satisfies L > |y (k+1)
j (t)| for all t, then zi = y

(i)
j after

finite-time.

16
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Uniform Robust Exact First-Order Differentiator [Cruz et. al. 11].

ż0 = −k1φ1(z0 − yj) + z1, ż1 = −k2φ2(z0 − yj),

where
φ1(σ0) := dσ0c1/2 + dσ0c3/2,
φ2(σ0) := 0,5 sign(σ0) + 2σ0 + 1,5dσ0c2.

and dvcp := |v |p sign(v).

Remarks.

the differentiator is uniform with respect to the initial differentiation
error;

this means that the resulting observer converges in prescribed time;

useful for systems with strictly positive dwell-time.

17

3

and C1, C2, C3, and C4 are positive constants independent of the
initial conditions.

Proof: Appendix B.
Since the high-degree terms of the URED are stronger than the

low-degree ones far from the origin, they are responsible for a faster
convergence, and provide for the uniform convergence to a compact
set �c

" containing the origin, as shown in Proposition 4. On the other
hand, Proposition 3 ensures the exact convergence of system (3) to
the origin, despite of the bounded perturbation

���f̈0 (t)
��� < L, a fact

that is due to the low-degree terms, which are stronger than the high-
degree ones in a neighborhood of the origin. Both Propositions 3 and
4 together guarantee that the differentiator error (3) is uniformly exact
convergent, for f̈0 bounded, so that the convergence time of every
trajectory can be bounded by the same constant.

IV. CONVERGENCE TIME ESTIMATION

Once µ > 0 and the gains (k1, k2) have been selected, according
to Theorem 2, (9) provides a convergence time estimation for the
differentiator, that grows unboundedly with the norm of the initial
differentiator error. However, (11) shows that any trajectory of the
same algorithm converges uniformly to the level set �c

", i.e. in
a time bounded by the same constant, independent of the initial
condition. Combining both time estimations, an upper bound T for
the convergence time of any trajectory of (3) is given by

T  4�
1
2
max {P}

✏
⌘

1
2 + 12 (2C2)

7
6

✓
1

"

◆ 1
6

, (12)

where " � C1

⇣
2C3 + 2

p
C4 + C2

3

⌘3

, and the values of
C1, · · · , C4, ✏ and P are calculated as described in Appendices A
and B. Moreover, the value of ⌘ is selected, such that ⇤2," ⇢ ⌦1,⌘ ,
where ⇤2," = {� | V2 (�) = "} is a level surface of V2 (�), and
⌦1,⌘ = {� | V1 (�)  ⌘} is a level set of V1 (�). ⇤2," ⇢ ⌦1,⌘ can
always be satisfied choosing ⌘ large enough.

An appropriate value of ⌘ can be calculated in the following form:

Choose ! >
⇣

1
C1

"
⌘ 1

3 , so that the homogeneous ball Bh,! =n
� | k�kr,p  !

o
� ⇤2,", where k·kr,p is an homogeneous norm

defined in Appendix B. Now, a value ⌫ has to be found, such that
B⌫ =

�
� | k⇣k2  ⌫

 
� Bh,! , where k⇣k2

2 = |�0| + 2µ |�0|2 +

µ2 |�0|3 + �2
1 . This can be calculated by finding the maximum

value of k⇣k2 on the boundary of Bh,! . By simple calculus for
this maximum, k⇣k2

2 max = max
�
⇢
�
|�0|1

�
, ⇢
�
|�0|2

� 
, where

⇢ (|�0|) = (µ |�0| + 1)2 |�0| +
⇣
!

2
7 � |�0|

7
2

⌘ 6
7 , |�0|1 = !

4
49 , and

|�0|2 is the only positive real root of

⇣
!

2
7 � |�0|

7
2

⌘
=

 
|�0|

5
2

(µ |�0| + 1)
�
µ |�0| + 1

3

�
!7

.

Finally, selecting ⌫ > k⇣k2 max the required value of ⌘ is given by
⌘ = �max {P} ⌫2.

Remark 5: Note from (12) that the prescribed time of the URED
is a constant, and it can be made arbitrarily small selecting the gains
k1 and k2 properly.

V. SIMULATION EXAMPLE

We compare the URED with Levant’s robust differentiator [5].
For the simulation a value of µ = 1 has been set for the URED
and µ = 0 for Levant’s differentiator. The base signal to be
differentiated is f0 (t) = 5t + sin t with two different noise terms:
v1 (t) = 0.01 cos 10t, and v2 (t) = 0.001 cos 30t. With L = 2.5
appropriate values for the gains are k1 = 2

p
3, k2 = 6 (see

(4)) and two initial conditions for the output signal z(0) = 0 and
z(0) = [10 , 0]T are taken. The results are shown in the Fig. 1.
Both differentiators have robust and exact convergence. However,

Fig. 1. The URED (continuous line) and Levant’s robust exact differentiator
[5] (dotted line)

as shown in Fig. 2, the convergence time of Levant’s differentiator
[5] grows unboundedly with the norm of the initial condition, while
the convergence time of the URED is asymptotically bounded by
a constant for growing initial condition’s norm. This prescribed
convergence time can be estimated by the expression (12).
1) Selecting (see Appendix) � = 1.22228, we have �̄m = 2.14039,

Fig. 2. Convergence time of both differentiators by growing initial condition
norm for f(t) = 5t + sin t + 0.01 cos 10t.

�̄M = 0.361173, ⇠ = 2.74119, C1 = 0.398254, C2 = 3.68254,
C3 = 22.1792, C4 = 20.4383 and, consequently, " = 286752 and
T2 (") = 15.1811.
2) Find P = P T > 0 and ✏ > 0 such that (6) is satisfied. This
happens for

A =


�3.4641 1

�6 0

�
, P =


10.4315 �2.7068
�2.7068 2.0680

�
,

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: June 14, 2011 07:49:19 PST

Figura: Convergence time of the Uniform Robust Exact Differentiator (URED).
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Arbitrary Order Uniform HOSM differentiator [Angulo et.al: 13,
Automatica].

Given a signal yj(t) to be differentiated (n − 1)-times, the differentiator

˙̂xi = −λidyj − x̂1c
n−i
n − kidyj − x̂1c

n+αi
n + x̂i+1, i = 1, . . . , n − 1,

˙̂xn = −λn sign(yj − x̂1)− kndyj − x̂1c1+α, (3)

with {λi}ni=1 chosen as Levant’s, α > 0 small enough and {ki}ni=1 such
that is P(s) = kns

n−1 + kn−1sn−2 + · · ·+ k2s + k1, provides is stable
polynomial, provides

uniform finite-time estimation, i.e., ∃T independent of |x̂i (0)+
−y i−1j (0)|, i = 1, . . . , n, such that

x̂i (t) = y
(i−1)
j (t), ∀t ≥ T , i = 1, . . . , n;

the best asymptotic precision under measurement noise
[Kolmogorov:62].
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Outline

1 Background
Unknown input observers

2 Strong Observability - Invariant Zeros - Relative Degree
Relation of concepts for SUISO Systems
HOSM Observers for linear systems with unknown inputs

3 Applications
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Linear systems with unknown inputs

The system

Consider

Σ :

{
ẋ = Ax + Bu + Dw , x(0) = x0,
y = Cx ,

(4)

where

x(t) ∈ Rn is the state, w(t) ∈ Rm is the unknown input;

u(t) ∈ Rq is the control, y(t) ∈ Rp is the measured output.

Relative degree

The integer-scalar r such that

ciA
jD = 0, j = 0, ..., ri − 2, ciA

ri−1D 6= 0,

ri ≤ n − 1

where ci is the ithm row of C .

21

Observers for linear systems with unknown inputs

A cascade concept [Fridman et al. 2007]

22
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Observers for linear systems with unknown inputs

A HOSM observer [Fridman et al. 2007]

Observer for the strongly observable case and
∑m

i=1 ri = n

ż = Az + Bu + L(y − Cz),
v̇ = W (y − Cz , v),
x̂ = z + Kv

(5)

L ∈ Rn is the correction term chosen such that A− LC is Hurwitz;

for i=1, ..., m:

K−1 =




P1
...

Pm


 , Pi =




ci
...

ci (A− LC )n−1


 ;

.

W (·) is a nonlinear HOSM term.
23

Observers for linear systems with unknown inputs

A HOSM observer [Fridman et al. 2007]

Nonlinear HOSM term W T = [ v1 v2 ... vn ]

v̇1 = w1 = −αnN
1/n|v1 − (y − Cz)|(n−1)/nsign(v1 − (y − Cz)) + v2

v̇2 = w2 = −α(n−1)N1/(n−1)|v2 − w1|(n−2)/(n−1)sign(v2 − w1) + v3
...

v̇n−1 = wn−1 = −α2N
1/2|vn−1 − wn−2|1/2sign(vn−1 − wn−2) + vn

v̇n = −α1Nsign(vn − wn−1)
(6)

where N > |C (A− LC )n−1Dw(t)|.

24
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Observers for linear systems with unknown inputs

Canonical form of the estimation error x − z

The form is composed for Brunovsky blocks.

25

Observers for linear systems with unknown inputs

HOSM Observer [Fridman et al. 2007]

Advantages:

1 Finite-time theoretically exact observation of the system states

2 The cascade structure of observer allows to use any pre-filters or
stabilizers

Question

What can we do when the system is strongly observable but
∑m

i=1 ri < n?

26
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Weakly unobservable subspace

Invariant zeros

The Rosenbrock of (A, C , D):

R(s) =

[
sI − A −D
C 0

]
.

The values s0 ∈ C such that rank R(s0) < n + m are called invariant zeros
of (A, C , D).

The weakly unobservable subspace V∗
A state x0 ∈ X is called weakly unobservable, if there exist an input w
such that the corresponding output yw (t, x0) = 0 for all t ≥ 0. The set of
all the weakly unobservable points is denoted by V∗ and it is called the
weakly unobservable subspace of the system.

27

Molinari Decoupling Algorithm [Molinari: 1976]

The Molinari’s algorithm

The algorithm is given as follows:

Step 0: Let i = 0 and M0 = 0 (a null dimension matrix).

Step 1: Compute Γi =

[
MiD MiA

0 C

]
, Find Ti such that Γi is

reduced to

TiΓi =

[
Gi+1 Hi+1

0 Mi+1

]
,

where Gi+1 has full row rank.

Step 2: Let i = i + 1 and back to Step 1.

Remark

The algorithm ends when rank Mi = rank Mi+1. The matrix Mi , for which
the equality was satisfied, is denoted by Mn.

28
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Molinari Decoupling Algorithm [Molinari: 1976]

Theorem

ker Mn = V∗

Importance of the Molinari’s algorithm

Molinari’s algorithm for strongly observable systems gives an explicit
algebraic relation between the output, and its derivatives, and the state

v(y , ẏ , ..., y (k)) = Mnx (7)

Relations for strong observability

i) The system is strongly observable;

ii) the triplet (A,C ,D) does not have invariant zeros;

iii) V∗ contains only the zero vector, i.e. V∗ = {0}.

29

Observers for strongly observable systems with unknown
inputs

Canonical form

Let
∑

i=1mri = rp < n. The canonical form is composed by Brunovsky
blocks and a w dependent block.

30
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Observers for linear systems with unknown inputs

Observer in [Fridman et al. 2007]

1. The estimated states converge theoretically exactly in finite/fixed time
2. The cascade structure of observer allows:

X observation of unstable systems with finite differentiators gains;

X prefiltering

31

Outline

1 Background
Unknown input observers
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HOSM Observers for linear systems with unknown inputs
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Automotive application

Peugeot 406, IFFSTAR

Instrumentation

33

More Applications

3DCrane, 3DOF Helicopter, Industrial Crane, Hydraulic Pneumatics

34
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Conclusions

HOSM Observers
provide theoretically exact observation and unknown inputs and fault
estimation under sufficient and necessary conditions of the strong
observability/ detectability of states or unknown inputs or faults;

provide best possible asymptotic approximation w.r.t. discretization
step and/or bounded deterministic noises:

can ensure prescribed time convergence independent from any initial
conditions.

35

Conclusions

HOSM Observers are designed for
strongly detectable systems;

for observation of the functional of the states for the systems which
are even not strongly detectable;

observation of different classes of non- liinear systems:

for theoretically exact finite time parameter identification.
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Comparing model-free and disturbance observer based control

Mikulas Hubaa Peter Tapaka Stefan Chamraza

The iP controller [1] represents the simplest intelligent (model free) PID controller. Based
on the flatness theory, it may successfully be used for control of broad spectrum of nonlinear
systems. Though, to demonstrate its properties, it will be analyzed in control of a simple
integrator with an input disturbance.

Similarly, in Motion Control the frequently used control structures may be characterized as
disturbance observer (DO) based PI control [5, 6, 10, 9, 7]. These are still explored from
various points of view as robustness, or noise attenuation [8, 2, 3, 4]. Again, in the simplest
case they may be illustrated by control of a single integrator with an input disturbance.

The paper deals with comparison of both types of control with focus on the performance
and noise attenuation trade off.
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Motivation

There exist two similar approaches to disturbance reconstruction
and compensation for the first order systems:
————————————————
Question
Which one is better in context of the noise attenuation and
speed of transients?
————————————————————–

Disturbance observer based (filtered) PI control - DO-(F)PI?

“Model-free” inteligent P control - iP?

————————————————————–
Another Question
Why it is not enough to use the traditional PI control?

M.Huba, P. Tapak, S. Chamraz, STU Bratislava, Slovakia Comparing model-free and disturbance observer based control
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Motivation: huge progress in a DC motor speed control

———————————————————————————

IAE improvements when replacing 2DOF PI by DO FPI
control under the same torque ripple [7]
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Figure: IAE(2DOF PI)/IAE(DO FPI)=f(n), uTV1Σ ≈ const-equivalence
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Motivation: progress in a DC motor speed control

———————————————————————————

2DOF PI and DO-FPI control for n = 2 (above) and n = 4
(below) under uTV1 equivalence - real time control [7]
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Presentation outline

Introduction
————————————————————–

Dynamical classes of control

Shape and time related performance specifications

Model-free iP control

DO-(F)PI control

2DOF PI control

Nominal analysis results

Noise characteristics

Conclusions
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Dynamical classes of control
Shape Related Performance Specifications

The simplest possible signal changes are monotonic (MO)

Monotonicity - central role in mathematics,

but also in the physical & technological requirements, as e.g.

no/limited output overshooting,
non-oscillatory transients, etc.

Deviations from ideal shapes [3-10] - important both at the
plant input and output- applicable to characterization of

additional control effort,
high frequency oscillations,
noise impact,
actuator wear,
fuel consumption, etc.
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Dynamical classes of control
Shape Related Performance Specifications (Single and Double Integrator)

Monotonic (MO) plant output
One-Pulse (1P) integrator input = derivative of the output
Two-Pulse (2P) plant input = second output derivative

M.Huba, P. Tapak, S. Chamraz, STU Bratislava, Slovakia Comparing model-free and disturbance observer based control

Dynamical Classes of Control
Controllers with integral action

Comparative framework

Dynamical classes of control
Shape Related Performance Specifications

MO output of stable first order systems -
may also be achieved by MO input (not just by the 1P input
as for the single integrator)

Minimal number of MO intervals at the input corresponding
to a MO output = number of unstable poles+1

Number of MO intervals at the input may be increased by
increasing speed of transients up to n + 1, n = plant order

Systems with stable modes - degrees of freedom in
specifying the closed loop dynamics.

Dynamical class (DC) of control [2] - design parameter
showing difference between the number of MO intervals at the
plant input corresponding to a MO plant output.

The most important DCs are 0, 1 and 2

M.Huba, P. Tapak, S. Chamraz, STU Bratislava, Slovakia Comparing model-free and disturbance observer based control
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Basic Dynamical Classes of Control
Classification according to the input-output setpoint step responses pairs

To enrich observation from iPID [1], we are considering setpoint
step reponse pairs characterized by:

DC0: MO Output / MO Input
- may include all stable systems
- the simplest system represented by a gain

DC1: MO Output / 1P Input
- dominant dynamics with the relative degree ≥ 1
- systems with one unstable/marginally stable pole
- the simplest system represented by a single integrator

DC2: MO Output / 2P Input
- dominant dynamics with the relative degree ≥ 2
- systems with two unstable/marginally stable poles
- the simplest system represented by a double integrator

M.Huba, P. Tapak, S. Chamraz, STU Bratislava, Slovakia Comparing model-free and disturbance observer based control

Dynamical Classes of Control
Controllers with integral action

Comparative framework

Disturbance responses of DC0 and DC1
Classification according to the input-output pairs

DC0: 1P Output (MO output return) / MO Input
DC1: 1P Output (MO output return) / 1P Input
Note different impact of the parameter uncertainty
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Figure: To show transients from both DCs we have to consider stable
FOTD plant Kse−Td s/(s + a): Input disturbance step responses for
different values of the dead time estimate Tm; Td = 1, Ks = 1
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Table: Basic Controllers of DCs 0-2 [2]
Classification/acronyms according to their input-output pairs and the dominant dynamics

Just the most frequent situations (may yet be extended)

Note two DCs of PI and PD controllers and three DCs of the
PID control <=> inflation in “optimal” controller tuning

Systems with stable modes - the dynamical class of control
has to be chosen by the designer = not given apriori
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Shape Related Performance Specifications
Deviations from output ideal shapes - monotonicity

Monotonicity Index [11]

Total Variance [13] - total control effort

TV (u) =

∫ ∞

0

∣∣∣∣
du

dt

∣∣∣∣ dt ≈
∑

i

|ui+1 − ui | (1)

Simple calculation in Matlab sum(abs(diff(u))

relative measures = finer resolution

TV0 - Deviations from monotonicity [3-10]

TV0(y) =
∑

i

|yi+1 − yi | − |y∞ − y0| (2)

TV0(y) = 0 just for strictly MO response, else TV0(y) > 0.
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Shape Related Performance Specifications
Deviations from output ideal shapes - disturbance responses

TV1 - Deviations from 1P shapes

TV1(yd) =
∑

i

|yi+1 − yi | − |2ym − y∞ − y0| ; ym = max(y)

TV1(yd) = 0 just for strictly 1P response, else TV1(yd) > 0.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y(0)

y(∞)

Nearly 1P Disturbance Response

y
le1

y
le2

y
le3

y
le4

y
m

=y
le5

y
le6

y
le7

t

y(
t)

Nearly 
MO 
Increasing

Nearly 
MO 
Decreasing

M.Huba, P. Tapak, S. Chamraz, STU Bratislava, Slovakia Comparing model-free and disturbance observer based control

Dynamical Classes of Control
Controllers with integral action

Comparative framework

Time Related Performance Specifications

As fast as possible transients
———————————————————

Settling time ts = min
Minimal Integral of Absolute Errror (IAE)

IAE =

∫ ∞

0
|w−y(t)|dt =

∫ ∞

0
|e(t)| dt ≈ Ts

∑

i

|e(i)| => min

(3)
Shape related constraints IAE=IE (Laplace Transform)

IE =

∫ ∞

0
(w − y(t))dt =

∫ ∞

0
e(t)dt (4)

IE = lim
s→0

E (s) (5)

Analysis of the input disturbance step responses (w = 0)

J = IAEd => min (6)
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Dynamical Classes of Control
Controllers with integral action

Comparative framework

Loop Analysis and Optimization
Shape related constraints for controller tuning in DC0 and DC1

User specified shape related constraints - DC0

TV0(ys) ≤ εys ; TV1(yd) ≤ εyd
TV0(us) ≤ εus ; TV0(ud) ≤ εud

(7)

User specified shape related constraints - DC1

TV0(ys) ≤ εys ; TV1(yd) ≤ εyd
TV1(us) ≤ εus ; TV1(ud) ≤ εud

(8)

Ideally
ε = εys = εyd = εus = εud → 0 (9)

We will analyze, how the “speed” of disturbance step
responses IAEd depends on the shape related deviations at the
input TV1(ud) and output TV1(yd)
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Local, Ultra-Local and Global Models
Two types of linear models

“Ultra-local” models - notion introduced by Fliess et al. [1]

Based on the theory of “flat systems” - simplicity and easy
manipulation in solving different control problems.

One of the conclusions - it is enough to deal with control of
the single, or double integrators

For these systems, from a MO output the dynamics inversion
yields one-pulse (1P), or two-pulse (2P) inputs consisting of 2,
or 3 MO intervals [5-6]

But, it is to remember that an useful information follows from
using & comparing ultra-local and local linear models,

Furtheromore, for many problems the plant dynamics may be
sufficiently approximated by a constant corresponding to MO
input/MO output pairs.
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Model-free iP control
Ultra-local-models = integral models

For first-order dominant dynamics

ẏ = F + αu (10)

———————————————————
α ∈ R - in general, a non-physical constant parameter.
α - its estimate
F - an equivalent disturbance at the integrator input
φ a piecewise constant approximation of F from a measured
output ym according to

φ = ẏm − αu (11)

———————————————————
The first critical question - how to determine ẏm
In iP controller we simply use the available Simulink block
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Model-free iP control
Low-path disturbance filter

To avoid algebraic loops, to increase the loop robustness and to
attenuate effects of the measurement noise, the estimation of φ
can be expanded by a low-pass filter in form of an integral

φ =
1

L

∫ t−Ts

t−L−Ts

(ẏm − αu)dσ =

where L is “small” (what does it mean “small”?), Ts << L - the
sampling period
———————————————————
Preferably accomplished in a discrete-time form by a FIR filter

Qd(z) =
1

N

N∑

1

z−i ; N = IP(
L

Ts
) (12)

Ts << L, z−1 - the shift operator,
IP - an integer part.
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Model-free iP control
Overall control algorithm

Substitution (with u0 = new control signal)

u =
u0 − φ
α

(13)

yields transformed differential equation

ẏ = F − φ+
α

α
u0 (14)

An ideal case with α = α, F = φ corresponds to a single integrator

ẏ = u0 (15)

This explains, why it may seem enough to deal with the single
integrator control. Problems occur just when considering
nonmodelled dynamics (not considered in this contribution).

M.Huba, P. Tapak, S. Chamraz, STU Bratislava, Slovakia Comparing model-free and disturbance observer based control

Dynamical Classes of Control
Controllers with integral action

Comparative framework

Model-free iP control
Overall control algorithm

Required output reference trajectory

y∗, ẏ∗ (16)

The tracking error trajectory

e = y − y∗, ė = ẏ − ẏ∗ (17)

An exponential error decrease ė = λe with λ < 0 being the
closed loop pole yields control

u0 = ẏ∗ − KPe (18)

It means that the iP control algorithm may finally be written as

u =
ẏ∗ − KPe − φ

α
(19)

KP = −λ is the proportional gain defined by λ, or by the closed
loop time constant Tc = −1/λ as KP = 1/Tc
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Model-free iP control
Some remarks

The reference trajectory may be defined by the technology.

In the simplest case, for a given reference step w , the
reference trajectory may be given by y∗ = w , ẏ∗ = 0.

Else, for an initial steady state y0 it may be calculated as a
trajectory of a disturbance free system:

analytically as ẏ0 = KP(w − y0); ẏ∗(t) = eλt ẏ0,
y∗(t) = y0 + (w − y0)(1− eλt),
or by a primary loop including the single integrator (15) + the
P controller (18).

Since the input disturbances may only be compensated by a
controller output at the plant input, it may be found as more
appropriate to consider the plant model in the form

ẏ = Ks(u + di ) ; Ks = α, di = F/α (20)
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Model-free iP control in new variables
Qu = 1; Qy =?; KP =?; Qd(s) = (1− e−sL)/(Ls); L =?; QP = 1

Figure: Qy - usually not specified (= 1); QP ,Qu - not considered
(i.e.= 1); δ - measurement noise
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Disturbance observer based (filtered) PI control
Qu = 1/(1 + Tns)n; Qy = Qu; QP = Qu; Qd = 1 [2-5, 8]

DO-PI: traditional solution with QP = 1; KP = 1/(KsTc)
DO-FPI: KP = min{KP ,KPn}; KPn = 1

KsTn

1
(n+1)(1+1/n)n

Figure: DO-FPI and DO-PI control; Qu =
1

(1 + Tns)n
- binomial filter
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Traditional PI control

The most frequently used control structure

No filtration at higher frequencies [9, 10, 12]

Superfluous integration - windup

Typical overshooting - motivation for IP, or prefilter+PI
control [5]

Figure: IP control and prefilter+PI control KI = KP/Ti
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Disturbance responses
Two step comparison

Since the setpoint step responses may significantly be modified by
the dynamical feedforward, we are going to focus on [9]

1 Net dynamics of the disturbance step responses (no noise)

2 Noise attenuation characteristics of the disturbance step
responses

——————————————————–
Numerical values
=============================
Ks=1; Tc=1; KP=1;
Ts=0.001; Tn = L = Ti/100 ∈ [0.005, 0.5]
DO-PI and DO-FPI control with n ∈ [1, 4]
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Comparative framework, Tn = L = Ti/100 ∈ [.005, 0.5];
Net dynamics of disturbance step responses, DO-PI/FPI control with n ∈ [1, 4]
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Figure: Performance measures versus Ti/100, Tn, or L, no noise
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Comparative framework, Tn = L = Ti/100 ∈ [.005, 0.5];
Net dynamics of disturbance step responses, DO-PI/FPI control with n ∈ [1, 4]

Output/Input 1P responses just for L ≥ 0.03 and Ti ≥ 4
Disturbance response of the PI control is the slowest one DO-PI
and DO-FPI are able to yield the fastest 1P responses
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Comparative framework, Tn = L = Ti/100 ∈ [.005, 0.5];
Net dynamics of disturbance step responses

2DOF PI - TV1 increase due to complex closed loop poles

The optimal tuning corresponds to the aperiodicity border
(double real closed loop pole)

iP - - TV1 increase due to the continuous-time design and
discrete-time implementation

Improved performance may be achieved by the discrete time
design (not analyzed by this paper)

Performance decrease due to discrete time implementation
may appear also for the DO-PI/FPI solutions

However, performance achievable by the simplified
continuous-time design is better than for previous solutions
and for Tn → Ts also here it is still possible to apply the
discrete-time design (see also the noise characteristics)
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Comparative framework
Noise characteristics

Tn = L = Ti/100 ∈ [0.005, 0.5]
Starting with parameters Tn = L = Ti/100 = 5Ts

(For lower values we should already use discrete-time design)
——————————————————–
Both evaluations consider “speed” (IAEd) versus “abundant
control” (TV1) characteristics at the input (ud) and output (yd),
that is

IAEd versus TV1(ud)

IAEd versus TV1(yd)

——————————————————–
Evaluation time t ∈ [0, 200]s
(Such a long evaluation time is neceessary with respect to the slow
PI responses)
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Comparative framework, Tn = L = Ti/100 ∈ [.005, 0.5];
Noise characteristics - main result

Noise generated by “Uniform Random Number” block in
Matlab/Simulink, |δ| ≤ 0.01

10
0

10
2

10
4

10
0

10
1

−−−> TV
1
(u

d
)

−
−

−
>

 IA
E

d

 

 
PI
DOPI1
DOPI2
DOPI3
DOPI4
DOFPI1
DOFPI2
DOFPI3
DOFPI4
iP

10
−1

10
0

10
1

10
2

10
0

10
1

−−−> TV
1
(y

d
)

−
−

−
>

 IA
E

d

 

 

PI
DOPI1
DOPI2
DOPI3
DOPI4
DOFPI1
DOFPI2
DOFPI3
DOFPI4
iP

Figure: “Speed” versus shape related deviations at the input and output
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Conclusions

PI control yields the slowest transients with high noise impact
For longer L, iP control yields faster/better attenuated
transients than DO-PI and DO-FPI for n = 1 and Tn = L
DO based solution allow to reach lower IAE values than iP
To decrease the noise impact at the output use n ≥ 2
To decrease the noise impact at the input use n ≥ 3
DO-FPI control significantly increases the range of noise
attenuation with respect to other types of control
Possible improvements against PI control offered by newer
alternatives may be characterized by 2-3 digit figures
Experimentally confirmed for the DO based filtered PI and
PID control of industrial drives [7, 14]
Higher order filters influence also the loop robustness [8]
After being equipped by GUI, all Matlab files will be made
available in Moodle (for the address see ResearchGate)
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Thank you for your attention
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On Discretization of Sliding Mode Based Control Algorithms

Stefan Kocha Markus Reichhartingera Martin Horna

Variable structure control techniques are one proper method to deal with control problems
for uncertain or disturbed systems. In the last decades especially sliding mode concepts which
can be used in controllers or observers have stood out over classical approaches, due to their
simplicity and advantages such as robustness and finite time convergence. In order to achieve
an ideal sliding mode, it is assumed that the switching of a discontinuous control input takes
place at an infinitely high frequency. However, when it comes to digital implementations of
such controllers this assumption cannot hold true anymore and switching delays limit the
existence of a true sliding mode. Consequently, in a time discretized sliding mode system,
the invariance property of the sliding manifold is deteriorated and trajectories form limit
cycles around the sliding surface. The characteristics of this effects, which often are referred
to as discretization chattering, are influenced by the discretization method, the selected
sampling frequency as well as the choice of parameters [3, 4]. In order to maintain good
control performance or estimation precision after digitization, the discrete time sliding mode
system may be modified compared to its explicit discretized continuous time counterpart
[1, 2].

This talk will focus on discretization effects in conventional (first-order) and super-twisting
based sliding mode control systems. Recent approaches involving various discretization sche-
mes of equivalent control based methods are summarized. The influence of the choice of the
sampling frequency and controller parameters on the control precision are discussed.
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On Discretization of Sliding Mode Based Control Algorithms

Notation

Terms including |x|γsign(x) are abbreviated in the compact way

d·cγ := | · |γsign(·)

sign(σ) :=





1 σ > 0
[−1, 1] σ = 0
−1 σ < 0

examples are

dxc 1
2 = |x| 1

2 sign(x)

dxc0 = sign(x)

In difference equations the following notation is used

x ′ :=xk+1

x :=xk
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First Order Sliding Mode

First Order Sliding Mode

dx
dt

= Ax + bu (1)

where x ∈ Rn, u ∈ R

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−a1 −a2 · · · −an−1 −an



, b =




0
0
...
0
1



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First Order Sliding Mode

First Order Sliding Mode
Specify a sliding manifold

S := {x|σ(x) = 0}, whereσ = cT x

The coefficients cT = (c1, c2, . . . , cn−1, 1) are chosen such that the characteristic
polynomial of the compensated dynamics

x (n−1)
1 + cn−1x (n−2)

1 + · · · + c2ẋ1 + c1x1 = 0

is Hurwitz and cT is rescaled s.t. cT b = 1.

σ̇σ < 0

and thus drives σ to zero. Choosing the control

u = −cT Ax︸ ︷︷ ︸
uequ

−αdσc0

will ensure that the sliding mode is reached in finite time and maintained.
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First Order Sliding Mode

u = −cT Ax − αdσc0

The closed loop system results in:

dx
dt

= (A − bcT A)︸ ︷︷ ︸
=:Ac

x − αbdσc0

and the dynamics of the switching function take the form:

σ̇ = −αdσc0 (2)
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First Order Sliding Mode

System of Order n = 2

Ac =

[
0 1
0 −c1

]
, c1 > 0
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−1

−0.5

0

0.5

1

x1

x 2

0 2 4
−0.5

0

0.5

1

1.5

Time [s]
σ

x0 = [0.5 1]T , α = 1 . Trajectories reach S := {x|cT x = 0} in finite time and
asymptotically converge to the origin. In sliding mode the the system is insensitive to
matched bounded disturbances. dx

dt = Ax + b(u + ∆)
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First Order Sliding Mode

Discretization using Euler Forward Method
x ′ = (I + τAc)x − ταbdσc0

, σ = cT x

where τ denotes the discretization step size. The switching function dynamics results in:

σ
′ = σ − ταdσc0
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x0 = [0.5 1]T , α = 1 and τ = 0.05
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First Order Sliding Mode

Discretization using Euler Forward Method
x ′ = (I + τAc)x − ταbdσc0

, σ = cT x

where τ denotes the discretization step size. The switching function dynamics results in:

σ
′ = σ − ταdσc0
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x0 = [0.5 1]T , α = 1 and τ = 0.15
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First Order Sliding Mode

Discretization using Euler Forward Method
x ′ = (I + τAc)x − ταbdσc0

, σ = cT x

where τ denotes the discretization step size. The switching function dynamics results in:

σ
′ = σ − ταdσc0

0 2 4
−0.5

0

0.5

1

1.5

Time [τk]

σ

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x 2
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First Order Sliding Mode

Euler Discretization
According to Qu et al.1:

Switching function σ starting from x0 converges to an asymmetric periodic-2 orbit.
{
σ
∗
, σ

∗ − τα · sign(σ∗)
}
∈ [ατ,−ατ ]

0 2 4

0

0.5

1

1.5

k∗∗σ∗

σ∗−ατ sign(σ∗)

Time [τk]

σ

σ
′ = σ − ταdσc0

Switching function is bounded by

|σ| ≤ τα

System States are bounded by

|x1| ≤
τα

c1(2 − τc1)

|x2| ≤
τα

(2 − τc1)

1S. Qu, X. Xia, and J. Zhang, Dynamical behaviors of an euler discretized sliding mode control systems, Automatic Control, IEEE
Transactions on, vol. 59, pp. 25252529, Sept 2014.
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First Order Sliding Mode

Euler Discretization
Using a constant plus proportional rate reaching law as suggested by [1]

u = −cT Ax − βσ − αdσc0

dynamics of the switching function are:

σ
′ = (1 − βτ)σ − ταdσc0 (3)

0 2 4 6

0

0.5

1

1.5

Time [τk]

σ

for 0 < 1 − βh ≤ 1 and β > 0:

Switching function σ starting from any x0 con-
verges to a symmetric periodic-2 orbit.

{ −ατ

2 − βτ
,

−ατ

2 − βτ

}
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First Order Sliding Mode

Zero Order Hold (ZOH) Discretization

u(t) = u in the interval [kτ, (k + 1)τ)

x ′ = Φx + hu

where Φ = eAτ and h =
τ∫
0

eAsb ds
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First Order Sliding Mode

Implicit Discretization
Let us choose the equivalent control for the nominal system

uequ = −(cT h)−1[cT (Φ − I)x ]

s.t. the switching function is of the form:

σ
′ = σ + cT hus

where us is the discontinuous control. Now use an implicit discretization of the discontinuous
part as suggested by Huber et al. 2

{
σ′ = σ + cT hus

us ∈ −α · sign(σ′)

The set-valued equation can be solved by

us =

{
−αdσc0 if |σ| > αcT h
− σ

cT h else

αcT h

σ(k)

kτ
−αcT h

2O. Huber, V. Acary, and B. Brogliato, Comparison between explicit and implicit discrete-time implementations of sliding-mode
controllers, in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 28702875, Dec 2013.
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First Order Sliding Mode

Explicit vs. Implicit Discretization
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parameters are selected τ = 0.1, c1 = 1, α = 1
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Explicit vs. Implicit Discretization
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Implicit Discretization with Disturbance
Assume that disturbance changes ’sufficiently’
slow i.e. ∆ ≈ ∆′ and appears matched. From
the open loop system

x ′ = Φx + h(u + ∆)

solve for ∆

h∆ = x ′ − Φx − hu

and shifting gives an estimate of the disturban-
ce linear in the input vector

h∆k−1 = xk − Φxk−1 − huk−1

0 0.5 1

−0.5

0

0.5

x1
x 2

|σ| ≤ αcT h where cT h = O(τ)

∆ = −0.5 + 0.5 sin(1.5kτ)
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Implicit Discretization with Disturbance
cT b = 1 is chosen in the design. By using the
relation

h =

τ∫

0

eAsb ds = A−1(Φ − I)b

solving for b and multiplying from left side by
cT gives

cT b = cT (Φ − I)−1Ah = 1

premultiplication of h∆k−1 yields

cT (Φ − I)−1Ah∆k−1 = ∆k−1

The control law then is given by

ueq = (cT h)−1cT (I − eAh)x

us =

{
−αdσc0 if |σ| > αcT h
− σ

cT h − ∆k−1 else

0 0.5 1

−0.5

0

0.5

x1

x 2

— Implicit with disturbance compensation
∆ = −0.5 + 0.5 sin(1.5kτ)
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Bounds for the Switching Function
If derivative of disturbance is bounded

d∆
dt

≈ ∆k+1 − ∆k

τ
≤ ∆̄

Error is bounded by

min{∆̄τcT h, αcT h}

and
τcT h = O(τ2)

0 2 4 6 8 10

0
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1.5

Time [kτ ]
σ

(k
)

6 8

−1

0

1

·10−2

Disturbance ∆ = 0.5 + 0.5 sin(1.5kτ), τ = 0.1,
|σ| ≤ ∆̄τcT h = 0.0083
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Super Twisting (STW) Controller
Consider again the relative-degree-one system

σ = c1x1 + x2

and applying the control

u = −uequ − k1dσc
1
2 − k2

∫ t

0
dσc0 ds

leads to the following the switching function dynamics

σ̇ = −k1dσc
1
2 + v + ∆(t)

v̇ = −k2dσc0

Assume that ∆̇(t) is bounded. Introducing the variable w := v + ∆(t) we can rewrite the
system as

σ̇ = −k1dσc
1
2 + w

ẇ = −k2dσc0 + ∆̇(t)

Stefan Koch, Institute of Automation and Control
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Example: Double Integrator
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x0 = [0.5 1]T , k1 = 1.5, k2 = 1.1
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Example: Double Integrator
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−3

−2

−1

0
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Time [s]

u(
t)

x0 = [0.5 1]T , k1 = 1.5, k2 = 1.1

Remark: under bounded Lipschitz perturbations |∆̇| ≤ L a proper choice of parameters is

k1 = λ1
√

L

k2 = λ0L

with λ0 = 1.1 and λ1 = 1.5

σ̇ = −k1dσc
1
2 + w

ẇ = −k2dσc0 + ∆̇(t)
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Discretization using Euler Forward Method

σ
′ = σ − τk1dσc

1
2 + τw

w ′ = w − τk2dσc0
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x0 = [0.5 1]T , k1 = 1.5, k2 = 1.1 and τ = 0.05
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Second-Order Sliding Mode

Discretization using Euler Forward Method

σ
′ = σ − τk1dσc

1
2 + τw

w ′ = w − τk2dσc0
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x0 = [0.5 1]T , k1 = 1.5, k2 = 1.1 and τ = 0.15
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Discretization using Euler Forward Method

σ
′ = σ − τk1dσc

1
2 + τw

w ′ = w − τk2dσc0
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Periodic Orbits
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Periodic Orbits

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1

0

1

2

3

σ

w

−0.01 0 0.01

−0.2

0

0.2

Stefan Koch, Institute of Automation and Control

Graz, 08. September 2015

28

Second-Order Sliding Mode

Periodic Orbits
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Periodic Orbits
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Periodic Orbits
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Error Bounds in DTSTW
Bounds for σ and w0 can be found by solving for the fixed points of the period map

[
σ

w0

]′
= F (σ,w), where F = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸

p-times

If the trajectory eventually converges to a symmetric 2-periodic orbit then λ0, λ1 is from the
below set and w0 = (n + 0.5)λ0Lτ, n ∈ Z.
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Error Bounds in DTSTW
Bounds for σ and w0 can be found by solving for the fixed points of the period map

[
σ

w0

]′
= F (σ,w), where F = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸

p-times

If the trajectory eventually converges to a symmetric 4-periodic orbit then λ0, λ1 is from the
below set and w0 = nλ0Lτ, n ∈ Z.
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λ0 = 1.1, λ1 = 1.5, τ = 0.05, L = 4 and ξ = 0.562

Stefan Koch, Institute of Automation and Control

Graz, 08. September 2015

145



33

Second-Order Sliding Mode

Error Bounds in DTSTW
The fixed points of the time-4 map are

[
σ∗

w∗

]
=

(
±

[
τ2ξ1(λ0, λ1)L

τλ0L

]
, ±

[
τ2ξ2(λ0, λ1)L

0

])

The trajectory will eventually be bounded by:

|σ| ≤ max(ξ1, ξ2)Lτ
2

|w | ≤ λ0Lτ

Parameters leading to minimum values for σ

are found at the intersection of ξ1 and ξ2.
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Fixing λ0 = 1.1 one finds λ1 = 1.483
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Bounds of System States FOSM vs. STW

|x1| < x̄1 = ξLτ2 + x̄2

|x2| ≤ x̄2 =
τ2(λ1L

√
ξ(1 − c1

√
τ) + c1Lλ0τ)

2 + c1τ(c1τ − 2)
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τα
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STW vs. FOSM with perturbation
L = 2.5, λ0 = 1.1, λ1 = 1.5
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∆ = 0.5 + 0.5 sin(5kτ), c = 1, τ = 0.05
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STW vs. FOSM Implicit
L = 2.5, λ0 = 1.1, λ1 = 1.5
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STW vs. FOSM Implicit w. dist. comp.
L = 2.5, λ0 = 1.1, λ1 = 1.5
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Summary

Conventional Sliding Mode provides precision O(τ) in the presence of bounded perturbations

Implicit discretization scheme can remove discretization chattering

Additional disturbance compensation can provide for accuracy O(τ 2) in the presence
of disturbances having bounded derivatives.

Super Twisting provides naturally for precision O(τ 2) in the presence of disturbances having

bounded derivatives

Periodic behavior of switching function is sensitive to initial conditions as well as to the
choice of parameters
for certain parameters bounds for the switching function have been discussed.
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Outlook

Conventional Sliding Mode

Disturbance compensation for nonlinear systems

Super Twisting

Basin of attraction and stability properties of periodic orbits
Best, respectively worst case precision for perturbed and unperturbed STW (relation to
periodicity of periodic orbits)
Implicit Super Twisting?
Discretization behaviors of next generation Sliding Mode based control algorithms (Continous
Twisting)
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Discontinuous integral control for mechanical systems
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RESUMÉ

We consider a second order system

ξ̇1 = ξ2
ξ̇2 = f (ξ1, ξ2, t) + ρ (t) + τ

(1)

where ξ1 ∈ R and ξ2 ∈ R are the states, τ ∈ R is the control variable, f (ξ1, ξ2, t) is some known
function, while the term ρ (t) corresponds to uncertainties and/or perturbations. System 1 can represent
a mechanical system, where ξ1 is the position and ξ2 is the velocity. An important control task is to track
a smooth time varying reference r (t), i.e. if one defines the tracking error z1 = ξ1 − r and z2 = ξ2− ṙ
the objective is to asymptotically stabilize the origin of system

ż1 = z2
ż2 = f (ξ1, ξ2, t) + ρ (t)− r̈ (t) + τ .

(2)

With the control τ = u− f (ξ1, ξ2, t) + r̈ (t) the system becomes

ẋ1 = x2
ẋ2 = u+ ρ (t) ,

(3)

where the perturbation ρ (t) is a time varying signal, not vanishing at the origin (i.e. when x = 0 the
perturbation can still be acting). We notice that it is possible not to feed the second derivative of the
reference r̈ (t) to the control τ . In this case it will be considered as part of the perturbation term ρ (t).

Under the stated hypothesis it is well known that a continuous, memoryless state feedback u = k (x) is
not able to stabilize x = 0. This is so, because the controller has to satisfy with the condition k (0) = 0,
since the closed loop has to have an equilibrium at the origin for vanishing perturbation. But if the
perturbation does not vanish, then the origin cannot be anymore an equilibrium point. Discontinuous
controllers, as the first order Sliding Mode (SM) ones [3], [2] are able to solve the problem for non
vanishing (or persistently acting) bounded perturbations. However, they require the design of a sliding
surface that is reached in finite time, but the target x = 0 is attained only asymptotically fast, and
at the cost of a high frecuency switching of the control signal (the so called chattering), that has a
negative effect in the actuator, and excites unmodelled dynamics of the plant. Higher Order Sliding
Modes (HOSM) [4], [7], [6], [5], [9] provide a discontinuous controller for systems of relative degree
higher than one to robustly stabilize the origin x = 0 despite of bounded perturbations, but again at the
expense of chattering. A natural alternative consists in adding an integrator, i.e. defining a new state
z = u+ ρ (t), with ż = v and designing a third order HOSM controller for the new control variable v.
This allows to reach the origin in finite time, and it will be insensitive to Lipschitz perturbations, i.e.
with ρ̇ (t) bounded. In this form a continuous control signal u will be obtained, so that the chattering
effect is reduced. However, this requires feedback not only the two states x1 and x2 but also the state
z, which is unknown due to the unknown perturbation. Moreover, to implement an output feedback
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controller (assuming that only the position x1 is measured) it is necessary to differentiate two times the
position x1, with the consequent noise amplification effect.

In the case of (almost) constant perturbations ρ (t) a classical solution to the robust regulation problem
is the use of integral action, as for example in the PID control [1]. The linear solution would consist of a
state feedback plus an integral action, u = −k1x1− k2x2+ z , ż = −k3x1. This controller requires only
to feedback the position and the velocity. For an output feedback it would be only necessary to estimate
the velocity (with the D action for example). In contrast to the HOSM controller this PID control is
only able to reject constant perturbations, instead of Lipschitz ones, and it will reach the target only
exponentially fast, and not in finite time. By the Internal Model Principle it would be possible to reject
exactly any kind of time varying perturbations ρ (t), for which a dynamical model (an exosystem) is
available. However this would increase the complexity (order) of the controller, since this exosystem
has to be included in the control law.

Here we provide a solution to the problem, that is somehow an intermediate solution between HOSM
and PID control. Similar to the HOSM control our solution uses a discontinuous integral action, it can
compensate perturbations with bounded derivative (ρ (t) is Lipschitz) and the origin is reached in finite
time. So it can solve not only regulation problems (where ρ is constant) but also tracking problems
(with ρ time varying) in finite time and with the same complexity of the controller. Similar to the
PID control the proposed controller provides a continuous control signal (avoiding chattering) and it
requires only to feedback position and velocity. We also provide for a (non classical) D term, i.e. a
finite time converging observer, to estimate the velocity. This basic idea has been already presented in
our previous work [10]. In the present one we give a much simpler Lyapunov-based proof, and we also
include an observer in the closed loop together with its Lyapunov proof. Our solution can be seen as
a generalization of the Super Twisting control for systems of relative degree one [9], [4], [7], [5], [8]
to systems with relative degree two. Extensions to arbitrary order is also possible and it will be briefly
discussed.
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Problem

Second order system of relative degree 2 in normal form (e.g.
mechanical system)

ξ̇1 = ξ2

ξ̇2 = f (ξ1, ξ2, t) + ρ̃ (t) + τ
(1)

states ξ1 ∈ R (position), ξ2 ∈ R (velocity),

τ ∈ R control variable,

f (ξ1, ξ2, t) known function,

ρ̃ (t) uncertainties and/or perturbations.

Control Task: Robust tracking of a smooth reference r (t).

Discontinuous Integral Control Jaime A. Moreno UNAM 5

Problem reformulation

ẋ1 = x2

ẋ2 = u+ ρ (t) ,
(2)

x1 = ξ1 − r, x2 = ξ2 − ṙ tracking errors,

τ = u− f (ξ1, ξ2, t), u control variable,

ρ (t) = ρ̃ (t)− r̈ (t) uncertainties and/or perturbations.

Control Task: Robust Asymptotic Stabilization of x = 0.

Discontinuous Integral Control Jaime A. Moreno UNAM 6
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Overview

1 Introduction
Problem
Some Previous Solutions
Homogeneity

2 Discontinuous Integral Controller: State Feedback
The I-Controller
Lyapunov Function
Caveat: Lack of Homogeneity

3 Discontinuous Integral Controller: Output Feedback

4 Conclusions
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Some Previous Solutions

Continuous, memoryless state feedback u = k (x).

Discontinuous, memoryless state feedback:

First Order Sliding Mode Controller (FOSM).
High Order Sliding Mode Controller (HOSM).

Extended HOSM Controller.

Continuous Integral Control (PID).

Discontinuous Integral Control Jaime A. Moreno UNAM 8
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Continuous State Feedback

Continuous, memoryless state feedback u = k (x).

Not able to robustly stabilize x = 0.
Because k (0) = 0 ⇒ Perturbation ρ (t) vanishing at x = 0!
Asymptotic Convergence with ρ(t) = 0.
Robust, but Sensitive to perturbations: Practical stability.

Continuous (linear) state feedback controller

u = −k1x1 − k2x2

Exponential Convergence with ρ(t) = 0.

Continuous Homogeneous state feedback controller

u = −k1bx1e
1
3 − k2bx2e

1
2

b·eρ = | · |ρ sign(·)
Finite Time Convergence with ρ(t) = 0.

Discontinuous Integral Control Jaime A. Moreno UNAM 9

First Order Sliding Mode Controller

ẋ1 = x2

ẋ2 = −k2sign(x2 + k1x1) + ρ(t)

Interpretation as first order system with a stable (first order)
zero dynamics: with σ = x2 + k1x1 sliding variable

ẋ1 = −k1x1 + σ
σ̇ = −k2sign(σ) + ρ(t)

Discontinuous Integral Control Jaime A. Moreno UNAM 10
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Behavior with perturbation
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FOSM control: exponential convergence and insensitive to
perturbation!

FOSM control drawback: Discontinuous control signal ⇒
Chattering

Discontinuous Integral Control Jaime A. Moreno UNAM 11

HOSM: The Twisting Controller

Finite-time convergence and insensitivity to perturbations:

ẋ1 = x2

ẋ2 = −k1sign(x1)− k2sign(x2) + ρ(t)
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Drawback: Discontinuous control signal ⇒ Chattering
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Extended HOSM

ẋ1 = x2

ẋ2 = u+ ρ (t) ,

Define: x3 = u+ ρ (t)

ẋ1 = x2

ẋ2 = x3

ẋ3 = v + ρ̇ (t) ,

v: discontinuous Third Order Sliding Mode Controller, e.g.

v = −k3sign
(
bx3e

2
3 + k2x2 + k1bx1e2

)
.

Finite time convergence and insensitive to perturbation!

Continuous control signal ⇒ Chattering reduction.

Drawback: Estimation of the perturbation ρ(t)!

Discontinuous Integral Control Jaime A. Moreno UNAM 13

Continuous Integral Controller (PID)

System

ẋ1 = x2

ẋ2 = u+ ρ (t) ,

PID-Controller (e.g. linear)

u = −k1 (x1, x2) + kI (x3)

ẋ3 = −k2 (x1, x2) ,

k1,2 (x1, x2) continuous, kI (x3) continuous/discontinuous.

Constant perturbations/references ⇒ Asymptotic
convergence and insensitive to perturbation!

Arbitrary perturbations/ref ⇒ Practical convergence.

Estimation of ρ(t) is not required for implementation.

More general: Internal Model Principle based controller.

Discontinuous Integral Control Jaime A. Moreno UNAM 14
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Proposed Solution

Combine Integral Action and Discontinuous Control.

k1 (x1, x2) and kI (x3) continuous, k2 (x1, x2) discontinuous.

Insensitive to any Lipschitz perturbation (i.e. with
bounded derivative).

No estimation of the perturbation ρ(t) required for
implementation.

Continuous control signal ⇒ Chattering reduction.

For simplicity (!?) we add Homogeneity.

Discontinuous Integral Control Jaime A. Moreno UNAM 15
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What is Homogeneity?

Weighted Homogeneity (Zubov): ri: weights, δ: degree

Λr = diag{λr1 , · · · , λrn} ,

V (λr1x1, λ
r2x2, · · · , λrnxn) = V (Λrx) = λδV (x), ∀λ > 0, ri > 0

Values on the unit sphere define a Homogeneous function.

A system (vector field or Differential Inclusion) is
Homogeneous if ẋ = f(x), and

f (Λrx) = λδΛrf (x) .

Trajectories: ϕ (t, Λrx0) = Λrϕ
(
λδt, x0

)

Discontinuous Integral Control Jaime A. Moreno UNAM 17

Properties of Homogeneous Systems

Zubov, Hahn, Hermes, Kawski, Rosier, Aeyels, Sepulchre,
Grüne, Praly, Efimov, Polyakov,.....

If x = 0 Locally Attractive (LA) ⇔ Globally
Asymptotically Stable (GAS)

If x = 0 GAS and δ < 0 ⇔ x = 0 Finite Time Stable

If x = 0 GAS and δ = 0 ⇔ x = 0 Exponentially Stable (e.g.
LTI systems)

If x = 0 GAS and δ > 0 ⇔ x = 0 Asymptotically Stable

If x = 0 GAS ⇔ It exists a Homogeneous Lyapunov
Function

Approximation of NL systems: If x = 0 is AS for the
Homogeneous approximation ⇒ x = 0 is Locally AS for the
system.

Discontinuous Integral Control Jaime A. Moreno UNAM 18
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Continuous and Homogeneous State
Feedback Controller

u = −k1 dx1c
1
3 − k2 dx2c

1
2

Closed Loop System:

ẋ1 = x2

ẋ2 = −k1 dx1c
1
3 − k2 dx2c

1
2 + ρ (t) ,

Lyapunov Function:

V (x1, x2, x3) = γ1 |x1|
5
3 + γ12x1x2 + |x2|

5
2 ,

Sensitive to perturbations.
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Homogeneous Integral + State Feedback
Controller

Discontinuous Integral Controller (k1, k2, k3 > 0, k4 ∈ R, L > 0)

u = −k1L
2
3 dx1c

1
3 − k2L

1
2 dx2c

1
2 + z

ż = −k3L

⌈
x1 + k4L

− 3
2x

3
2
2

⌋0

Closed Loop System:

ẋ1 = x2

ẋ2 = −k1L
2
3 dx1c

1
3 − k2L

1
2 dx2c

1
2 + z + ρ (t) ,

ż = −k3L

⌈
x1 + k4L

− 3
2x

3
2
2

⌋0

If ρ(t) = 0: Stability for L = 1 ⇒ Stability for any L > 0.
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Remarks

In contrast to the continuous Integral Controller:
It tracks exactly, in finite time and robustly
arbitrary references with bounded r̈(t)
despite arbitrary (time) Lipschitz
perturbations/uncertainties, i.e. ‖ρ̇(t)‖ ≤ ∆, ∆ constant
without an Internal Model.

For implementation: r(t) and ṙ(t) are required but not r̈(t).

Define x3 = z + ρ. After convergence ⇒ x(t) = 0 ⇒
z(t) = −ρ(t): Integral action estimates the perturbation!

Control signal is continuous ⇒ Chattering attenuation.
Gain selection:

Set k1, k2 so that state feedback stable and well-behaved
without perturbation.
Select k4 = 0, k4 > 0, k4 < 0.
Select k3 small to assure stability.
Select L sufficiently large to compensate the
perturbations/uncertainties.
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Related controllers

A similar algorithm is the ”Continuous Twisting
Algorithm”.The proof is based on a Generalized Forms
technique.

u = −k1 dx1c
1
3 − k2 dx2c

1
2 + z

ż = −k3 dx1c0 − k4 dx2c0

The ”High-Order Super Twisting”

u = −k1

⌈
x2 + k2 dx1c

2
3

⌋ 1
2

+ z

ż = −k3

⌈
x2 + k2 dx1c

2
3

⌋0
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Homogeneous and smooth Lyapunov
Function

Homogeneous and smooth Lyapunov Function (L = 1)

V (x1, x2, x3) = γ1 |ξ1|
5
3 +γ12ξ1x2+|x2|

5
2 +

1

5
|x3|5 , ξ1 = x1−

1

k3
1

dx3c3

Derivative V̇ is homogeneous and discontinuous:

V̇ = W1 (ξ1, x2) +W2 (ξ1, x2, x3) +W3 (x, ρ̇) ,

where

W1 =

(
5

3
γ1 dξ1c

2
3 + γ12x2

)
x2 +

−5

2
k2

(
2

5
γ12ξ1 + dx2c

3
2

)(
k1

k2
dξ1c

1
3 + dx2c

1
2

)
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W2 = −k1

(
γ12ξ1 +

5

2
dx2c

3
2

)
α (ξ1, x3) ,

α (ξ1, x3) =

⌈
ξ1 +

1

k3
1

dx3c3
⌋ 1

3

−
⌈

1

k3
1

dx3c3
⌋ 1

3

− dξ1c
1
3 ,

W3 (x, ρ̇) =

(
k3

⌈
x1 + k4x

3
2
2

⌋0

− ρ̇ (t)

)
|x3|2 ×

[
3

k3
1

(
5

3
γ1 dξ1c

2
3 + γ12x2

)
− dx3c2

]
.
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The Lyapunov function fulfills following differential
inequality

V̇ (x) ≤ −κV 4
5 (x) ,

for some κ > 0 depending on the gains and ∆.

It implies robust finite time stability.

Convergence time estimation:

T (x0) ≤ 5

κ
V

1
5 (x0) .
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Caveat

Alternative Integral + state feedback controllers:

Linear Integral + state feedback controller (Homogeneous)

u = −k1x1 − k2x2 + x3

ẋ3 = −k3x1

Linear state feedback + Discontinuous Integral controller
(Not Homogeneous)

u = −k1x1 − k2x2 + x3

ẋ3 = −k3sign(x1)

Discontinuous I-Controller (Extended Super-Twisting)
(Homogeneous)

u = −k1|x1|
1
3 sign(x1)− k2|x2|

1
2 sign(x2) + x3

ẋ3 = −k3sign(x1)

Discontinuous Integral Control Jaime A. Moreno UNAM 30
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Controller without perturbation
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Controller with perturbation I
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Controller with perturbation II

Linear stabilizes exponentially and is not insensitive to
perturbation

Linear + Discontinuous Integrator causes oscillations
(Harmonic Balance). This is structural and for any n > 2.
Eliminated by Homogeneity.

Extended ST: Convergence in finite time and insensitive to
perturbations.
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Homogeneous Output Feedback Controller

Homogeneous State Feedback Controller + Homogeneous
Observer

˙̂x1 = −l1 dx̂1 − x1c
2
3 + x̂2

˙̂x2 = −l2 dx̂1 − x1c
1
3 − k1 dx1c

1
3 − k2 dx̂2c

1
2

u = −k1 dx1c
1
3 − k2 dx̂2c

1
2 .

Homogeneous Integral + Output Feedback Controller

˙̂x1 = −l1 dx̂1 − x1c
2
3 + x̂2

˙̂x2 = −l2 dx̂1 − x1c
1
3 − k1 dx1c

1
3 − k2 dx̂2c

1
2

u = −k1 dx1c
1
3 − k2 dx̂2c

1
2 + z

ż = −k3

⌈
x1 + k4x̂

3
2
2

⌋0

,
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Simulations

We have implemented three controllers:

A State Feedback (SF) controller with discontinuous
integral term, with gains k1 = 2, k2 = 5, k3 = 0.5, k4 = 0,
and initial value of the integrator z (0) = 0.

An Output Feedback (OF) controller with discontinuous

integral term, with controller gains k1 = 2λ
2
3 , k2 = 5λ

1
2 ,

k3 = 0.5λ, k4 = 0, λ = 3, observer gains l1 = 2L,
l2 = 1.1L2, L = 4, observer initial conditions x̂1 (0) = 0,
x̂2 (0) = 0, and initial value of the integrator z (0) = 0.

A Twisting controller, given by u = −k1 dx1c0 − k2 dx2c0,
with gains k1 = 1.2, k2 = 0.6.

Perturbation ρ (t) = 0.4 sin (t)
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Simulations
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Simulations
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Simulations

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

time

C
o

n
tr

o
l

 

 

OF Control

SF Control

Twisting Control

Discontinuous Integral Control Jaime A. Moreno UNAM 40

171



Overview

1 Introduction
Problem
Some Previous Solutions
Homogeneity

2 Discontinuous Integral Controller: State Feedback
The I-Controller
Lyapunov Function
Caveat: Lack of Homogeneity

3 Discontinuous Integral Controller: Output Feedback

4 Conclusions

Discontinuous Integral Control Jaime A. Moreno UNAM 41

Conclusions

The Discontinuous Integral Controller

tracks exactly, in finite time and robustly
arbitrary references with bounded r̈(t)
despite arbitrary (time) Lipschitz
perturbations/uncertainties, i.e. ‖ρ̇(t)‖ ≤ ∆, ∆ constant
without an Internal Model.

Separate design of State Feedback and Observer;

Neither continuous Observer nor continuous State
Feedback Controller are insensitive to perturbations;

Insensitivity against perturbations is achieved by
discontinuous Integral Control;

For implementation: r(t) is required but not ṙ(t) and r̈(t).

Design is Lyapunov-Based.

Generalization to arbitrary order possible.
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México de Control Automático (AMCA). Ensenada, Baja
California, 16-18 Octubre 2013. Pp. 11–16.
http://eventos.cicese.mx/amca2013/52.html

Discontinuous Integral Control Jaime A. Moreno UNAM 50

176



Estimating Parameters and States Using Modulating Functions

Johann Regera Jerome Jouffroyb

Let us first consider SISO-LTI systems of order n, given in input-output representation

y(n) + an−1y
(n−1) + · · ·+ a1ẏ + a0y = bn−1u

(n−1) + · · ·+ b1u̇+ b0u , (1)

or as often more compactly written with Y=(−y,−ẏ, . . . ,−y(n−1), u, u̇, . . . , u(n−1))T along

y(n) = YTθ . (2)

There θ=(a0, a1, . . . , an−1, b0, b1, . . . , bn−1)
T holds unknown system parameters to be identi-

fied. For avoiding direct differentiation of probably noisy signals y(t) we employ the method
of modulating functions [10]. We propose to slightly modify the definition given in [5, 6].

Let ϕ : R× R → R be a sufficiently smooth function and denote ϕ(i)(t, t1) := ∂iϕ
∂τ i

(τ, t1)|τ=t.
A function ϕ(·, ·) is called a modulating function (of order k) if for t0 < t1 it satisfies

ϕ(i)(t0, t1) · ϕ(i)(t1, t1) = 0, ∀i ∈ {0, 1, . . . , k − 1}. (3)

A modulating function for which ϕ(i)(t0, t1) = 0 and ϕ(i)(t1, t1) 6= 0 is called a left modulating
function, while a modulating function for which ϕ(i)(t0, t1) 6= 0 and ϕ(i)(t1, t1) = 0 is called
a right modulating function. A modulating function whose boundaries verify ϕ(i)(t0, t1) =
ϕ(i)(t1, t1) = 0 is called total modulating function.

In view of (3) for total modulating functions we may then enjoy the fundamental property

∫ t1

t0

ϕ(τ, t1)ξ
(i)(τ)dτ =

∫ t1

t0

(−1)iϕ(i)(τ, t1)ξ(τ)dτ (4)

which allows both to avoid computing signal derivatives of ξ explicitly and to get rid of its
unknown initial and final values [2, 3], in contrast to [9]. This way we may replace (2) with

z = wTθ (5)

where z and the vector w consists of integrals of the shape in (4). In order to obtain an

estimate θ̂ of θ, we may gather a collection of mφ ≥ n equations (5), each of them using a
different modulating function ϕk(t). We then get

z = WTθ (6)

with z = (z1, z2, . . . , zm)T and regressor W = (w1,w2, . . . ,wm). An estimate θ̂
T

= (âT, b̂T)
is finally obtained by simple application of linear least squares, see for example [7, 8, 4]:

θ̂ =
(
WWT

)−1
Wz . (7)
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E-Mail: johann.reger@tu-ilmenau.de
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Main result

Extending the estimation problem for linear systems, as presented in [1], consider an n-order
single-input system of the form

ẋ = Ax + bu+

p∑

k=2

(αkx
k
1 + βku

k) +

p∑

k=1

p∑

l=1

γklx
k
1u

l , A =

(
−a

In−1

01×(n−1)

)
(8)

where the n-dimensional parameter vectors a, b, αk, βk and γkl are all unknown.

Given a set of mφ ≥ np(p+2) total modulating functions and mϕ ≥ np(p+2) left modulating
functions, the unkown parameter vectors in (8) and the state x(t1) may be estimated in finite
time if some signal dependent matrices W and ∆ both have full rank.

Based on the modulating function method, we derive expressions for such matrices and give
estimates for the unknown parameter vectors and the system state that may be obtained in
finite time.
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Modulating functions

Motivation

Identify unknown parameters ai and bi of an LTI-system

y(n) + an−1y(n−1) + · · ·+ a1ẏ + a0y = bn−1u(n−1) + · · ·+ b1u̇+ b0u

where signals u and y are known.

Equivalently, let
y(n) = YTθ

and find the constants

θ = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1)T

when given on some interval of time the signals

Y = (−y,−ẏ, . . . ,−y(n−1), u, u̇, . . . , u(n−1))T .
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Modulating functions

Definition: Modulating Function

Challenges

• estimation of time-derivatives

• unknown initial conditions

• attenuation of measurement noise

Circumventing these problems we may use

Definition (Shinbrot’57, Pearson’85, Preisig’93, Rao’06)

A function ϕ : [0, T ]→ R is called a modulating function (of order k) if it
is sufficiently smooth and if, for some fixed T , we have

ϕ(i)(0) = ϕ(i)(T ) = 0

for all i ∈ {0, 1, . . . , k − 1}. �
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Modulating functions

Definition

For a signal ξ, conditions ϕ(i)(0) = ϕ(i)(T ) = 0 imply

∫ T

0
ϕ(τ)ξ(i)(τ)dτ =

∫ T

0
(−1)iϕ(i)(τ)ξ(τ)dτ

Equivalent to y(n) = YTθ, we obtain

z = wTθ with z =

∫ T

0
(−1)nϕ(n)(τ)y(τ)dτ

wi =

{ ∫ T
0 (−1)i−1ϕ(i−1)(τ) y(τ) dτ, i = 1, . . . , n
∫ T
0 (−1)i−n−1ϕ(i−n−1)(τ) u(τ) dτ, i = n+ 1, . . . , 2n

• No explicit computation of signal derivatives

• No need for knowledge about initial and final conditions
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Modulating functions

Least Squares Estimation

For creating m ≥ 2n equations, collect m ≥ 2n different modulating
functions ϕk(t) to obtain

z = WTθ

with zT= (z1, z2, . . . , zm), W = (w1,w2, . . . ,wm) and zk, wk as above.

The standard modulating function method then results in the least
square estimate

θ̂ =
(
WWT

)−1
Wz .

Typical modulating functions are for example [Shinbrot’57; Loeb’65 ]

ϕk(t) =

(
sin

kπt

T

)k
or ϕk(t) = (T − t)ktk
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Modulating functions

Some related ideas

1) Iterated integration by parts avoiding explicit derivation [Mathew’72 ]:
∫ t

0

∫ τk−1

0
. . .

∫ τ1

0
ξ(i)(τ1)dτ1 . . . dτk−1dτk =

∫ t

0

∫ τk−i−1

0
. . .

∫ τ1

0
ξ(τ1)dτ1 . . . dτk−1dτk−i =

∫ t

0

(t− τ)k−i−1
(k − i− 1)!

ξ(τ)dτ

2) Poisson Moment Functional method [Saha’82 ]:

∫ t

0

(t− τ)k
k!

e−λ(t−τ)ξ(i)(τ)dτ =

∫ t

0
(−1)i d

i

dτ i

(
(t− τ)k
k!

e−λ(t−τ)
)
ξ(τ)dτ

Both methods:
• equiv. to modulating function method if ξ(0) = · · · = ξ(i−1)(0) = 0

• admit an expanding or a fixed time horizon
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Generalized Modulating Functions

Definition: (Generalized) Modulating Function

Definition
Let a function ϕ : R× R→ R be sufficiently differentiable and denote

ϕ(i)(t, t1) :=
∂iϕ

∂τ i
(τ, t1)

∣∣∣∣
τ=t

.

Function ϕ is called modulating function (of order k) if for some t0 < t1

ϕ(i)(t0, t1) ϕ
(i)(t1, t1) = 0 ∀i = 0, 1, . . . , k − 1

If ϕ(i)(t0, t1)= 0 and ϕ(i)(t1, t1) 6= 0 then ϕ is a left modulating function.

If ϕ(i)(t0, t1) 6= 0 and ϕ(i)(t1, t1)= 0 then ϕ is a right modulating function.

If ϕ(i)(t0, t1) = ϕ(i)(t1, t1) = 0 then ϕ is called total modulating function.
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Generalized Modulating Functions

Definition: Generalized Modulating Function

Examples

• (t1 − t)ke−λ(t1−t) . . . is a right modulating function.

• (−t)k or (sin kπt)k . . . are left modulating functions.

• (t1 − t)k tk . . . is a total modulating function.

Thus, for a left modulating function ϕk we have
∫ t1

t0

ϕk(τ)ξ
(i)(τ)dτ =

∫ t1

t0

(−1)iϕ(i)
k (τ, t1)ξ(τ)dτ +ϕ

T
k ξ(t1)

with ξ = (ξ(i−1), ξ(i−2), · · · , ξ(0))T and

ϕT
k =

(
ϕk(t1, t1),−ϕ(1)

k (t1, t1), . . . , (−1)i−1ϕ(i−1)
k (t1, t1)

)

Note that for total modulating functions ϕk = 0 (as shown before).
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Main Result

Problem Statement

Consider an n-order single-input system of the form

ẋ = Ax + bu+

p∑

k=2

(αkx
k
1 + βku

k) +

p∑

k=1

p∑

l=1

γklx
k
1u

l

with
A =

(
−a

In−1
01×(n−1)

)

where the n-dimensional vectors a, b, αk, βk and γkl are all unknown.

Problem
Given u(t) and measured y(t) = x1(t) on t ∈ [t0, t1], estimate

• the p(p+ 2) parameter vectors a, b, αk, βk and γkl
• the state vector x(t1)
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Main Result

Main Result: Finite-Time Adaptive Observer

Theorem
Given mφ ≥ np(p+ 2) total modulating functions and mϕ ≥ np(p+ 2)
left modulating functions, the parameter vectors a, b, αk, βk, γkl and
the state x(t1) can be estimated in finite-time if W and ∆ have full rank.

In this case, the estimates

θ̂
T
=
(
âT, b̂T, α̂T

2 , . . . , α̂
T
p , β̂

T

2 , . . . , β̂
T

p , γ̂
T
11, γ̂

T
12, . . . , γ̂

T
pp

)T

are given by
θ̂ =

(
WWT

)−1
Wz

and
x̂(t1) = P

(
∆∆T

)−1
∆q
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Main Result

Sketch of a proof — parameter estimate

Rewrite the state equation in I/O-form

y(n) =

n∑

i=1

(
−a(i)y(n−i) + b(i)u(n−i)

)

+

p∑

k=2

n∑

i=1

(
αk(i)(y

k)(i) + βk(i)(u
k)(n−i)

)
+

p∑

k,l=1

n∑

i=1

γkl(i)(y
kul)(n−i)

where a(i) denotes the i-th component of vector a and so on.

Thus, we obtain y(n) = YTθ defining

YT = (−yT,uT,y2T , . . . ,yp
T
,u2T , . . . ,up

T
,g11T ,g12T , . . . ,gpp

T
)T

where yj := ((yj)(n−1), (yj)(n−2), . . . , (yj)(0))T and respectively for uj .

The i-th component of vector gkl is given by gkl(i) = (ykul)(n−i).
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Main Result

Sketch of a proof — parameter estimate

Applying standard modulating function method on the I/O-form

zq = wT
q θ where zq =

∫ t1

t0

(−1)nφ(n)q (τ, t1)y(τ)dτ

with total modulating function φq and

wT
q = (−wyT

q ,w
uT

q ,w
y2T

q , . . . ,wypT

q ,wu2T

q , . . . ,wupT

q ,wg11T

q ,wg12T

q , . . . ,wgppT

q )T

where

wy
j

q (i) =

∫ t1

t0

(−1)n−iφ(n−i)q (τ, t1)y
j(τ)dτ , wu

j

q (i) = . . .

Using mφ total modulating functions we get θ̂ =
(
WWT

)−1
Wz with

W = (w1,w2, . . . ,wq, . . . ,wmφ) .
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Main Result

Sketch of a proof — state estimate

For estimating x(t1), multiply the I/O-form by a left modulating function
ϕr(τ, t1) and integrate to get

qnr +ϕT
r y(t1) = −aTqy

r − aTΓry(t1) + bTqu
r + bTΓru(t1)

+

p∑

k=2

(αT
k qy

r,k+β
T
k qu

r,k+α
T
k Γry

k(t1)+β
T
k Γru

k(t1))+

p∑

k,l=1

γT
kl(q

g
r,kl+Γrg

kl(t1))

where qnr =

∫ t1

t0

(−1)nϕ(n)
r (τ, t1)y(τ)dτ

ϕT
r =

(
ϕr(t1, t1),−ϕ(1)

r (t1, t1), . . . , (−1)n−1ϕ(n−1)
r (t1, t1)

)

qy
T

r =

∫ t1

t0

(
(−1)n−1ϕ(n−1)

r (τ, t1), . . . ,−ϕ(1)
r (τ, t1), ϕr(τ, t1)

)
y(τ)dτ

and similarly for qur , qyr,k, qur,k and qgr,kl . . .
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Main Result

Sketch of a proof — state estimate

. . . and matrix Γr reads

Γr =




0 ϕr(t1, t1) · · · (−1)n−2ϕ
(n−2)
r (t1, t1)

0 0
. . .

...
...

...
. . . ϕr(t1, t1)

0 . . . . . . 0



.

Solving for the unkowns y(t1), u(t1), yk(t1), uk(t1) and gkl(t1) in Y

and replacing with estimates from θ̂ yields

δTr Y = qr

qr = −qnr − âTqy
r + b̂Tqu

r +

p∑

k=2

(α̂
T
k qy

r,k + β̂
T

k qu
r,k) +

p∑

k,l=1

γ̂
T
klq

g
r,kl

δTr=−(ϕT
r+âTΓr, b̂

TΓr, α̂
T
2 Γr, ..., α̂

T
p Γr, β̂

T

2 Γr, ..., β̂
T

p Γr, γ̂
T
11Γr, ..., γ̂

T
ppΓr)

T
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Main Result

Sketch of a proof — state estimate

Now using mϕ left modulating functions results in

∆TY = q

where

∆ = (δ1,δ2, . . . ,δmϕ) and qT = (q1, q2, . . . , qmϕ)
T.

Finally, we obtain
x̂(t1) = P

(
∆∆T

)−1
∆q

with P by solving the lines of

ẋ(t1)=Ax(t1)+bu(t1)+

p∑

k=2

(αk(x1(t1))
k+βk(u(t1))

k)+

p∑

k,l=1

γkl(x1(t1))
k(u(t1))

l

for each state component (linear in y and u and its time derivatives).
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Simulation

Simulation — Van der Pol oscillator

Consider the van der Pol oscillator

ÿ = µ(1− y2)ẏ − y =⇒





ẋ1 = µx1 + x2 − µ
3x

3
1

ẋ2 = −x1
y = x1

Assume that parameter µ is unknown.

For the simulations:

• µ = 2, SNR= 22dB wrt. noise, sampling period Ts = 0.01 sec.

• 6 total modulating functions, Loeb and Cahen-like: (t1 − t)k tk
• 2 left modulating functions, Poisson type: t2e−t, t3e−t

• estimation starts with expanding horizon, then switched at t = 2 sec
to a receding-horizon of T = 2 sec
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Simulation

Van der Pol oscillator
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Simulation

Van der Pol oscillator
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Conclusions

Conclusions

We have presented an approach

• for the modulating function based least squares estimation

• that allows simultaneous estimation of parameters and states

• for observable nonlinear systems SISO-systems

• suitable for expanding and receding horizons

Future work

• specifc modulation functions for using FFT and FHT

• extending the system class to convolvable systems

• discretization and recursive issues

• applications, e.g. in underwater navigation
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Stability Analysis of interconnected Linear Systems with Coupling

Imperfections

Georg Stettingera Martin Benedikta Martin Hornb Christian Pötzschec

Josef Zehetnerd

This contribution deals with the stability analysis of interconnected systems
using a model-based coupling approach to reduce effects of coupling imperfecti-
ons. Analysis issues are discussed for linear SISO subsystems: first for the time-
invariant case, second for the time-invariant in combination with present nonli-
nearities and third for the time-varying case.

1 Introduction

This work deals with the stability analysis of a model-based coupling technique for inter-
connected linear systems. In general, a model-based coupling approach is introduced to over-
come problems arising whenever the interconnections have a non-negligible influence on the
overall system behavior. The interaction between two interconnected subsystems via different
imperfect communication media is commonly characterized by introduced communication
time-delays which degrade the coupling data exchange, see Abb. 1. These time-delays (labe-
led with (ts,1, ts,2) and (tr,1, tr,2)) represent dead-times in the closed-loop system and result
in so called round-trip-times, which may also be time-variant depending on the communi-
cation media utilization. Another important aspect are noisy coupling signals, introduced

Abbildung 1: Model-based coupling element (MBC) inserted between two coupled subsys-
tems (S1, S2) to handle non-negligible coupling imperfections [2, 1]

by sensors installed in real-time systems, see Abb. 1. Such noisy measurement signals are
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problematic especially if signal-based coupling schemes are used. In this case the noise le-
vel is typically amplified, which in turn potentially leads to unstable simulations. Coupling
data losses (see Abb. 1), caused by disturbances or overload of communication capacity are
additional phenomena occurring in coupled systems [2].

2 Model-based coupling approach

The model-based coupling scheme in form of a coupling element (labeled with MBC) is
inserted between two coupled subsystems, see Abb. 1. To ensure a time-correct coupling
the output signal uk of subsystem 1 (S1) should arrive at the input of subsystem 2 (S2)
without any delay. This is also true for the output yk of subsystem 2. However, significant
dead-times due to imperfect communication media impose a serious limitation on the control
performance of closed-loop systems. To overcome this limitation the proposed model-based
coupling algorithm extrapolates the coupling signals

(
uk−tr,1 , yk−tr,2

)
to
(
ûk+ts,1 , ŷk+ts,2

)
ba-

sed on recursively identified subsystem models. Therefore, at discrete time instant k the
extrapolated values ûk and ŷk are already present at the subsystem inputs. This way, the
effect of the round-trip-time is compensated. Coupling data losses have a very similar effect
as dead-times and can therefore be compensated via additional model-based extrapolations
according to the amount of lost data. Furthermore, noise corrupted coupling signals can be
considered via adequate parametrizations of the recursive system identification algorithms
to perform model-based filtering [1].

3 Stability Analysis

Important questions via the use of the model-based coupling approach arise: How do the
introduced MBC elements effect the stability of the closed-loop? Can the closed-loop stability
properties, without the coupling element, be preserved? In general this stability analysis
is a complex task since one has to deal with nonlinear control loops independent of the
introduced coupling elements. Therefore, in a first step, the stability analysis is restricted to
linear closed-loop dynamics including the proposed coupling elements. The stability analysis
is divided into three parts with increasing complexity: first MBC using time-invariant (pre-
identified) subsystem models, second the influence of additional nonlinearities at the plant
input together with these pre-identified internal models and finally time-varying closed-loop
dynamics caused by parameter adaptations of the subsystem models and/or time-varying
subsystem dynamics.
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Motivation 

09.09.2015 / Stettinger 
Stability Analysis of Interconnected Linear Systems with Coupling 

Imperfections 
3 

 Entire mechatronic product: “system of systems”,  

e.g. entire vehicle 

 Co-Simulation characteristics: 

 Strong interaction 

 Bidirectional interdependencies 

(internal loops) 

 Real-time Co-Simultation  

coupling imperfections: 

 Time delays 

(Communication media, A/D resp.  

D/A converters, sensors/actuators) 

 Noise 

(Sensors) 

 Disturbances 

(data losses due to communication 

overload) 

UDP 

© VIRTUAL VEHICLE 

Coupling imperfections 

09.09.2015 / Stettinger 
Stability Analysis of Interconnected Linear Systems with Coupling 

Imperfections 
4 

 Caused by incorporation of real-time systems 

 Different types: 

 Communication time-delays (round-trip-times) 

 Noisy coupling signals (sensors!) 

 Data-losses (communication overload, disturbances,…) 
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Handling of Coupling imperfections via 

Model-based Coupling Approach 

09.09.2015 / Stettinger 
Stability Analysis of Interconnected Linear Systems with Coupling 

Imperfections 
5 

 Goal:  

Compensation of coupling imperfection effects via model-based 

coupling 

 Coupling element (MBC) introduction separates round-trip-time 

into sending                and receiving dead-times 

 Main task:  

Compensate effects of communication time-delays  

 “time correct data exchange” 

© VIRTUAL VEHICLE 

Model-based coupling approach 
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Imperfections 
6 

 Key functionality:  

model-based prediction of coupling signals (future estimate) 

 Basis: subsystem models  

 Structure: 

 Recursive identification of subsystem models (RIS2, RIS1) 

 Model-based extrapolation/prediction (MBE) 
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Model-based coupling: Identification 

09.09.2015 / Stettinger 
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Imperfections 
7 

 Subsystem model structure: 

 linear time-varying 2nd order system 

 Corresponding difference equation: 

 

 Identification techniques: 

 Recursive Least Squares identification  

 Kalman Filter based algorithms 

 Linear identification problem 

 Minimal computational burden 

 Prevention of estimator windup via directional tracking algorithms 

 

 Initial identification phase (learning phase) to get subsystem 

models  
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Model-based coupling: Extrapolation 

09.09.2015 / Stettinger 
Stability Analysis of Interconnected Linear Systems with Coupling 

Imperfections 
8 

 Extrapolation via in advance simulation  

of the estimated closed-loop dynamics 

 Structure: 

 

 

 

 

 

 

 Extrapolation horizons given by present sending and receiving 

dead-times: 

 y-Extrapolation horizon: 

 u-Extrapolation horizon: 
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Stability Analysis Techniques 
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Imperfections 
9 

 Goal:  

Stability properties of closed-loop including the MBC approach 

 Focus:  

Linear subsystems 

 

 

 

 

 

 2 different MBC test-cases: 

1) time-invariant subsystem models 

2) time-varying subsystem models (parameter adaptation!) 

linear linear 
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FIR Filter Representation of the MBC-element 
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Imperfections 
10 

 whole MBC element (system identification & extrapolation part) 

can be represented via 4 FIR filters 

 structure independent of the extrapolation horizon and 

parametrization (only FIR filter coefficients change) 

  2 different MBC types: 

1) time-invariant subsystem models  

 constant FIR Filter coefficients 

2) time-varying subsystem models  

(parameter adaptation!)  

 time-varying FIR Filter coefficients 

 

 

 Test-case 1 remark: 

Time-invariant MBC element is BIBO-stable  

(assuming finite FIR Filter coefficients)! 
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Stability Analysis Techniques:  

Time-Invariant Closed-Loop Dynamics 
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11 

 time-invariant subsystems                    and MBC element 

 preidentified (constant) subsystem models             
 constant FIR Filter coefficients 

 MBC element only performs MBEs 

 BIBO-stability evaluation based on the overall transfer function 

 

 

 

 

 

 

 Remark: 
Additional nonlinearities at the plant input can be considered via 
absolute stability concepts!  

MBC element 
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Stability Analysis Techniques:  

Time-Variant Closed-Loop Dynamics 
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12 

 Sources of time-variations: 

 time-variant subsystems 

 time-variant MBC element (parameter adaptations!) 

 time-varying delays 

 time-varying extrapolation horizon (time-varying delays resp. data-losses!) 

 Time-variant closed-loop dynamics 

 

 

 corresponding transition matrix of the free-system 
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Stability Analysis Techniques:  

Time-Variant Closed-Loop Dynamics (2) 

09.09.2015 / Stettinger 
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Imperfections 
13 

 Desirable stability property: UNIFORM EXPONENTIAL STABILITY  

 convenient robustness properties 

 notion is preserved under small bounded perturbations 

 as well as linearly homogeneous perturbations decaying to zero 

 Uniform exponential stability: 

 transistion matrix            exponentially decays to zero uniformly 

 Definition: 

 

 

 

 Short-time BIBO property definition: 
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Stability Analysis Techniques:  

Time-Variant Closed-Loop Dynamics (3) 
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Imperfections 
14 

 Short-time BIBO property characterization: 

 Impulse response matrix: 

 

 Theorem: 

 

 

 

 

 

 Different techniques to obtain UES: 

 Stability of asymptotically time-invariant systems 

 Stability based on the Bohl exponent 

 (Stability according to Lyapunov-Perron-Malkin) 
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Stability of asymptotically time-invariant 

systems 
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Imperfections 
15 

 Goal:  

UES verification 

 Special case:  

subsystem model parameters converge to constant values 

 Theorem:  
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Stability based on the Bohl exponent 
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Imperfections 
16 

 Goal:  

UES verification 

 General case:  

no assumptions about the parameter adaptations (no 

convergence required!) 

 Eigenvalues (resp. Schur matrix) are of no use 

 Two counterparts to eigenvalue moduli for time-varying systems 

 Lyapunov exponent indicates asymptotic stability 

 Bohl exponent indicates UES (robustness properties!) 

 

 

 Necessary and sufficient condition for UES 
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Example: Drivetrain Control-Loop 
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 Goal:  

Reference speed tracking 

 Sample-time: 

 

 2 receiving time-delays: 
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Example: Drivetrain Control-Loop 
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System 1: PI-Controller: 

 

 

System 2: Drivetrain: 
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Results: Drivetrain Control-Loop 
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Imperfections 
19 

 Mono-simulation:  

Reference solution without communication time-delays 

 Distinct overshoots due to introduced dead-times 

 Compensation of time-delay effects via MBC 

 time-varying MBC 

 most accurate results! 

 time-invariant MBC 

 offset! 
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Stability Analysis:  

Time-Invariant Closed-Loop Dynamics 
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20 

 Time-invariant MBC (constant subsystem model-parameters) 

 Goal:  

state BIBO stability 

 BIBO-stability verification via two overall transfer functions 

 

 

 

 

 

 Result: 

BIBO stable Time-Invariant Closed-Loop Dynamics 
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Stability Analysis:  

Time-Variant Closed-Loop Dynamics 
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21 

 Resulting time-variant system of order 14 

 

 

 

 Analysis via perturbed linear system 

    

 

 

 spectral radius                                     Schur matrix 

 furthermore  

 

 

 

constant time-varying 

UES Time-Variant Closed-Loop Dynamics 
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Stability Analysis:  

Time-Variant Closed-Loop Dynamics (2) 
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 Short-time BIBO stability evaluation 

 simulation time 

 

 numerical calculation of the Bohl exponent 

 

 

 evaluation via minimum of the individual row-maxima of      : 
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Stability Analysis:  

Time-Variant Closed-Loop Dynamics (2) 
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 Results of the numerical approximation: 

 

 

 

 

 

 
 

 UES: 
 

 Short-time BIBO stability: 

UES Time-Variant Closed-Loop Dynamics 

decaying characteristic! 

Short-Time BIBO Stable Time-Variant Closed-Loop Dynamics 
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Conclusions & Outlook 
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24 

 MBC is suitable to compensate coupling imperfection effects 

 MBC is the key to solve Real-Time Co-Simulation problems 

 Successful Closed-Loop Stability Analysis for linear 

Subsystems 

 

 Open tasks: 

 Closed-Loop Stability Analysis for nonlinear Subsystems 

 Usability improvement (Parametrization and Integration) 
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Fields of Applications 
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 Real-Time Co-Simulation 

 Networked Control Systems (NCS) 

 Consensus Control of Multi-Agent Systems 

 Time-Delay Systems 

 Systems of Systems Engineering (SoSE) 

 Decentralized Control 

 Smart Grid Applications 

 Signal Conditioning 
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Model based control of a biomass fired steam boiler

Christopher Zemanna,b Viktor Unterbergera,b Markus Göllesa

Introduction

In terms of system theory, a biomass furnace with steam boiler is a non-linear, coupled mul-
tivariable system with several inputs and outputs. Conventional control strategies currently
applied to these plants usually consist of decoupled linear sub-controllers, just partially or
even not at all considering the coupled and non-linear behaviour of furnace and boiler. The
goal of this work was to develop a new control strategy that utilizes a mathematical mo-
del of the process to improve the plant’s operating behaviour and apply this control to an
industrial plant for the production of process steam.

Plant description

The industrial plant, illustrated in Figure 1, has a nominal capacity of 6 MW and is designed
for the combustion of wood chips. The fuel is fed onto a declining reciprocating grate by a
hydraulic stoker. There it is heated up due to the high temperatures in the furnace. As a
result, the water that is bound in the fuel is evaporated and the fuel’s volatile components
are released to the gas phase (devolatilization). The remaining charcoal is burned with pri-
mary air supplied beneath the grate, providing the heat necessary for the evaporation and
devolatilization. The resulting flue gas moves from the primary combustion chamber to the
secondary combustion chamber where additional air (secondary air) is added, ensuring a
complete burnout of the fuel. Both the primary and the secondary combustion chambers
are surrounded by refractory lining which physically resembles a heat storage continuously
exchanging heat with the flue gas passing through the combustion chamber. Finally, the flue
gas enters the steam boiler where most of the heat released by the combustion is transferred
to water, leading to its evaporation. A part of the flue gas is recirculated into the prima-
ry combustion chamber, thus enabling the control of the temperature in the combustion
chamber.

Modelling and control

The modelling of biomass furnace and steam boiler investigated has been performed se-
parately for all relevant parts, namely the fuel bed, the gas phase combustion, the heat
storage effect of the refractory lining and the evaporation of the water in the boiler. The
mathematical model for the fuel bed consists of two first-order ordinary differential equations
representing mass balances for the mass of water and dry fuel on the grate. They describe
the correlation between the supplied primary air and fuel mass flows as well as the fuel
composition and the mass flows of evaporated water and thermally decomposed dry fuel.
The static model for the gas phase combustion equals a standard combustion calculation. It
considers the water and fuel released from the fuel bed, the supplied air and the recirculated

aBioenergy 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, E-Mail:
christopher.zemann@bioenergy2020.eu

bInstitut für Regelungs- und Automatisierungstechnik, Technische Universität Graz, Kopernikusgasse 24/II,
8010 Graz
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flue gas and provides the adiabatic combustion temperature as well as the mass flow and the
chemical composition of the resulting flue gas. The heat storage effect of the refractory lining
is modeled by one linear first order ordinary differential equation describing the correlation
of the adiabatic combustion temperature and the temperature of the flue gas at the end of
the secondary combustion chamber. The evaporation of water in the steam boiler as well as
the heat transfer from the flue gas to the water is described by two first order non-linear
ordinary differential equations.

Similar to conventional control strategies, the variables controlled by the developed strategy
are the steam pressure, the water level in the boiler, the temperature of the flue gas at
the end of the secondary combustion zone and the oxygen content of the flue gas at boiler
outlet. The developed control is based on the method of Exact Input-Output Linearization
in combination with an Extended Kalman Filter.

Results of the implementation at an industrial plant

The control strategy developed has been implemented and validated at the industrial biomass
plant described previously where it led to significant improvements of the plant’s operating
behaviour, with all controlled variables being kept closer to the desired values. In particular,
a better control of the oxygen content in the flue gas has been achieved, indicating a more
regular and complete burnout of the fuel. Furthermore, the new control reacts more quickly to
the rapid changes of the heat demand occurring in this plant, providing an overall more stable
plant behaviour and consequently a more stable steam pressure as illustrated in Figure 2.

Figure 1: Biomass fired steam boiler Figure 2: Stabilization of steam pressure
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Model based control  
of a biomass fired steam boiler 

Christopher Zemanna,b, Viktor Unterbergera,b, Markus Göllesa 

a Bioenergy 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, E-Mail: christopher.zemann@bioenergy2020.eu 

b  Institute of Automation and Control, Graz University of Technology, Kopernikusgasse 24/II, 8010 Graz 

■ In terms of system theory, a biomass furnace with steam boiler is a 

■ non-linear 

■ coupled multivariable system  

■ with several inputs and outputs 

 

■ Currently applied control strategies are based on decoupled  

PI-controllers ignoring the couplings and non-linear behaviour. 

 

 Development and application of a model based control strategy 

to improve the operating behavior. 

 

Model based control of biomass furnaces 

Slide 2 
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■ Description of the biomass fired steam boiler 

 

■ Modelling of the biomass furnace 

 

■ Modelling of the steam boiler 

 

■ Model based control of the biomass fired steam boiler 

 

■ Results and summary 

Content of the presentation 

Slide 3 

Description of the biomass fired steam boiler 

Slide 4 
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Fuel: wood chips 

■ wood chips 

■ water content 

■ typically 30% - 60% of  

the overall weight 

■ calorific value 

■ typically ~4,3 kWh / kg  

■ for comparison: 

– hard coal: 7 – 8 kWh / kg 

Slide 5 

Description of the biomass fired steam boiler 

■ industrial steam boiler 

■ production of process steam 

(dairy industry) 

■ nominal capacity: 6 MWth 

■ saturated steam produced 

at nominal load: 9.2 t/h 

Slide 6 
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Modelling of the plant 
Separate modeling of the relevant parts 

■ (1) fuel bed:  

evaporation of the water and 

thermal decomposition of the 

dry fuel 

■ (2) gasphase combustion: 
combustion of the 
decomposed dry fuel 

■ (3) thermal storage  

in the refractory lining: 

heat stored in the refractory 

lining 

■ (4) steam boiler:  
transfer of the heat released 
by the combustion to the water 
and evaporation of the water 

Slide 7 

Modelling of the biomass furnace 

(1) fuel bed 

(2) gasphase combustion 

(3) thermal storage in the refractory lining 

Slide 8 
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Modelling of the biomass furnace 
(1) fuel bed 

wet  

biomass dry  

biomass 

charcoal 

ash 

fuel feed 

primary air 

evaporated water 

Utilization of an existing mathematical model based on a mass balance  

𝐝

𝐝𝐭
𝐦𝐚𝐬𝐬 𝐨𝐟 𝐟𝐮𝐞𝐥 𝐢𝐧 𝐭𝐡𝐞 𝐟𝐮𝐞𝐥 𝐛𝐞𝐝 = 𝐞𝐧𝐭𝐞𝐫𝐢𝐧𝐠 𝐦𝐚𝐬𝐬 𝐟𝐥𝐨𝐰 − 𝐫𝐞𝐥𝐞𝐚𝐬𝐞𝐝 𝐦𝐚𝐬𝐬 𝐟𝐥𝐨𝐰  

decomposed dry fuel 

Slide 9 

Modelling of the biomass furnace 
(1) fuel bed 

 

■ differential equation for the water in the evaporation zone mw 

 

 

 

 

■ differential equation for the dry fuel in the thermal decomposition zone mds 

  

𝑑𝑚w 𝑡

𝑑𝑡
= −𝑐wev 𝑚w 𝑡  +  

𝑑𝑚w,inlet 𝑡 − 𝑇d 𝑡

𝑑𝑡
 

evaporated water entering water 

𝑑𝑚ds 𝑡

𝑑𝑡
= −𝑐thd 𝑚 pa 𝑡 + 𝑐pa,0  𝑚ds 𝑡  +  

𝑑𝑚ds,inlet 𝑡 − 𝑇𝑑 𝑡

𝑑𝑡
 

decomposed dry fuel entering dry fuel 

Slide 10 
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Modelling of the biomass furnace 
(2) gasphase combustion 

secondary air 

recirculated 

flue gas 

gasphase 

combustion 

fuel bed 

adiabatic combustion temperature 

Slide 11 

■ combustion of volatiles and char 

■ ordinary mass and energy balance (combustion calculation) 

■ nonlinear algebraic equations 

■ outputs 

 adiabatic combustion temperature  

 mass flow of the flue gas 

Modelling of the biomass furnace 
(2) gasphase combustion 

Slide 12 
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Modelling of the biomass furnace 
(3) thermal storage in the refractory lining 

resulting temperature of the flue gas Tfg,in 

flue gas 

adiabatic combustion temperature Tad 

refractory lining Trl 

Continuous exchange of heat between 

the flue gas and the refractory lining. 

𝑑𝑇rl(𝑡)

𝑑𝑡
= 𝑎rl 𝑇ad(𝑡) − 𝑇rl(𝑡)  

𝑇fg,in 𝑡 = 𝑐rl  𝑇rl 𝑡 + 1 − 𝑐rl  𝑇ad(𝑡) 

Differential equation for the mean 

temperature of the refractory lining: 

Slide 13 

Structure of the overall model  
of the biomass furnace 

fuel bed 

 

 

2nd order 

nonlinear  

differential  

equation 

gasphase 

combustion 

 

 

 

 

 

 

 

 

non-linear 

algebraic  

equations 

thermal  

storage  

in the  

refractory  

lining 

 

1st order 

linear  

differential  

equation 

fuel 

primary air 

secondary air 

recirculated flue gas 

flue gas  

temperature 

flue gas  

mass flow 

Slide 14 
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Modelling of the steam boiler 

Slide 15 

Modelling of the steam boiler 
Description of the steam boiler 

steam 

feed water 

flue gas 

steam 

pressure p 

Slide 16 

Application of mass and energy balance equations  

for modelling the steam boiler. 
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■ conservation of mass in the steam boiler 

 

 

 
 

■ m = ρ V 

 

 

            with 

 

Modelling of the steam boiler 
Mass balance equation 

𝑑

𝑑𝑡
𝑚water +𝑚steam = 𝑚 feed  − 𝑚 steam 

mass of water and 

steam in the boiler 

mass flows of  

entering feed water  

and emanating steam 

𝑑

𝑑𝑡
𝜌water𝑉water + 𝜌steam𝑉steam =  𝑚 feed  − 𝑚 steam 

𝜌water = 𝜌water pressure, temperature  

𝜌steam = 𝜌steam pressure, temperature  

… density of water 

… density of steam 

Slide 17 

Modelling of the steam boiler 
Energy balance equation 

■ conservation of energy in the steam boiler 

 

 

 

 

 

 

         with 

 

𝑑𝑈

𝑑𝑡
     =       𝐻 in    −     𝐻 out 

stored energy energy flux across the 

system boundaries 

𝑑

𝑑𝑡
𝑈water + 𝑈steam + 𝑈metal =  𝐻 feed − 𝐻 steam + ∆𝐻 fg 

𝑈x   ~  𝜌x  ∙  𝑉x ∙  ℎx 

𝐻 x  =  𝑚 x  ∙  ℎx 

… internal energy 

… energy flux 

ℎx  = ℎx pressure, temperature  … specific enthalpy 

Slide 18 
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Modelling of the steam boiler 
Saturated steam 

𝜌x = 𝜌x pressure  

ℎx = ℎx pressure  

Slide 19 

■ The properties of water and steam (density and specific enthalpy)      

are nonlinear functions of the temperature and the pressure. 

 Assumption: saturated steam 

𝜌water = 𝑎w,1 𝑝 + 𝑎w,0 

𝜌steam = 𝑎s,1  𝑝 + 𝑎s,0 

ℎwater = 𝑏w,1 𝑝 + 𝑏w,0 

ℎsteam = 𝑏s,1  𝑝 + 𝑏s,0 

approximation of the specific enthalpy of water 

Modelling of the steam boiler 
Resulting overall model 

𝑑𝑉water

𝑑𝑡

𝑑𝑝

𝑑𝑡

=

𝛼1 ∙ 𝑝 + 𝛼0 𝛽1 ∙ 𝑉water + 𝛽0

𝛾1 ∙ 𝑝
2 + 𝛾1 ∙ 𝑝 + 𝛾0       ∆3∙ 𝑉water ∙ 𝑝 + ∆2 ∙ 𝑉water + ∆1 ∙ 𝑝 + ∆0

−1

 

                       

     ∙ −
 1

𝜀1 ∙ 𝑝 + 𝜀0

𝑚 steam +
1 0

ℎfeed 1
∙

𝑚 feed 

∆𝐻 fg

 

 

The resulting mathematical model of the steam boiler is a system 

of two coupled, non-linear ordinary differential equations: 

■ state variables 

 p      … steam pressure 

 Vwater… volume of water in the boiler 

■ input variables 

 m feed … feed water mass flow 

 ∆H fg  … heat flux transferred from 

             flue gas to the steam boiler 

Slide 20 
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Modelling of the steam boiler 
Verification of the mathematical model of the steam boiler 

The mathematical model of the  

steam boiler matches the measured data sufficiently well. 
Slide 21 

Model based control  
of the biomass fired steam boiler 

Slide 22 

217



Control of the biomass fired steam boiler  

 

 

 

 

 

 

 

 

 

 

biomass fired steam boiler  

steam 

boiler 

biomass 

furnace 

y1,2,6 

y4,5 

u2,3,4 

u5 

u1(t+Td) 

u5 

u  =y3 

mass 

flows 
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Control of the biomass fired steam boiler  

 

 

 

 

 

 

 

 

 

 

biomass fired steam boiler  

steam 

boiler 

biomass 

furnace 

y1,2,6 

y4,5 

u2,3,4 

exact 

input 

output 

linearization 

PI - controllers 
v1,2 

v3 

u1(t+Td) 

u5 

y1,2 

r1,2 

u  =y3 

desired 

heat flux 
u5 

Slide 24 
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Control of the biomass fired steam boiler  
Mathematical model of the biomass furnace 

■ state variables 

■ x1 = mw     … mass of water in the evaporation zone 

■ x2 = mds   … mass of dry fuel in the thermal decomposition zone  

■ x3 = Trl     … mean temperature of the refractory lining 

𝑑𝑥1
𝑑𝑡

= −
𝑐11

1 + 𝑐12𝑑1
𝑥1 +

𝑑1
1 + 𝑐12𝑑1

𝑢1 

𝑑𝑥2
𝑑𝑡

=
𝑐21

1 + 𝑐12𝑑1
𝑥1 − 𝑐22𝑥2𝑢2 +

1

1 + 𝑐12𝑑1
𝑢1 

𝑑𝑥3
𝑑𝑡

=
−𝑐31𝑥1 + 𝑐32𝑥2𝑢2 + 𝑐33𝑢3 + 𝑐34𝑢4

𝑐11𝑥1 + 𝑐12𝑥2𝑢2 + 𝑢3 + 𝑢4
 

Slide 25 

■ output variables 

■ y1 … residual oxygen content of the flue gas 

■ y2 … temperature of the flue gas 

■ y3 … heat flux transferred from flue gas to the steam boiler 

■ exact input – output linearization with desired transfer functions 

Control of the biomass fired steam boiler  
Exact input-output linearization of the biomass furnace 

𝑦1 = 𝑣1 
 

𝑦2 = 𝑣2 
 

𝑦3 = 𝑣3 

𝑢2 
 

𝑢3 
 

𝑢4 

exact linearization 
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Control of the biomass fired steam boiler  
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Control of the biomass fired steam boiler  
Fuel mass flow 

 the method of exact input – output linearization is not applicable 

 

■ separate control for the fuel bed 

 

 

 

 
 

■ y6   … mass of dry fuel in the thermal decomposition zone 

■ u1,∞ … mass flow of dry fuel at steady state conditions 

𝑢1 = 𝑚 ds,inlet 𝑡 − 𝑇𝑑 𝑡  … mass flow of dry fuel 

𝑢1 = 𝑢1,∞ +  𝑘p 𝑟6  − 𝑦6  

proportional 

controller 
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Control of the biomass fired steam boiler  
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Control of the biomass fired steam boiler  
Mathematical model of the steam boiler 

■ state variables and output variables 

■ x4 = y4 = Vwater … volume of water in the boiler 

■ x5 = y5 = p       … steam pressure 

■ input variables 

■ u5             … mass flow of feed water 

■ u  (= y3) … heat flux transferred from flue gas to the steam boiler 

          
𝑑𝑥4
𝑑𝑡

=
−𝑐f,7 𝑥4 𝑥5 − 𝑐f,5  𝑥4− 𝑐f,8  𝑥5− 𝑐f,9 + 𝑐f,1  𝑥4 𝑑5+ 𝑐f,3 𝑑5  𝑢5

𝐹 𝑥4, 𝑥5

+ 
𝑐f,1  𝑥4 + 𝑐f,3  𝑢 

𝐹 𝑥4, 𝑥5
+

𝑐K,7 𝑥4 𝑥5 + 𝑐K,8  𝑥4+ 𝑐K,9 𝑥5 + 𝑐K,10  𝑑4
𝐹 𝑥4, 𝑥5

 

 

          
𝑑𝑥5
𝑑𝑡

=
−𝑐f,4 𝑥5

2 − 𝑐f,5  𝑥5− 𝑐f,6 + 𝑐f,1  𝑥5 𝑑5+ 𝑐f,2 𝑑5  𝑢5
−𝐹 𝑥4, 𝑥5

+ 
𝑐f,1  𝑥5 + 𝑐f,2  𝑢 

−𝐹 𝑥4, 𝑥5
+

𝑐K,11 𝑥5
2 + 𝑐K,12 𝑥5 + 𝑐K,13  𝑑4
−𝐹 𝑥4, 𝑥5
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Control of the biomass fired steam boiler  
Exact input-output linearization of the steam boiler 

𝑤4,1 𝑦4  +  
𝑑𝑦4
𝑑𝑡

= 𝑤4,0 𝑣4 

𝑤5,1 𝑦5  +  
𝑑𝑦5
𝑑𝑡

= 𝑤5,0 𝑣5 

𝑢5 
 
 

𝑢  

exact linearization 

■ exact input – output linearization with desired transfer functions 

 

 

 

 

 

 

■ control of steam pressure and volume of water 

■ PI - controllers 
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Control of the biomass fired steam boiler  
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Results and summary 

Slide 33 

■ Comparison of the biomass plant‘s operating behaviour controlled by 

■ the newly developed model based control strategy 

■ the conventional control strategy (PI-controllers) originally applied 

 

■ Switching between both controls 

■ initialization of the integral controller to enable a smooth transition 

 

■ Comparing: 

■ y1 … residual oxygen content of the flue gas 

■ y2 … flue gas temperature in the secondary combustion chamber 

■ y3 … steam pressure 

Results 
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model based control conventional control 

 model based control keeps the oxygen content closer to the desired value 

(reduction of standard deviation: 1.15 0.25 vol.% w.b.) 

Results 
oxygen content of the flue gas 
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model based control conventional control 

 model based control keeps temperature in the secondary  

combustion chamber closer to the desired value 

Results 
temperature of the flue gas 
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model based control conventional control 

 model based control keeps the steam pressure closer to the desired value 

(reduction of standard deviation: 0.33 0.12 bar) 

Results 
steam pressure 

Slide 37 

■ Development of a mathematical model for biomass fired steam boilers. 

■ biomass furnace: 3rd order non-linear differential equation 

■ steam boiler: 2nd order non-linear differential equation 

 

■ Application of a model based control strategy. 

■ exact input-output linearization of the biomass furnace 

■ superimposed controller for the steam boiler (exact put-output 

linearization) 

 

The application of the control at an industrial plant led to  

a significant improvement of the plant‘s operating behavior. 

Summary 
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