SSRP 2019

21. Steirisches Seminar über Regelungstechnik und Prozessautomatisierung

21st Styrian Workshop on Automatic Control

Presentations

M. Reichhartinger and M. Horn markus.reichhartinger@tugraz.at martin.horn@tugraz.at

September 9 - 11, 2019 Schloss Retzhof, Leitring/Wagna, Austria

© Institute of Automation and Control, Graz University of Technology

Graz University of Technology

http://www.irt.tugraz.at

I.	Jakob Rehrl: Implementation of Model-based Control Concepts in Continuous	4
11.	Daniel Ritzberger: Data-driven modelling of Polymer Electrolyte Membrane Fuel cells for Fault Detection	34
111.	Klemens Kranawetter: Adaptive Resonance-Suppression for Automotive Test Bed Systems	60
IV.	Thomas Nigitz: Synchronization of the gas production and utilization rates of a solid-to-gas process and a downstream gas-to-X process	101
V.	Stefan Richter: Systematic and Efficient Decision Making with Optimization	127
VI.	Alessandro Pisano: Robust consensus-based Secondary Frequency and Voltage Restoration of Inverter-based Islanded Microgrids	152
VII	. Daipeng Zhang: Parameter Preference for the Super-Twisting Algorithm Induced by ${\sf H}_{ m inf}$ -Norm Analysis	206
VII	INicole Gehring: An infinite-dimensional Output Feedback Tracking Controller for a Pneumatic System with Distributed Parameters	249
IX.	Dietrich Fränken: Passive Radar for Air Surveillance	288
Х.	Alberto Ismael Castillo Lopez: Barrier Sliding Mode Control for a Hydraulic Actuated Crane	308

XI. Lars Watermann: Backstepping Induced Variable Gain Sliding Mode Control	335
XII. Juan G. Rueda-Escobedo: Fixed-time Parameter Estimation Under Lack of Persistency of Excitation	360
XIIIAndrej Sarjaš: Optimal Feedback Controllers' Design Based on Evolutionary Computation with Differential Evolution	395

I. Jakob Rehrl: Implementation of Model-based Control Concepts in Continuous

Implementation of Model-based Control Concepts in Continuous Pharmaceutical Engineering

Jakob Rehrl / Styrian Workshop on Automatic Control / Leibnitz / 2019

K1 Competence Center - Initiated by the Federal Ministry for Transport, Innovation & Technology (BMVIT) and the Federal Ministry of Digital and Economic Affairs (BMDW). Funded by FFG, Land Steiermark and Steirische Wirtschaftsförderung (SFG).

Introduction

- Pharmaceutical manufacturing
 - Primary: active pharmaceutical ingredient (API)
 - Typically: chemical reactions, purification, crystallization
 - Outcome: API in form of a powder
 - Secondary: final dosage form (e.g., tablet, capsule)
 - Different production routes (e.g., granulation, tableting / capsule filling)
 - Different manufacturing approaches: batch vs. continuous

Introduction

- "Batch production"
 - Isolated processing steps (timely and spatially)
 - Intermediate material storage and shipping
 - Few in-process monitoring, but end product testing
- Trend: Transition from batch to continuous manufacturing
 - "Raw materials in", "final product out"
 - Implement real time monitoring (e.g., process analytical technology (PAT))
 - Implement material discharge of non conforming intermediates
 - Implement process control to keep critical quality attributes within their limits

4 10.09.2019

Retzhof, 2019

Investigated process

Hot melt extrusion:

- improve solubility, enable production of oral dosage forms containing poorly soluble APIs
- Production of sustained-release tablets and pellets

JOANNEUM

Investigated process

Pelletization:

- Cutting of strand to form pellets, uniform size is desired
- Control of strand temperature at pelletizer inlet via air pressure
- Control of strand thickness at pelletizer inlet via intake speed

Retzhof, 2019

10.09.2019

8

Retzhof, 2019

Controller design

- 2 actuators, 2 controlled variables, 1 measureable disturbance
- Sampling rate 350ms
- Model predictive control

JOANNEUM

Plant model - Local linear model tree (LOLIMOT)

Retzhof, 2019

- Idea:
 - Approximate nonlinearity by locally affine models:
 - LOLIMOT algorithm: select validity regions of local models and estimate local model parameters

JOANNEUM

Plant model - Local linear model tree (LOLIMOT)

Idea:

- Determine "worst" model that should be split into 2 new models
- Select input to split according best improvement

Plant model - Local linear model tree (LOLIMOT)

- Static model
- Dynamic model by delaying inputs and outputs

Plant model - Local linear model tree (LOLIMOT) • Model structure:

13 10.09.2019

Retzhof, 2019

Plant model - Local linear model tree (LOLIMOT)

- Identification data
 - d₁ ... expected constant → 4 different levels across operating region between 110 and 120 °C
 - u₁, u₂ ... pseudo random binary signals + deterministic part

ŢU

Plant model - Local linear model tree (LOLIMOT)

Plant model - Local linear model tree (LOLIMOT) Model creation*

*Hartmann B., Ebert T., Fischer T., Belz J., Kampmann G., Nelles O.: "LMNtool - Toolbox zum automatischen Trainieren lokaler Modellnetze", 22. Workshop Computational Intelligence, Dortmund, Dezember 2012.

16 10.09.2019

Retzhof, 2019

Plant model - Local linear model tree (LOLIMOT)

 Comparison LOLIMOT model vs. measurement

Controller

•
$$J_k = \sum_{i=1}^{n_p} (\mathbf{r}_{k+i} - \hat{\mathbf{y}}_{k+i})^T \mathbf{Q} (\mathbf{r}_{k+i} - \hat{\mathbf{y}}_{k+i}) + \sum_{i=0}^{n_c-1} \mathbf{u}_{k+i}^T \mathbf{R} \mathbf{u}_{k+i} + \sum_{i=0}^{n_c-1} \mathbf{u}_{\Delta,k+i}^T \mathbf{R}_{\Delta} \mathbf{u}_{\Delta,k+i}$$

Controller – prediction model

- Attempt 1:
 - compute state space model from LOLIMOT
 - use time invariant state space model for prediction along n_p

Controller – prediction model

- Attempt 1:
 - Linear MPC formulation
 - Poor tracking performance in simulation and on real plant
- Attempt 2:
 - Use time varying state space model along prediction horizon
 - Nonlinear optimization problem
 - Improved performance

Controller – results reference tracking

Retzhof, 2019

Particle size distribution - measurement

- Multiple images of single particles are captured
- Algorithm to compute characteristic sizes of the captured particles
- E.g., area equivalent diameter D_a

Particle size distribution - measurement

Controller – results particle size distribution

- Comparison to open loop operation at constant u₁ and u₂ ("no control")
- Distribution can be narrowed by suggested control strategy

Conclusion

- Systematic controller synthesis
- Implementation of MPC to a pharmaceutical manufacturing process
- More narrow particle size distribution compared to open loop operation
- Improved strand temperature and therefore less downtime due to necessary manual intervention (e.g., after strand break)
- Challenges and possible next steps:
 - Strand measurement
 - Mass flow fluctuations of the feeders
 - Strand guidance on conveyor belt

Conclusion – strand measurement

Possible reason for fluctuations at constant actuation: radial strand movement + small measurement spot

26 10.09.2019

Retzhof, 2019

Conclusion – mass flow fluctuations

Conclusion – strand guidance conveyor belt

Retzhof, 2019

Thank you for your attention!

II. Daniel Ritzberger: Data-driven modelling of Polymer Electrolyte Membrane Fuel cells for Fault Detection Data-driven modeling of Polymer Electrolyte Membrane Fuel cells for Fault Detection

AVL 000

INSTITUT FÜR MECHANIK UND MECHATRONIK Mechanics & Mechatronics Daniel Ritzberger Stefan Jakubek

21st Styrian Workshop on Automatic Control

Daniel Ritzberger

1

Introduction and Motivation

Electrochemical Impedance Spectroscopy (EIS) Total Harmonic Distortion Analysis (THDA)

On-line Estimation of the Electrochemical Impedance

Time-Domain Based Parameter Estimation Experimental Results

Extension of Impedance to Non-linear Effects

Volterra Series **Experimental Results**

Motivation

Fuel cell:

Electrochemical reactor that directly converts chemical to electrical energy

In automotive applications:

Typically, polymer electrolyte membrane fuel cells (PEMFCs) are considered

Necessary key improvements:

- 1. Increase in durability
- 2. Reduction of cost

- Source: US Department of Energy 2016

Daniel Ritzberger

Electrochemical Diagnostic Methods

Based on analyzing voltage / current data subjected to a superimposed excitation signal (typically to the current)

Electrochemical Impedance Spectroscopy:

- Sinusoidal excitation
- Small amplitude \rightarrow FC current / voltage behaviour is linear

$$u(t) = A\cos(\omega t)$$
Linear
$$y(t) = Y(\omega)\cos(\omega t + \phi(\omega))$$
System

Total Harmonic Distortion Analysis:

- Multi-Sinusoidal excitation
- Increased amplitude → Non-linear output responses

$$u(t) = A\cos(\omega t)$$
Non-linear
System
$$y(t) = \sum_{n=1}^{N} Y_n(\omega) \cos(n\omega t + \phi_n(\omega))$$

Daniel Ritzberger

Δ

Electrochemical Impedance Spectroscopy (EIS)

- Significant experimental time required to obtain full impedance spectrum
- Not directly applicable for on-line diagnostics during transient (automotive) operation

Achieve on-line estimation of the electrochemical impedance

Total Harmonic Distortion Analysis (THDA)

Linear System:

6

m

Total Harmonic Distortion Analysis (THDA)

Non-linear System:

THDA: Continuously apply simultaneous sinusoidal excitations and monitor THD over time

$$\text{THD}(\omega) = \frac{Y_2^2(\omega) + Y_3^2(\omega) \cdots + Y_N^2(\omega)}{Y_1^2(\omega)}$$

- THDA is entirely phenomenological
- Only a subset of non-linear output responses considered
- Frequency selection problem

Develope a unifying framework that extends the electrochemical impedance to non-linear effects

Introduction and Motivation Electrochemical Impedance Spectroscopy (EIS) Total Harmonic Distortion Analysis (THDA)

On-line Estimation of the Electrochemical Impedance Time-Domain Based Parameter Estimation Experimental Results

Extension of Impedance to Non-linear Effects Volterra Series Experimental Results

Workflow of On-line Impedance Estimation

Daniel Ritzberger

Current Excitation

For the time domain estimation:

• Generic broad-band excitation

• Model-based Design of Experiments

Cramer-Rao Bound:

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) \geq \mathbf{F}^{-1}(u(t))$$

Optimization:

$$J(u(t)) = \det\left[\mathbf{F}^{-1}(u(t))\right]$$

$$u^*(t) = \operatorname{argmin} J(u(t))$$

10

Daniel Ritzberger

Discrete filter model is linear in its unknown parameters:

Efficient estimation via Least Squares (LS)

 $y(k) = -a_1y(k-1) + \dots + b_0u(k) + b_1u(k-1) + \dots$

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$ LS Assumption: Only measured output affected by noise

$$\mathbf{Y} = \begin{bmatrix} y(n) \\ y(n+1) \\ \vdots \\ y(N) \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} -y(n-1) & \dots & -y(1) \\ -y(n) & \dots & -y(2) \\ \vdots & \vdots \\ -y(N-1) & \dots & -y(N-n) \end{bmatrix} \qquad \begin{array}{c} u(n) & u(n-1) & \dots & u(1) \\ u(n+1) & u(n) & \dots & u(2) \\ \vdots & \vdots & \vdots \\ u(N) & u(N-1) & \dots & u(N-n) \end{bmatrix}$$

$$\hat{\boldsymbol{\theta}}_{\mathrm{LS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \qquad \begin{array}{c} \text{Since autoregressive (e.g. dynamic)} \\ \text{system: past outputs also in regressor matrix} \end{array}$$

Recursive LS algorithm for on-line estimation well known and could be used as an estimator

LS assumption inherently violated → biased estimates!

Total Least Squares

Least squares vs. Total least squares (TLS):

Ordinary LS minimizes squared output error

$$\hat{\boldsymbol{\theta}}_{\mathrm{LS}} = \min_{\boldsymbol{\theta}} ||\mathbf{Y} - \hat{\mathbf{Y}}||_2$$
 $\hat{\mathbf{Y}} \in \mathrm{Image}(\mathbf{X}).$

With TLS, the regressor matrix is subject to reconstruction as well

$$\hat{\boldsymbol{\theta}}_{\mathrm{TLS}} = \min_{\theta} || [\mathbf{X} - \hat{\mathbf{X}}, \mathbf{Y} - \hat{\mathbf{Y}}] ||_{F}^{2}$$

$$\hat{\mathbf{Y}} \in \text{Image}(\hat{\mathbf{X}}).$$

A recursive algorithm based on the generalized TLS estimation technique has been developed

Comparison RLS vs RGTLS

Simulated output response of equivalent circuit:

Added Gaussian noise at the output Signal-to-noise ratio at 50db (= 315:1)

RLS

• Unbiased estimates of the discrete filter parameters

 $y(k) = -a_1 y(k-1) + \dots + b_0 u(k) + b_1 u(k-1) + \dots$

• Transformation back to equivalent circuit parameters

 $R_{\mathrm{el}}, R_{\mathrm{ct}}, C_{\mathrm{dl}}$

Analogue Circuit Synthesis

Automatic synthesis of equivalent circuits

Discrete difference equation

 $y(k) = a_1 y(k-1) + \dots + a_n y(k-n)$ $b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n)$ Continuous time transfer function (Impedance)

$$H(s) = K \frac{\prod_{i=1}^{n} (s - q_i)}{\prod_{i=1}^{n} (s - p_i)}$$

Foster equivalent circuit synthesis (1930):

Partial fractional expansion of impedance:

$$H(s) = r_{1} + \frac{q_{2}}{s - p_{2}} + \frac{q_{3}}{s} + \left(\frac{q_{4}}{s - p_{4}} + \frac{q_{4}^{*}}{s - p_{4}^{*}}\right) + sq_{5} + \left(\frac{q_{6}}{s - p_{6}} + \frac{q_{6}}{s - p_{6}^{*}}\right)$$

Experimental Results

- Small scale PEM Fuel cell (5 cm² active surface)
- 100% relative humidity, 80°C Stack Temperature
- APRBS measurements as well as reference EIS (for validation) at different operating points (0.2, 1.0, 1.5, 2.0 Acm⁻²)
- APRBS measurement during transient load step

Daniel Ritzberger

On-line Estimation of Impedance

Sampling Frequency: 10kHz APRBS Bandwith: 50Hz

Reference EIS: Experimental time 3 minutes

On-line impedance estimation: Initial estimate after 1 second, afterwards, recursive estimation

Ritzberger, D., Striednig, M., Simon, C., Hametner, C., & Jakubek, S. (2018). Online estimation of the electrochemical impedance of polymer electrolyte membrane fuel cells using broad-band current excitation. *Journal of Power Sources*, 405, 150-161.

Daniel Ritzberger

On-line Estimation of Impedance

Summary:

- Recursive, on-line estimation scheme has been developed
- Unbiased Parameter estimates obtained via RGTLS
- Automatic synthesis of equivalent circuits from data
- Validated on single cell experimental data

Daniel Ritzberger

Introduction and Motivation

Electrochemical Impedance Spectroscopy (EIS) Total Harmonic Distortion Analysis (THDA)

On-line Estimation of the Electrochemical Impedance Time-Domain Based Parameter Estimation Experimental Results

Extension of Impedance to Non-linear Effects

Volterra Series **Experimental Results**

Volterra Series

Desired: Extension of electrochemical impedance to non-linear systems

Volterra series description of non-linear systems:

$$y_{1}(t) = \int_{-\infty}^{\infty} h_{1}(\tau_{1})u(t-\tau_{1})d\tau_{1} \longrightarrow H_{1}(\omega_{1})$$

$$y_{2}(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{2}(\tau_{1},\tau_{2})u(t-\tau_{1})u(t-\tau_{2})d\tau_{1}d\tau_{2} \longrightarrow H_{2}(\omega_{1},\omega_{2})$$

$$y_{n}(t) = \underbrace{\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty}}_{n-\text{fold}} h_{n}(\tau_{1},\dots,\tau_{n})u(t-\tau_{1})\dots u(t-\tau_{n})d\tau_{1}\dots d\tau_{n} \longrightarrow H_{n}(\omega_{1},\dots,\omega_{n})$$

$$y(t) = \sum_{n=1}^{\infty} y_{n}(t)$$

Daniel Ritzberger

Output Response of 2nd Order Volterra Series

Applying a bi-tonal input signal

 $u(t) = A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t)$

to a second order Volterra series, leads to the following output response:

 $y(t) = \underbrace{A_1|H_1(\omega_1)|\cos(\omega_1 t + \arg(H_1(\omega_1))) + A_2|H_1(\omega_2)|\cos(\omega_2 t + \arg(H_1(\omega_2)))}_{Y(t)} + \underbrace{A_1|H_1(\omega_1)|\cos(\omega_1 t + \arg(H_1(\omega_1))) + A_2|H_1(\omega_2)|\cos(\omega_2 t + \arg(H_1(\omega_2)))}_{Y(t)} + \underbrace{A_1|H_1(\omega_1)|\cos(\omega_1 t + \arg(H_1(\omega_1))) + A_2|H_1(\omega_2)|\cos(\omega_2 t + \arg(H_1(\omega_2)))}_{Y(t)} + \underbrace{A_1|H_1(\omega_1)|\cos(\omega_1 t + \arg(H_1(\omega_1))) + A_2|H_1(\omega_2)|\cos(\omega_2 t + \arg(H_1(\omega_2)))}_{Y(t)} + \underbrace{A_1|H_1(\omega_1)|\cos(\omega_1 t + \arg(H_1(\omega_1))) + A_2|H_1(\omega_2)|\cos(\omega_2 t + \arg(H_1(\omega_2)))}_{Y(t)} + \underbrace{A_1|H_1(\omega_2)|\cos(\omega_2 t + \arg(H_1(\omega_2)))}_{Y(t)} + \underbrace{A_1|H_1(\omega_2)|\operatorname{A_1}|H_1(\omega_2)|\cos(\omega_2 t + \arg(H_1(\omega_2)))}_{Y(t)} + \underbrace{A_1|H_1(\omega_2)|\operatorname{A_1}|H_1(\omega_2)|\operatorname{A_1}|H_1(\omega_2)|\operatorname{A_1}|H_1(\omega_2)|\operatorname{A_1}|H_1(\omega_2)|\operatorname{A_1}|H_1(\omega_2)|\operatorname{A_1}|H_1(\omega_2)|H_1($

linear responses at ω_1 and ω_2

$$\frac{A_1^2}{2} |H_2(\omega_1, \omega_1)| \cos(2\omega_1 t + \arg(H_2(\omega_1, \omega_1))) +$$

second harmonic at $2\omega_1$

$$\frac{A_2^2}{2} |H_2(\omega_2, \omega_2)| \cos(2\omega_2 t + \arg(H_2(\omega_2, \omega_2))) +$$

second harmonic at $2\omega_2$

 $\underbrace{A_1A_2|H_2(\omega_1,\omega_2)|\cos((\omega_1+\omega_2)t+\arg(H_2(\omega_1,\omega_2)))}_{+}$

intermodulations at $\omega_1 + \omega_2$

$$A_1 A_2 | H_2(-\omega_1, \omega_2) | \cos((\omega_2 - \omega_1)t + \arg(H_2(-\omega_1, \omega_2))) +$$

intermodulations at $\omega_2 - \omega_1$

$$\frac{\frac{A_1^2}{2}|H_2(\omega_1, -\omega_1)| + \frac{A_2^2}{2}|H_2(\omega_2, -\omega_2)|}{\frac{1}{2}}$$

Obtaining the Volterra Series

Direct estimation in general unfeasable due to curse-of-dimensionality

 $H_1(\omega_1)$ $H_2(\omega_1,\omega_2)$ $H_n(\omega_1,\ldots,\omega_n)$

Use equivalence to dynamic, auto-regressive models:

$$y(k) = \theta_0 + \sum_{i_1=1}^n \theta_{i_1} x_{i_1}(k) + \sum_{i_1=1}^n \sum_{i_2=i_1}^n \theta_{i_1i_2} x_{i_1}(k) x_{i_2}(k) + \cdots$$
$$+ \sum_{i_1=1}^n \cdots \sum_{i_\ell=i_{\ell-1}}^n \theta_{i_1i_2\cdots i_\ell} x_{i_1}(k) x_{i_2}(k) \cdots x_{i_\ell}(k) + e(k)$$

is extended by polynomial model structure

Transformation back to Volterra series via harmonic probing algorithm

Comparison: Linear vs. Non-Linear Model

Non-linear data set at low current densities

Comparing best fitting linear model to NARX model

Daniel Ritzberger

Volterra Kernel in Frequency Domain

By applying the harmonic probing algorithm, the Volterra kernels in the frequency domain are obtained from the NARX model

For THDA:

The change of amplitude and phase for different operating conditions can be concisely analyzed by investigating the relative kernel

$$V_l(\omega_1,\ldots,\omega_l) = \frac{H_{l,\text{fault}}(\omega_1,\ldots,\omega_l)}{H_{l,\text{nom}}(\omega_1\ldots,\omega_l)}$$

Non-linear Extension of Impedance

Summary:

- The Volterra series has been introduced as a suitable extension to the electrochemical impedance
- Obtained from data via non-linear, autoregressive models (NARX)
- First order Volterra kernel equivalent to electrochemical impedance
- Higher order kernels describe harmonic and intermodulated output response

Ritzberger, D., & Jakubek, S. (2017). Nonlinear data-driven identification of polymer electrolyte membrane fuel cells for diagnostic purposes: A Volterra series approach. *Journal of Power Sources*, 361, 144-152.

Ritzberger, D., et al., AVL List GmbH. Method for diagnostics of a technical system. WO2018083147A1. Granted: 2018 May 11

Thank you for your attention!

Daniel Ritzberger

III. Klemens Kranawetter: Adaptive Resonance-Suppression for Automotive Test Bed Systems

Adaptive Resonance-Suppression for Automotive Test Bed Systems

Klemens Kranawetter,

CD Laboratory for Model Based Control of Complex Test Bed Systems

Retzhof 2019

IRT

² Problem Statement

Introduction

URT

According to Hurwitz (among other inequalities):

$$k_V \leq l_1(\frac{1}{l_1} + \frac{1}{l_2}) + \frac{ck_p}{kl_2} + \frac{k_i}{k}.$$

Introduction

$$k_V \not\leq l_1(\frac{1}{l_1} + \frac{1}{l_2}) + \frac{ck_p}{kl_2} + \frac{k_i}{k}:$$

IRT

5

Experiments

Frequency swipe, 'chirped' airgap torque $\tilde{T} = \hat{T} \cdot \sin\left(2\pi \int_0^t \kappa \tau \ d\tau\right)$.

IRT

5

Experiments

Frequency swipe, 'chirped' airgap torque $\tilde{T} = \hat{T} \cdot \sin\left(2\pi \int_0^t \kappa \tau \ d\tau\right)$.

IRT

5

Experiments

Frequency swipe, 'chirped' airgap torque $\tilde{T} = \hat{T} \cdot \sin\left(2\pi \int_0^t \kappa \tau \ d\tau\right)$.

Soft Rotor

pde: $\frac{\partial^2 \varphi(x,t)}{\partial t^2} = L^2 \frac{k_{im}}{l_1} \frac{\partial^2 \varphi(x,t)}{\partial x^2}.$

IIRT

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

Modelling

Soft Rotor

pde: $\frac{\partial^2 \varphi(x,t)}{\partial t^2} = L^2 \frac{k_{im}}{l_1} \frac{\partial^2 \varphi(x,t)}{\partial x^2}.$

IRT

Modelling

¹¹ Soft Rotor pde: $\frac{\partial^2 \varphi(x,t)}{\partial t^2} = L^2 \frac{k_{im}}{l_1} \frac{\partial^2 \varphi(x,t)}{\partial x^2}$.

IIRT

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

¹² Simulation Model

¹² Simulation Model

Notch Filter
$$H(z) = K \frac{1 - 2\cos(\nu_0)z^{-1} + z^{-2}}{1 - 2r\cos(\nu_0)z^{-1} + r^2 z^{-2}}$$
,

adaptive parametrisation.

Adaptive Filter

Tan *et al.* 2011:

$$H(z) := \frac{\tilde{T}_{\text{shaft}}(z)}{T_{\text{shaft}}(z)} = \frac{1 - 2\cos(\nu_0)z^{-1} + z^{-2}}{1 - 2r\cos(\nu_0)z^{-1} + r^2z^{-2}} =: \frac{y(z)}{u(z)}.$$

Adaptive Filter

Tan *et al.* 2011:

$$H(z) := \frac{\tilde{T}_{\text{shaft}}(z)}{T_{\text{shaft}}(z)} = \frac{1 - 2\cos(\nu_0)z^{-1} + z^{-2}}{1 - 2r\cos(\nu_0)z^{-1} + r^2z^{-2}} =: \frac{y(z)}{u(z)}.$$

Minimize $\mathcal{J}(n) = \frac{1}{2}y^2(n)$:

$$\nu_0(n+1) = \nu_0(n) - \mu \frac{\mathsf{d}}{\mathsf{d}\nu_0} \mathcal{J}(n).$$

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

Adaptive Filter

Tan *et al.* 2011:

$$\nu_0(n+1) = \nu_0(n) - \mu \frac{\mathsf{d}}{\mathsf{d}\nu_0} \mathcal{J}(n).$$

Simulation Study

 $k_V = 9.7$, $t \ge 1$: $T_{\text{load}}(t) = 65 - 400 \sin(2\pi 225t) + 300 \sin(2\pi 450t)$ Nm.

- frequency
- magnitude <u>at</u>, <u>beside</u>, <u>before</u> oscillation.

17

Splitting of Adaptation Process

- frequency
- magnitude <u>at</u>, <u>beside</u>, <u>before</u> oscillation.

 $x(n) = \eta_x e^{j2\pi f_x T_d n}, X_k = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi kn}{N}}$:

Design

Splitting of Adaptation Process

- frequency
- magnitude <u>at</u>, <u>beside</u>, <u>before</u> oscillation.

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

Design

19

Splitting of Adaptation Process

- real-time capability?!
- frequency resolution: $\Delta f = \frac{1}{NT_d}$

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

Design

- real-time capability?!
- frequency resolution: $\Delta f = \frac{1}{NT_d} \Rightarrow$

DFT Interpolation

- frequency resolution: $\Delta f = \frac{1}{NT_d}$.
- leakage effect:

IIRT

- frequency resolution: $\Delta f = \frac{1}{NT_d}$.
- leakage effect:

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

Design

22

DFT Interpolation

• Blackman-windowed signals, $\tilde{x}(n) = x(n)w(n)$, $w(n) = 0.42 - 0.5\cos(\frac{2\pi n}{N}) + 0.08\cos(\frac{4\pi n}{N})$:

$$f_{x} = \frac{k_{x}}{NT_{d}} = \frac{k + \Delta k}{NT_{d}}$$

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

Activation Logic

• <u>Undesired</u> oscillation \Rightarrow filter activation <u>desired</u>:

• <u>Desired</u> oscillation \Rightarrow filter activation <u>undesired</u>:

Activation Logic, Pre-Checks:

Magnitude threshold:

$$\eta_{x} = \frac{2}{0.42N} |\tilde{X}_{x}| \stackrel{!}{>} T_{min}$$

Isolated contribution:

$$\frac{|X(\Delta k_{max})|}{|X(\Delta k_{max\pm 1})|} \stackrel{!}{=} e^{\ln(\frac{0.25}{0.42})(\Delta k_{max}^2 - \Delta k_{max\pm 1}^2)}$$

• Frequency bound:
$$|\tilde{X}_{k_{max}}| \stackrel{!}{>} \max(|\tilde{X}_{1}|, \dots, |\tilde{X}_{p}|, |\tilde{X}_{N_{g}-q}|, \dots, |\tilde{X}_{N_{g}}|)|$$

• Steady-state:

$$\sum_{i=0}^{N_s-1} |f_x(n-iN) - f_x(n-(i+1)N)| \stackrel{!}{\leq} \varepsilon$$

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

25

Activation Logic, Filter-Placement:

• Dynamical system with states $[f_1, f_2, \dots, f_{N_f}, \eta_1, \eta_2, \dots, \eta_{N_f}]$

25

Activation Logic, Filter-Placement:

- Dynamical system with states $[f_1, f_2, \dots, f_{N_f}, \eta_1, \eta_2, \dots, \eta_{N_f}]$
- Identify minimum w.r.t. $\eta \Rightarrow$ exchange with new candidate:

 T_{shaft}

_off

 $-\nu_{0,1}$ $-\nu_{0,2}$ find ν_0

 $\frac{1}{\nu_{0,n}}$

25

Activation Logic, Filter-Placement:

- Dynamical system with states $[f_1, f_2, \ldots, f_{N_f}, \eta_1, \eta_2, \ldots, \eta_{N_f}]$
- Identify minimum w.r.t. $\eta \Rightarrow$ exchange with new candidate:

$$i_{m} = \min_{i \in [1,...,N_{f}]} \{\eta_{1}, \eta_{2}, \dots, \eta_{N_{f}}\}$$

$$\eta_{i}(n+1) = \begin{cases} \eta_{x}(n) = \frac{2}{0.42N} |\tilde{X}_{x}|, & \text{if } \eta_{x} > \eta_{i_{m}}(n) \land i = i_{m} \\ \{\max(\alpha \eta_{i}(n), \zeta T_{min}), & \text{if } \eta_{i}(n) > 0 \\ 0, & \text{else} \end{cases} \quad \text{else.}$$

$$f_{i}(n+1) = \begin{cases} f_{x}(n), & \text{if } \eta_{x} > \eta_{i_{m}}(n) \land i = i_{m} \\ f_{i}(n), & \text{else.} \end{cases}$$

$$[f_1(0),\ldots,f_{N_f}(0),\eta_1(0),\ldots,\eta_{N_f}(0)] = [\xi 10^3,\ldots,\xi 10^3,0,\ldots,0]$$

 $\widetilde{T}_{\text{shaft}}$

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems Retzhof 2019 Experiment B

Test Bed Results

KS

IV. Thomas Nigitz: Synchronization of the gas production and utilization rates of a solid-to-gas process and a downstream gas-to-X process

bioenergy2020+

Synchronization of the gas production and utilization rates of a solid-to-gas process and a downstream gas-to-X process

Thomas Nigitz, Markus Gölles, Christian Aichernig, Hermann Hofbauer, Martin Horn

21.Styrian Workshop on Automatic Control Retzhof castle, 2019

Motivation – Valorization of inhomogeneous solids

- Goal: Valorization of inhomogeneous solids like
 - Biomass
 - Waste
- Conversion of solids to gas creates homogeneous properties, making further processing easier
- Finally, the gas can be processed to valuable products

Motivation – Conversion of solid to gas

Analysis of the process chain

- Gas-to-X process demands constant gas properties
- Solid-to-gas process produces fluctuating amount of gas
- > Gas production and demand needs to be synchronized

Synchronization

- Solid-to-gas process produces a surplus of gas, at least meeting the demand of gas-to-X process
- The remaining gas is burned in a gas-to-heat process

Motivation – Benchmark control strategy

- Constant pressure of the gas indicates proper synchronization
- Pressure is controlled by a valve
 Automatic adjustment of the amount of burned gas
- Amount of solid is adjusted by a screw → Manual adjustment of the mean amount of produced gas
- Large amount of gas is burned and manual adjustments are necessary
- Aim of this work: Development of a novel control strategy
 Slide 4
 Slide 4

Motivation – Requirements and limitations of the novel control strategy

Requirements

- Reduced raw material costs
 \rightarrow Reduced consumption of solids for the same amount of products X
- Reduced personnel costs → Eliminate need for manual adjustments at the screw
- Achieve control quality of benchmark control strategy

Limitations

- Implementation at a PLC with standard software blocks → Limitation to PID-controllers extended by static functions
- No interruption of steady-state plant operation \rightarrow Controller design without experiments

- Motivation
- Model for controller design
- Controller design
- Experimental validation
- Conclusion

Model for controller design – Gas network as base

Next steps: Model the influence of the manipulating variables

- Influence of the electric frequency of the screw on the mass flow of produced gas
- Influence of the position of the valve
- Slide 7 on the flow conductance of the gas-to-heat process

$$\dot{m}_{\rm G} = f(f_{\rm S}) = f(u_1)$$

 $C_{\rm G2H} = f(g_{\rm G2H}) = f(u_2)$
Model for the solid-to-gas process

First-order system

 $\dot{m}_{\rm G} = f(f_{\rm S}) = f(u_1)$

- State variable: Mass of solids inside the process
- Gain: Determined from operating data
- Time constant: Determined from physical and chemical considerations

Model for the screw

Constant: Determined from screw data

$$\frac{\mathrm{d}m_{\mathrm{S}}}{\mathrm{d}t} = -\frac{1}{\tau_{\mathrm{S2G}}}m_{\mathrm{S}} + \dot{m}_{\mathrm{S}},$$
$$\dot{m}_{\mathrm{G}} = \frac{K_{\mathrm{S2G}}}{\tau_{\mathrm{S2G}}}m_{\mathrm{S}}.$$

$$\dot{m}_{\rm S} = c_{\rm S} f_{\rm S}.$$

bioenergy2020+

electric frequency of the screw

bioenergy2020+

Model for controller design – Influence of the position of the valve

 $C_{\rm G2H} = f(g_{\rm G2H}) = f(u_2)$

Model for the flow conductance of the gas-to-heat process

- Non-linear function including the valve characteristics
- Constants: Tuned to fit measurement data

$$C_{\rm G2H} = \begin{cases} c_1 (\tilde{g}_{\rm G2H} - c_2)^{1/c_3}, & \text{if } c_2 < \tilde{g}_{\rm G2H}, \\ 0, & \text{otherwise}. \end{cases}$$

Existing compensation of valve characteristics

 $\tilde{g}_{\rm G2H} = c_4 g_{\rm G2H} + c_5.$

Model for controller design – Linearization at the operating point 1/3

Notation

- Deviation variables $x' = x x^{OP}$
- Laplace-transform $\overline{x}(s) = \mathcal{L}\{x\}$

Linearization of the gas network

$$y' = \Delta p' = \frac{\partial f(\dot{m}_{\rm G}, C_{\rm G2H})}{\partial \dot{m}_{\rm G}} \Big|_{i^{\rm OP}} \dot{m}'_{\rm G} + \frac{\partial f(\dot{m}_{\rm G}, C_{\rm G2H})}{\partial C_{\rm G2H}} \Big|_{i^{\rm OP}} C'_{\rm G2H} + d_{1},$$
$$= \frac{2\dot{m}_{\rm G}^{\rm OP}}{(C_{\rm S2G} + C_{\rm G2H}^{\rm OP} + C_{\rm G2X})^{2}} \dot{m}'_{\rm G} - \frac{2(\dot{m}_{\rm G}^{\rm OP})^{2}}{(C_{\rm S2G} + C_{\rm G2H}^{\rm OP} + C_{\rm G2X})^{3}} C'_{\rm G2H} + d_{1},$$

Influence of electric frequency of screw in Laplace-domain

$$\overline{\dot{m}}_{\rm G}'(s) = \frac{K_{\rm S2G}}{1 + \tau_{\rm S2G}s} c_{\rm S} \overline{f_{\rm S}}'(s)$$

Model for controller design – Linearization at the operating point 2/3

Notation

- Deviation variables $x' = x x^{OP}$
- Laplace-transform $\overline{x}(s) = \mathcal{L}\{x\}$
- Influence of the position of the valve

Including the existing compensation of valve characteristics

$$C'_{\rm G2H} = \frac{c_1 (\tilde{g}_{\rm G2H}^{\rm OP} - c_2)^{1/c_3 - 1}}{c_3} c_4 g'_{\rm G2H} + d_2.$$

Model for controller design – Linearization at the operating point 3/3

Notation

- Deviation variables $x' = x x^{OP}$
- Laplace-transform $\overline{x}(s) = \mathcal{L}\{x\}$

Final linear model in Laplace-domain

$$\overline{y}'(s) = \frac{2\dot{m}_{\rm G}^{\rm OP}}{(C_{\rm S2G} + C_{\rm G2H}^{\rm OP} + C_{\rm G2X})^2} \frac{K_{\rm S2G}}{1 + \tau_{\rm S2G}s} c_{\rm S} \overline{u}'_1(s) \dots$$

$$\cdots - \frac{2(\dot{m}_{\rm G}^{\rm OP})^2}{(C_{\rm S2G} + C_{\rm G2H}^{\rm OP} + C_{\rm G2X})^3} \frac{c_1(\tilde{g}_{\rm G2H}^{\rm OP} - c_2)^{1/c_3 - 1}}{c_3} c_4 \overline{u}'_2(s) + \overline{d}_1(s) + \overline{d}_2(s)$$

$$= \frac{K_1}{1 + \tau_{\rm S2G}s} \overline{u}'_1(s) + K_2 \overline{u}'_2(s) + \overline{d}(s),$$

$$= P_1(s) \overline{u}'_1(s) + P_2(s) \overline{u}'_2(s) + \overline{d}(s).$$

bioenergy2020+

Model for controller design – Summary

$$P_1(s) = \frac{K_1}{1 + \tau_{S2G}s}$$
$$P_2(s) = K_2$$
$$F(s) = \frac{1}{1 + \tau_F s}$$

- Motivation
- Model for controller design
- Controller design
- Experimental validation
- Conclusion

If mass flow of burned gas contains only high-frequent components → Mean value of burned gas can be lowered

Analysis of the model for controller design

- Screw acts via first-order system on the pressure
- Valve acts via static gain on the pressure
- Separation of pressure control in frequency domain
 - Screw compensates for low-frequent fluctuations \rightarrow Mass flow of gas that needs to be burned contains only high-frequent components

 \rightarrow Slow influence on the pressure

 \rightarrow Fast influence on the pressure

Valve compensates for high-frequent fluctuations

Slide 15

Controller design – Controller structure – Two parallel PID-controllers

$$C(s) = k_{\rm P} \left(1 + \frac{1}{st_{\rm I}} + \frac{st_{\rm D}}{1 + st_{\rm D}/n_{\rm D}} \right),$$

	benchmark	novel
C_1	-	I-controller
C_2	PI-controller	PD-controller

Controller design – Controller parametrization – Overview

Control task

Disturbance rejection around the operating point

Definitions

Open-loop transfer functions

$$L_i(s) = P_i(s)C_i(s)F(s), \quad i = 1, 2,$$

Sensitivity function Slide 17

$$S(s) := \frac{\overline{y}'(s)}{\overline{d}'(s)} = \frac{1}{1 + L_1(s) + L_2(s)}$$

Controller design – Controller parametrization – Parametrization using the sensitivity function

- Sensitivity function should be close to sensitivity function of benchmark control strategy
- Preparation of three sets of control parameters
 - "slow"
 - "moderate"
 - "fast"

bioenergy2020+

Controller design – Simulation study

Simulation procedure

- Simulation of a sudden decrease of produced gas
- Negative step of the disturbance at 1min

Control error

- Benchmark control strategy leads to best disturbance rejection
- "Moderate" set of control parameters is the most promising
- Manipulating variables during operation with the novel control strategy
 - Screw feeds more solid to produce more gas
 - Valve closes for a short time to burn less gas

- Motivation
- Model for controller design
- Controller design
- Experimental validation
- Conclusion

Experimental validation – Implementation

Implementation of the novel control strategy at

- Industrial plant
- Standard PLC
- Experimental validation was performed in a representative environment
- Setting of the operating point of the controllers at the switching between benchmark and novel control strategy
 - I-controller:
 - Initialization of the integrator to allow bumpless switching
 - PD-controller:
 - Addition of a desired offset to the controller's output
 - Offset is initialized to keep the last valve position and reaches its desired value asymptotically

bioenergy2020+

Experimental validation – Measurement data 1/2

Test procedure: Plant operated by

- 1. Benchmark control strategy
- 2. Novel control strategy, with set of control parameters
 - 1. "slow"
 - 2. "moderate"
 - 3. "fast"
- 3. Benchmark control strategy
- Control error
 - Similar control error for both control strategies

Manipulating variables during operation with the novel control strategy

- Screw is automatically adjusted
- Valve operates around offset

bioenergy2020+

Experimental validation – Measurement data 2/2

- Mass flows during operation with the novel control strategy
 - Mass flow of produced gas is reduced
 - Mass flow of gas further processed to product X is in the same range
 - Same amount of product for a reduced amount of solid

Evaluation of the sets of control parameters

- Set "moderate" results in smallest fluctuations at the mass flows of gases
 - \rightarrow Set "moderate" is recommended

- Motivation
- Model for controller design
- Controller design
- Experimental validation

Conclusion

Requirements of the novel control strategy are fulfilled

- Reduced raw material costs
 Reduced consumption of solids for the same amount of products X
- Reduced personnel costs
 → Eliminated need for manual adjustments of the screw
- Achieve control quality of benchmark control strategy

Limitations of the novel control strategy are considered

- Implementation at a PLC with standard software blocks
 Junitation to PID-controllers extended by static functions
- No interruption of steady-state plant operation

 Controller design without experiments

Thomas Nigitz Researcher – Automation and Control BIOENERGY 2020+ GmbH V. Stefan Richter: Systematic and Efficient Decision Making with Optimization

RICHTER OPTIMIZATION

21st Styrian Workshop on Automatic Control Systematic and Efficient Decision Making with Optimization

Stefan Richter Richter Optimization GmbH, Zürich

> 10. September 2019 Schloss Retzhof

RICHTEROPTIMIZATION.COM

Person & Company

Company Mission

Systematically solve control and decision problems from diverse industries with tools from optimization to gain best performing and most efficient solutions.

Industries

Industrial automation / machinery (Industry 4.0)

-) Energy assets & markets
- 🐒 Robotics
- Medical technology
- 🖨 Transport

Services & Products

- Engineering services
- Software for embedded optimization
- Stand-alone optimization tools

What is optimization?

Optimization in a nutshell

Every (decision making) problem is an optimization problem!

Example #1: Trajectory optimization

Example #1: Trajectory optimization

Example #1: Trajectory optimization

SETUP 1: Minimum-energy driving (trip time T given)

SETUP 2: Time-optimal driving

Key benefit of optimization: Systematic development

Two-step problem solving

Current and future development approaches

A classical development approach involves

- Trial and error
- Prototypes
- Many iterations
- Look-up tables
- Heuristics, e.g. gain scheduling, anti-windup, ...
- Worst case sizing
- Rules of thumb

A future development approach needs

- Systematic procedures based on objective criteria PERFORMANCE- AND ("model-based approach")
- Best performing / most efficient solutions
- Transparent tuning and adaptability
- Simple maintainability and knowledge transfer

Optimization is the key tool for a performance- and efficiency-oriented development

RICHTER OPTIMIZATION

FUNCTION-ORIENTED DEVELOPMENT

EFFICIENCY-ORIENTED DEVELOPMENT

Not convinced yet? More examples to come

Example #3: Maximize packaging performance

Movement of heavy mechanical load (60 kg horizontal, 115 kg vertical)

Example #3: Maximize packaging performance

Example #4: Safe movements with a rehabilitation robot

(SIMPLIFIED) GOAL

Dynamically assign rope forces such that a reference force at the patient is realized AND minimal rope forces are ensured

Example #4: Safe movements with a rehabilitation robot

Graphic from: Vallery, Heike, et al. "Multidirectional transparent support for overground gait training." IEEE Rehabilitation Robotics, 2013.

Example #5: Smoother inverter currents

Joint work with T. Geyer (ABB Corporate Research, Switzerland)

 $GRID = \bigcirc \\ Rectifier \\ However \\ H$

Variable Frequency Drive (VFD) for Electric Motor
Example #5: Smoother inverter currents

Model Predictive Pulse Pattern Control (MP³C)

minimize magnetic flux error (t_{a1} , t_{a2} , t_{a3} , t_{b1} , t_{b2} , t_{b3} , t_{c1} , t_{c2} , t_{c3}) **OBJECTIVE**

subject to $0 \le t_{a1} \le t_{a2} \le t_{a3}, 0 \le t_{b1} \le t_{b2} \le t_{b3}, 0 \le t_{c1} \le t_{c2} \le t_{c3}$

CONSTRAINTS

Solution

- Compute time 7.5 μs (9 vars) 17 μs (15 vars) @ 40 MHz FPGA
- < 100 bytes of memory (no lookup tables)</p>
- Only 2 DSP multipliers needed

T. Geyer, N. Oikonomou, G. Papafotiou and F.D. Kieferndorf: **Model predictive pulse pattern control.** IEEE Trans. on Industry Applications, 48(2): 663-676, (2012)

S. Richter, T. Geyer, M. Morari: **Resource-Efficient Gradient Methods for Model Predictive Pulse Pattern Control on an FPGA.** IEEE Trans. Contr. Sys. Techn. 25(3): 828-841 (2017)

How to create **fast & robust & slim** optimization algorithms?

Illustrating case: Practical linear MPC formulation

MOTIVATION: Oil production on seabed — MPC of separation unit (oil/water/gas)

D.K.M. Kufoalor, S. Richter, L. Imsland and T.A. Johansen: **Structure exploitation of practical MPC formulations for speeding up first-order methods.** IEEE CDC 2017, Melbourne, 2017, pg. 1912-1918

S. Richter: **Structure Exploitation of Practical MPC Formulations for Fast and Efficient First-Order Methods.** Technical report, Zurich, 2016. Available at www.richteroptimization.com/public/techreport_structure_exploit.pdf MPC setup

$$\min_{\Delta u, y, z} \frac{1}{2} \Delta u^T R \Delta u + \frac{1}{2} y^T Q y + l^T y + \sum_{j=1}^{n_y} p_j(y_j) + \sum_{j=1}^{n_z} q_j(z_j)$$

s.t. $y = \Theta_y \Delta u + y_f$
 $z = \Theta_z \Delta u + z_f$
 $\Delta u_j \in \Delta \mathbb{U}(u_{j,-1}), \quad j \in \{1, 2, \dots, n_u\}$

- Affine system model (from state space model, step response model, ...)
- R, Q positive, diagonal matrices
- Measurements y weighted quadratically/linearly (e.g. tracking)
- Measurements y and z subject to penalty functions p_j and q_j, e.g.

$$p_j(y_j) = \underline{\rho}_j \cdot \sum_{k=1}^{N_y} \max\{0, \underline{y}_{j,k} - y_{j,k}\} + \overline{\rho}_j \cdot \sum_{k=1}^{N_y} \max\{0, y_{j,k} - \overline{y}_{j,k}\}$$

Input u subject to input rate constraints

$$\Delta \mathbb{U}(u_{-1}) \triangleq \left\{ \Delta v \in \mathbb{R}^{N_u} \, | \, \Delta v_i = v_i - v_{i-1}, \, |\Delta v_i| \leq \overline{\Delta u}_i, \, \underline{u} \leq v_i \leq \overline{u}, \, i \in \{0, \dots, N_u - 1\}, \\ v_{-1} = u_{-1} \right\},$$

Choose right solution method

Typically first-order-type methods (classic/fast gradient or operator splitting methods)

- Can make use of `structure' in the problem (`tailoring')
- Numerically robust (can be made division free): No solutions to linear systems
- Worst case convergence speeds known
- Fast convergence to low/medium accuracy solutions
- Slim memory footprint
- Good for warmstarting from previous solution (MPC!)

EXAMPLE: $\min\{f(z) \mid z \in \mathbb{Q}\}$

```
Classic gradient method
(Cauchy, 1847)
```


Fast gradient method (Nesterov '83, '88, '05)

Pitfalls to solve

However, (fast) gradient method requires

- Continuously differentiable objective f(z) (+ Lipschitz-continuous gradient)
- Cheap evaluation of projection on feasible set \mathbb{Q}

 $\min_{\Delta u, y, z} \frac{1}{2} \Delta u^T R \Delta u + \frac{1}{2} y^T Q y + l^T y + \sum_{j=1}^{n_y} p_j(y_j) + \sum_{j=1}^{n_z} q_j(z_j)$ s.t. $y = \Theta_y \Delta u + y_f$ $z = \Theta_z \Delta u + z_f$ $\Delta u_j \in \Delta \mathbb{U}(u_{j,-1})$ $j \in \{1, 2, ..., n_u\}$ projection on intersection very expensive **Recall MPC setup:** not continuously differentiable

no closed-form projector known

Contributions in referred articles:

- Provably fast projector on $\Delta \mathbb{U}(u_{i,-1})$
- Proper reformulation of problem so that objective becomes continuously differentiable and projection on feasible set is doable

Results

HIL test setup

- 58 variables: 3 inputs / horizon 6, 4 constrained outputs (2 tracked) / horizon 10
- ▶ ABB AC500 PLC
 - MPC603e microprocessor @ 400 MHz
 - Dedicated HW FPU
 - ▶ 4 MB RAM
 - 4 MB integrated memory
- Plain C code implementation, no tailored linear algebra

Computational performance

	Iterations	Computation time [ms]			
	(average / max)	(average / max)			
Coldstart	4 / 4	1.5 / 2.1			
Warmstart	2/2	1.1 / 1.4			

PLC program size: 0.18 MB (incl. precomputed data)

VI. Alessandro Pisano: Robust consensus-based Secondary Frequency and Voltage Restoration of Inverter-based Islanded Microgrids

Università di Cagliari

Dipartimento di Ingegneria Elettrica ed Elettronica

ROBUST CONSENSUS-BASED SECONDARY FREQUENCY AND VOLTAGE RESTORATION OF INVERTER-BASED MICROGRIDS

Milad Golami, Alessandro Pilloni, Alessandro Pisano, Elio Usai

Email: pisano@diee.unica.it

Leibnitz, Austria, 9-11/9/2019

21st Styrian Workshop on Automatic Control 1

Table of Contents

- I. MICROGRIDs and Modern Power Systems
 - a. Hierarchical Control of MICROGRIDs
 - b. Centralized vs distributed Secondary Control
- II. Delay-free measurements
 - a. Finite-time Frequency Restoration
 - b. Finite-time Voltage Restoration
- III. Delayed measurements
 - a. Asymptotic Frequency Restoration
 - b. Asymptotic Voltage Restoration
- IV. Secondary frequency and voltage restoration with seamless connection to the grid
- V. Conclusions

Table of Contents

- I. MICROGRIDs and Modern Power Systems
 - a. Hierarchical Control of MICROGRIDs
 - b. Centralized vs distributed Secondary Control
- II. Delay-free measurements
 - a. Finite-time Frequency Restoration
 - b. Finite-time Voltage Restoration
- III. Delayed measurements
 - a. Asymptotic Frequency Restoration
 - b. Asymptotic Voltage Restoration
- IV. Secondary frequency and voltage restoration with seamless connection to the grid
- V. Conclusions

MICROGRIDs & Modern Power Systems

 The worldwide use of renewable energies has increased significantly in recent years. Most renewable energy sources (RES) are relatively small-sized in terms of generation power and therefore often connected to the power system at the medium and low voltage levels typically interfaced to the network via AC inverters

MICROGRIDs & Modern Power Systems

- To facilitate the integration of a sizeable number of renewable distributed generation (DG) units, the concept of has become increasingly popular.
- They represent locally controllable parts of a larger electrical network, consisting of several generation units, storage devices and loads. Typically, microgrids can be operated both in grid-connected and islanded mode.

MICROGRIDs & Modern Power Systems

- MICROGRIDs (MGs) constitute the bridge between: Main Power Grid & Distributed Generators (DGs)
- **DG**s produce DC or AC VARIABLE Power:
 - No inherent synchronization mechanism
 - Need for complex control governing rules

Desired features:

a) Easy integration/removal of DGs, storage systems and loads
b) Support of «Islanded-Operation»
c) Robustness against uncertainties, perturbations and load variations

Hierarchical Control of MICROGRIDs

- MG control has been standardized into a 3 Layer Control Architecture
- Main control issues:
 - Stability and Power sharing
 - Frequency and voltage
 Restoration
 - Dispatching of power flows
 from/to the Main Power Grid

Table of Contents

- I. MICROGRIDs and Modern Power Systems
 - a. Hierarchical Control of MICROGRIDs
 - b. Centralized vs distributed Secondary Control
- II. Delay-free measurements
 - a. Finite-time Frequency Restoration
 - b. Finite-time Voltage Restoration
- III. Delayed measurements
 - a. Asymptotic Frequency Restoration
 - b. Asymptotic Voltage Restoration
- IV. Secondary frequency and voltage restoration with seamless connection to the grid
- V. Conclusions

Secondary Control (SC)

Power layer of an islanded MG

Primary Control

The Primary Control loops introduce deviations from the desired DG's output voltages and frequencies

Secondary Control aims to:

a. Compensate for these deviations

$$\boldsymbol{\omega}_i = \boldsymbol{\omega}_{ref} \quad \forall \ i \in \boldsymbol{\mathcal{V}}$$

$$\boldsymbol{v}_{odi} = \boldsymbol{v}_{ref} \quad \forall \ i \in \boldsymbol{\mathcal{V}}$$

b. Guarantee the power sharing ratios

$$P_i/P_k = m_k/m_i \ \forall \ i, \ k \in \mathcal{V}$$

SC accomplishes the above tasks by properly redesigning the Primary Control reference signals **9**

Centralized VS Distributed Control

MG CENTRALIZED CONTROL

- Latency and delays due to all-to-one communication
- Costly central computing and communication units
- Prone to single-point failures.
- Hardly scalable, no Plug&Play

Target: Make "Scalable", "Flexible" and "Robust" **MICROGRIDs** operations

Multi-Agent Robust Control Paradigm

Some Existing Distributed Approaches

[a] Distributed-Averaging-PI-based scheme:

J. W. Simpson-Porco, Q. Shafiee, F. D^oorfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo, *<u>Secondary frequency and voltage control of islanded microgrids via distributed averaging</u>*, <u>**IEEE Trans. Ind. Electron.**</u>, 62(11), 7025–7038, 2015.

[b] Feedback Linearization-based Distributed Tracking

F. Guo, C. Wen, J. Mao, and Y.-D. Song, "*Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids*," **IEEE Trans. Ind. Electron.**, 62(7), 4355–4364, 2015.

[c] Quadratic droop control

J. W. Simpson-Porco, F. Dorfler, and F. Bullo, "<u>Voltage stabilization in microgrids via quadratic</u> <u>droop control</u>," *IEEE Trans. Autom. Control,* 62(3), 1239–1253, 2017.

ω_{com}	Speed of the common rotating ref. frame
ω _i	Local rotating ref. frame's speed of the <i>i</i> -th DG
δ_i	Angle between the local and the common ro-
	tating ref. frame, i.e., $\dot{\delta}_i = \omega_i - \omega_{com}$
$\omega_{ni}, \upsilon_{ni}$	Frequency and voltage droop-power setpoints
v_{ki}, i_{ki}	3-ph voltages, currents at node k of the <i>i</i> -th DG
v_{kdi}, v_{kqi}	d-q voltages of the <i>i</i> -th DG at node k
i_{kdi}, i_{kqi}	d-q currents of the <i>i</i> -th DG at node k
k = l, o, b	input, output and branch local node of a DG
$\overline{\omega}, \overline{\upsilon}$	Rated values of MG's frequency and voltage
$\omega_{ref}, \upsilon_{ref}$	Desired values of frequency and voltage
P_i, Q_i	Active and reactive powers dc-components at
	the output node of the <i>i</i> -th DG
v_{odi}^*, v_{oqi}^*	d-q voltage setpoints of the <i>i</i> -th DG
Ψ_{di}, Ψ_{qi}	d-q voltage error's integral of the <i>i</i> -th DG
i_{ldi}^*, i_{lai}^*	d-q current setpoints of the <i>i</i> -th DG
ϕ_{di}, ϕ_{qi}	d-q current error's integral of the <i>i</i> -th DG

 $\frac{d\delta_i}{dt} = \omega_i - \omega_{\rm com}$

Frequency dynamics

 $\omega_i = \omega_{ni} - m_i \cdot P_i$ $\upsilon_{odi}^* = \upsilon_{ni} - n_i \cdot Q_i$ $\upsilon_{oqi}^* = 0$

Power droop control

$$\frac{dP_i}{dt} = -\omega_{ci}P_i + \omega_{ci}\left(\upsilon_{odi} \cdot i_{odi} + \upsilon_{oqi} \cdot i_{oqi}\right)$$
$$\frac{dQ_i}{dt} = -\omega_{ci}Q_i + \omega_{ci}\left(\upsilon_{oqi} \cdot i_{odi} - \upsilon_{odi} \cdot i_{oqi}\right)$$

Active and reactive power (measured)

$$\begin{aligned} \frac{d\psi_{di}}{dt} &= k_{ivi}(\upsilon_{odi}^* - \upsilon_{odi}) \\ \frac{d\psi_{qi}}{dt} &= k_{ivi}(\upsilon_{oqi}^* - \upsilon_{oqi}) \\ i_{ldi}^* &= \psi_{di} + k_{pvi}(\upsilon_{odi}^* - \upsilon_{odi}) + k_{fvi}i_{odi} - \overline{\omega}C_{fi}\upsilon_{oqi} \\ i_{lqi}^* &= \psi_{qi} + k_{pvi}(\upsilon_{oqi}^* - \upsilon_{oqi}) + k_{fvi}i_{oqi} + \overline{\omega}C_{fi}\upsilon_{odi} \end{aligned}$$

Voltage primary PI control

$$\begin{aligned} \frac{d\phi_{di}}{dt} &= k_{ici}(i_{ldi}^* - i_{ldi}) \\ \frac{d\phi_{qi}}{dt} &= k_{ici}(i_{lqi}^* - i_{lqi}) \\ \upsilon_{ldi}^* &= \phi_{di} + k_{pci}(i_{ldi}^* - i_{ldi}) - \overline{\omega}L_{fi}i_{lqi} \\ \upsilon_{lqi}^* &= \phi_{qi} + k_{pci}(i_{lqi}^* - i_{lqi}) + \overline{\omega}L_{fi}i_{ldi} \end{aligned}$$

$$\begin{aligned} \frac{di_{ldi}}{dt} &= -\frac{R_{fi}}{L_{fi}}i_{ldi} + \frac{1}{L_{fi}}\left(\upsilon_{ldi} - \upsilon_{odi}\right) + \omega_{i}i_{lqi}\\ \frac{di_{lqi}}{dt} &= -\frac{R_{fi}}{L_{fi}}i_{lqi} + \frac{1}{L_{fi}}\left(\upsilon_{lqi} - \upsilon_{oqi}\right) - \omega_{i}i_{ldi}\\ \frac{d\upsilon_{odi}}{dt} &= \frac{1}{C_{fi}}\left(i_{ldi} - i_{odi}\right) + \omega_{i}\upsilon_{lqi}\\ \frac{d\upsilon_{oqi}}{dt} &= \frac{1}{C_{fi}}\left(i_{lqi} - i_{oqi}\right) - \omega_{i}\upsilon_{ldi}\\ \frac{di_{odi}}{dt} &= -\frac{R_{ci}}{L_{ci}}i_{odi} + \frac{1}{L_{ci}}\left(\upsilon_{odi} - \upsilon_{bdi}\right) + \omega_{i}i_{oqi}\\ \frac{di_{oqi}}{dt} &= -\frac{R_{ci}}{L_{ci}}i_{oqi} + \frac{1}{L_{ci}}\left(\upsilon_{oqi} - \upsilon_{bqi}\right) - \omega_{i}i_{odi}\end{aligned}$$

Current primary PI control

LC filter and output connector

13th order model (for each generator)

 $\dot{x}_i = f_i(x_i) + g_i(x_i) \cdot u_i + w_i(x_i)d_i$

 $x_i = [\delta_i, P_i, Q_i, \phi_{di}, \phi_{qi}, \psi_{di}, \psi_{qi}, i_{ldi}, i_{lqi}, \upsilon_{odi}, \upsilon_{oqi}, i_{odi}, i_{oqi}]$

$$u_i = [\omega_{ni}, v_{ni}]$$

 $d_i = [v_{bdi}, v_{bqi}]$

Assumptions $|v_{odi}i_{odi} + v_{oqi}i_{oqi}| \leq \Pi^{P}$ $|\dot{P}_{i}| \leq \dot{P}_{\infty} \equiv 2\omega_{ci}\Pi^{P}$ $|v_{oqi}i_{odi} - v_{odi}i_{oqi}| \leq \Pi^{Q}$ $|\dot{Q}_{i}| \leq \dot{Q}_{\infty} \equiv 2\omega_{ci}\Pi^{Q}$

13th order model (for each generator)

 $\dot{x}_i = f_i(x_i) + g_i(x_i) \cdot u_i + w_i(x_i)d_i$

 $\boldsymbol{x}_i = [\delta_i, P_i, Q_i, \phi_{di}, \phi_{qi}, \psi_{di}, \psi_{qi}, i_{ldi}, i_{lqi}, \upsilon_{odi}, \upsilon_{oqi}, i_{odi}, i_{oqi}]$

$$u_i = [\omega_{ni}, v_{ni}]$$

 $d_i = [v_{bdi}, v_{bqi}]$

Assumptions $w_i = ((\omega_i - \bar{\omega})v_{oqi} + \psi_{di} - k_{pvi}v_{odi} + (k_{fvi} - 1)i_{odi})$ $|\dot{w}_i| \leq \overline{\Omega}_{i}, \quad \overline{\Omega}_M = \max_i \overline{\Omega}_i$

Table of Contents

- I. MICROGRIDs and Modern Power Systems
 - a. Hierarchical Control of MICROGRIDs
 - b. Centralized vs distributed Secondary Control
- II. Delay-free measurements
 - a. Finite-time Frequency Restoration
 - b. Finite-time Voltage Restoration
- III. Delayed measurements
 - a. Asymptotic Frequency Restoration
 - b. Asymptotic Voltage Restoration
- IV. Secondary frequency and voltage restoration with seamless connection to the grid
- V. Conclusions

Delay-free measurements and communication

Details and proofs can be found in

A. Pilloni, A Pisano, E Usai *"Robust Finite Time Frequency and Voltage Restoration of Inverter-based Microgrids via Sliding Mode Cooperative Control"* <u>IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS</u>, 65(1), 907-917, January 2018

Frequency Restoration Problem

Due to the following relation between the DG's frequencies and the active droop characteristic

$$\boldsymbol{\omega}_i = \boldsymbol{\omega}_{ni} - m_i \cdot P_i \qquad \forall \ i \in \boldsymbol{\mathcal{V}}$$

the system's specifications for the frequencies become

$$\begin{array}{ccc} \boldsymbol{\omega}_{i} = \boldsymbol{\omega}_{k} = \boldsymbol{\omega}_{ref} \\ m_{i} \cdot P_{i} = m_{k} \cdot P_{k} & \leftrightarrow & \boldsymbol{\omega}_{ni} / \boldsymbol{\omega}_{nk} = 1 \end{array} \quad \forall \ i, \ k \in \boldsymbol{\mathcal{V}} \end{array}$$

The frequency synchronization problem is thus converted into a **consensus** problem on frequencies and control actions

Frequency Restoration Problem

"Consensus" is the terminology used in multi-agent systems theory to denote the fact that the "agents" (in this case, the DGs) "agree" on some quantity of interest (in this case, the frequency values ω_i and the control actions ω_{ni})

In consensus algorithms, each agent has a local controller which can only access informations from the local agent and from the so-called "neighbours".

Additionally, only a subset of the agents (called "leaders") knows the frequency reference ("leader-follower", or "tracking" consensus)

In the MG setup considered in our tests:

DG1 is the leader. Its only neighbour is DG2. Neighbours of DG2 are: DG1 and DG3. Neighbours of DG3 are: DG2 and DG4. The only neighbour of DG4 is DG3

21

Proposed Frequency Restoration Controller

A discontinuous reformulation of the "P - consensus" controller

$$\dot{\tilde{\omega}}_{i} = -\alpha \cdot \operatorname{sign}\left(\sum_{j \in \mathcal{N}_{i}} (\tilde{\omega}_{i} - \tilde{\omega}_{j}) + \sum_{j \in \mathcal{N}_{i}} (\omega_{i} - \omega_{j}) + g_{i} (\omega_{i} - \omega_{ref})\right)$$

Closed-loop frequency dynamics

$$\dot{\delta} = \omega - \omega_{com} = \tilde{\omega} + \mathbf{1}_n \otimes (\overline{\omega} - \omega_{com}) - \mathbf{m} \cdot \mathbf{P}$$

 $\dot{\tilde{\omega}} = -\alpha \cdot \operatorname{Sign} \left(\mathcal{L} \left(\omega + \tilde{\omega} \right) + \mathbf{G} \left(\omega - \mathbf{1}_n \otimes \omega_{ref} \right) \right)$

Minimal control effort to reject the disturbances

 $\omega_{ni} = \tilde{\omega}_i + \bar{\omega}$

$$lpha > m_M \mu_M \dot{P}_{\infty} / \mu_m$$

Proposed Frequency Restoration Controller

Sketch of the proof

$$\sigma_{\omega} = [\sigma_{\omega,i}] = \mathcal{L}\left(\omega + \tilde{\omega}\right) + G\left(\omega - \mathbf{1}_n \otimes \omega_{ref}\right)$$

Along the above sliding manifold, both the control objectives of frequency synchronization and active power sharing are fulfilled

$$\dot{\sigma}_{\omega}^{*} = (G + \mathcal{L}) \cdot (-\alpha \cdot \operatorname{Sign}(\sigma_{\omega}) + m \cdot \dot{P}) - \alpha \mathcal{L} \cdot \operatorname{Sign}(\sigma_{\omega})$$

 $V_{\omega}(t) = \|\sigma_{\omega}(t)\|_{1} = \sum_{i=1}^{n} |\sigma_{\omega,i}(t)|.$

$$\dot{V}_{\omega}(t) \leq -\sum_{i=1}^{n} \left(\alpha \mu_{m} \operatorname{sign}(\sigma_{\omega,i})^{2} - m_{M} \mu_{M} \operatorname{sign}(\sigma_{\omega,i}) \dot{P}_{\infty} \right) \\ = -\sum_{\forall i : \sigma_{\omega,i} \neq 0} \left(\alpha \mu_{m} - m_{M} \mu_{M} \dot{P}_{\infty} \right) \leq -\rho \prec 0,$$

Proposed Voltage Restoration Controller

$$\dot{\upsilon}_{ni} = -\varsigma_1 \cdot \operatorname{sign}\left(\sum_{j \in \mathcal{N}_i} \left(\upsilon_{odi} - \upsilon_{odj}\right) + g_i \left(\upsilon_{ni} - \upsilon_{ref}\right)\right) \\ -\varsigma_2 \cdot \operatorname{sign}\left(\sum_{j \in \mathcal{N}_i} \left(\dot{\upsilon}_{odi} - \dot{\upsilon}_{odj}\right) + g_i \left(\dot{\upsilon}_{ni} - \dot{\upsilon}_{ref}\right)\right)$$

A distributed reformulation of the twisting controller

Minimal control gains to reject the disturbances

$$\zeta_1 > \zeta_2 + \hat{\Omega} + \overline{\Omega}_M , \ \zeta_2 > \hat{\Omega} + \overline{\Omega}_M$$

The proof involves two distinct Lyapunov functions, and homogeneity concepts. Finite time achievement of the voltage restoration goal is proven.

Simulative Results

- MG with 4 generators and four local loads
- Realistic Noisy Measurement with SNR=90dB
- Load changes and faults

- 1) At the startup (t = 0 s), only the PC is active with PC set-points $\omega_{ni} = 2\pi \cdot 50 \text{ Hz}$ and $v_{ni} = 220 \text{ V}_{\text{RMS}} \approx 380 \text{ V}_{\text{ph-ph}}$.
- 2) At t = 5 s the frequency restoration SC (30)–(31) is activated with $\omega_{ref} = 2\pi \cdot 50$ Hz.
- 3) At t = 10 s the voltage restoration SC (39) is activated with $v_{ref} = 220 V_{RMS} \approx 380 V_{ph-ph}$.
- 4) By using a three-phase breaker, Load 3, i.e., (P_{L3}, Q_{L3}) , is connected at t = 15 s, and removed at t = 25 s.
- 5) At t = 30 s the SC frequency setpoint is changed to $\omega_{\text{ref}} = 2\pi \cdot 50.2$ rad/s.
- 6) At t = 35 s the SC voltage setpoint is changed to $v_{ref} = 224 V_{RMS} \approx 388 V_{ph-ph}$.
- 7) At t = 40 s a three-phase to ground fault occurs on the Line 3.
- 8) At t = 40.01 s overcurrent protection devices isolate the Line 3, and thus DG 4 and Load 4, from the MG.
- 9) At t = 42 s the SC is reconfigured to take into account the changes occurred at the physical layer, i.e., $a_{34} = a_{43} = 0$.
- 10) At t = 43 s the SC frequency setpoint is changed to $\omega_{\text{ref}} = 2\pi \cdot 50.2$ rad/s.
- 11) At t = 44 s the SC voltage setpoint gets back to $v_{ref} = 220 V_{RMS} \approx 380 V_{ph-ph}$. 25

TABLE I SPECIFICATION OF THE MICROGRID TEST SYSTEM

DG's Parameters		D	G 1	DG 2	DG	3	DG	4
Droop Control	m_p n_Q	$\begin{array}{c} 10\times10^{-5}\\ 1\times10^{-2} \end{array}$		$\begin{array}{c} 6\times 10^{-5} \\ 1\times 10^{-2} \end{array}$	$\begin{array}{c} 4\times10^{-5} \\ 1\times10^{-2} \end{array}$		$\begin{array}{c} 3\times 10^{-5} \\ 1\times 10^{-2} \end{array}$	
Voltage Control	$k_{pv}\ k_{iv}\ k_{fv}$	0.4 500 0.5		0.4 500 0.5	0.4 500 0.5		0.4 500 0.5	
Current Control	$k_{pc} \\ k_{ic}$	0.4 700		0.4 700	0.4 700		0.4 700	
LC Filter [Ω],[mH],[μ F]	$egin{array}{c} R_f \ L_f \ C_f \end{array}$	0.1 1.35 50		0.1 1.35 50	0.1 1.35 50		0.1 1.35 50	
Connector $[\Omega],[mH]$	R_c L_c	0.03 0.35		0.03 0.35	0.03 0.35		0.03 0.35	
Lines [Ω],[μ H]	Lir	Line 1 Line		Line 2	ine 2 Li		ne 3	
	R_{l1} L_{l1}	0.23 318	$\begin{array}{c} R_{l2} \\ L_{l2} \end{array}$	0.23 324	$\begin{array}{c} R_{l3} \\ L_{l3} \end{array}$		0.23 324	
Loads [kW],[kVar]	Lo	ad 1	1	Load 2	Load	13	Loa	d 4
	$P_{L1} Q_{L1}$	3 1.5	$P_{L2} Q_{L2}$	3 1.5	$P_{L3} Q_{L3}$	2 1.3	$P_{L4} Q_{L4}$	3 1.5

Simulative Results

Fig. 4. Top: Inverters' operating frequencies ω_i . Bottom: Frequencies of the output voltage of each DG $v_{oi}(t)$ measured by a three-phase PLL.

Simulative Results

Secondary frequency restoration control actions $\omega_{ni}(t)$, i = 1,2,3,4.

Comparison between the expected, i.e., m_i/m_j , and the actual Power sharing ratio, i.e, $P_i(t)/P_i(t)$.

29

RMS inverters' output voltages $v_{o,i}(t)$ with i = 1,2,3,4.

Secondary voltage restoration control actions $v_{ni}(t)$, i = 1,2,3,4.

Table of Contents

- I. MICROGRIDs and Modern Power Systems
 - a. Hierarchical Control of MICROGRIDs
 - b. Centralized vs distributed Secondary Control
- II. Delay-free measurements
 - a. Finite-time Frequency Restoration
 - b. Finite-time Voltage Restoration
- III. Delayed measurements
 - a. Asymptotic Frequency Restoration
 - b. Asymptotic Voltage Restoration
- IV. Secondary frequency and voltage restoration with seamless connection to the grid
- V. Conclusions

Delayed measurements and communication

Details and proofs can be found in

M. Gholami, A. Pilloni, A Pisano, E Usai "Robust consensus-based secondary voltage restoration of inverter-based islanded microgrids with delayed communications" <u>CDC 2018</u>

M. Gholami, A. Pilloni, A Pisano, E Usai *"Robust consensus-based secondary frequency and voltage restoration of inverter-based islanded microgrids with delayed communications"* <u>IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS</u>, Under review

Delayed measurements and communication

Simplifed mathematical model

$$\dot{\delta}_i = \omega_i = \omega_{n_i} - k_{P_i} \cdot P_i^m$$
$$k_{\nu_i} \cdot \dot{\nu}_i = -\nu_i + \nu_{n_i} - k_{Q_i} \cdot Q_i^m$$

$$\tau_{P_i} \cdot \dot{P}_i^m = -P_i^m + P_i$$

$$\tau_{Q_i} \cdot \dot{Q}_i^m = -Q_i^m + Q_i$$

$$Q_{Li} = Q_{1i}v_i^2 + Q_{2i}v_i + Q_{3i}$$

$$P_{Li} = P_{1i}v_i^2 + P_{2i}v_i + P_{3i},$$

$$\hat{P}_i = \sum_{k \in \mathcal{N}_i^e} v_i v_k B_{ik} \sin(\delta_i - \delta_k)$$

$$\hat{Q}_i = v_i^2 B_{ii} + \sum_{k \in \mathcal{N}_i^e} v_i v_k B_{ik} \cos(\delta_i - \delta_k)$$

 $P_i = P_{Li} + \hat{P}_i$

 $Q_i = Q_{Ii} + \hat{Q}_i$

Delayed measurements and communication

ASSUMPTION ON MEASUREMENT/COMMUNICATION DELAYS

Let q be the number of leader's neighbors. Let us stack the communication delays $\tau_{i0}(t)$ (i = 1, ..., q) between the leader and its neighbors in the q-dimensional vector $\tau_l(t) =$ $[\tau_{l,1}(t), ..., \tau_{l,q}(t)]$. Let m be the number of communication links between DGs in \mathcal{G}_N^c . Let us stack the corresponding communication delays $\tau_{ij}(t)$ in the m-dimensional vector $\sigma_g(t) = [\sigma_{g,1}(t), ..., \sigma_{g,m}(t)]$. The next assumption is in force.

Assumption 2. Let the unknown bounds $\tau_i^*, \sigma_j^* \in \mathbb{R}^+$ exist, and let $d_i, \overline{d}_j \in \mathbb{R}^+$ exist and be known in advance such that

$$\begin{aligned} |\boldsymbol{\tau}_{l,i}(t)| &\leq \boldsymbol{\tau}_{i}^{\star}, \quad i = 1, \dots, q \\ |\boldsymbol{\sigma}_{g,j}(t)| &\leq \boldsymbol{\sigma}_{j}^{\star}, \quad j = 1, \dots, m \\ |\boldsymbol{\tau}_{l,i}(t)| &\leq \boldsymbol{d}_{i}, \quad i = 1, \dots, q \\ |\boldsymbol{\sigma}_{g,j}(t)| &\leq \boldsymbol{d}_{j}, \quad j = 1, \dots, m \end{aligned}$$
(26)

$$\begin{split} \dot{\omega}_{n_i} &= \dot{u}_{n_i} + \dot{u}_{d_i} \\ \dot{u}_{n_i} &= -\sum_{j=0}^N \alpha_{ij} \cdot \hat{k}_{ij,1}(t) (\omega_i (t - \tau_{ij}(t)) - \omega_j (t - \tau_{ij}(t))) \\ &- \sum_{j=1}^N \alpha_{ij} \cdot \hat{k}_{ij,2}(t) (u_{n_i} (t - \tau_{ij}(t)) - u_{n_j} (t - \tau_{ij}(t))) \\ \dot{u}_{d_i} &= -\hat{m} \cdot sign(s_i) \end{split}$$

Linear consensus algorithm with adaptive gains and dynamic input extension

Integral sliding mode component

$$s_i(t) = \omega_i(t) + z_i(t) , \ \dot{z}_i(t) = -\dot{u}_{n_i}(t) , \ z_i(0) = -\omega_i(0)$$

$$\dot{\hat{k}}_{ij,1}(t) = \hat{\zeta}_{ij,1} \cdot |\omega_i(t - \tau_{ij}(t)) - \omega_j(t - \tau_{ij}(t))|^2$$

$$\dot{\hat{k}}_{ij,2}(t) = \hat{\zeta}_{ij,2} \cdot |u_{n_i}(t - \tau_{ij}(t)) - u_{n_j}(t - \tau_{ij}(t))|^2$$

Monodirectional adaptation laws

Convergence of the frequency restoration controller is subject to the feasibility of the LMI system

$$A_{l}(t)^{T}H_{1}A_{l}(t) + \tilde{P}^{T}A_{l}(t)^{T}M_{1}\tilde{P}A_{l}(t) - \frac{1}{\eta}Q_{l}(1-d_{l}) < 0 \quad (27)$$

$$\hat{A}_{g}(t)^{T}H_{1}\hat{A}_{g}(t) + \tilde{P}^{T}\hat{A}_{g}(t)^{T}M_{1}\tilde{P}\hat{A}_{g}(t) - \frac{1}{\eta}Q_{l}(1 - \overline{d}_{g}) < 0 \quad (28)$$

$$\tilde{A}_{g}(t)^{T}H_{1}(t)\tilde{A}_{g}(t) + \tilde{A}_{g}(t)^{T}M_{1}(t)\tilde{A}_{g}(t) - \frac{1}{\eta}Q_{w}(1 - \overline{d}_{g}) < 0$$
(29)

$$P\Phi^{T} + P\Phi + \sum_{g=1}^{m} \sigma_{g}^{\star} R_{g} + \sum_{g=1}^{m} Q_{g} + \sum_{l=1}^{q} Q_{l} < 0$$
(30)

$$\sum_{g=1}^{m} P_{w} \tilde{A}_{g}^{T} + \sum_{g=1}^{m} P_{w} \tilde{A}_{g} + \sum_{g=1}^{m} Q_{w} + \sum_{g=l}^{m} R_{w} < 0$$
(31)

Sketch of the proof

Along the sliding manifold s=0, which is invariant from the initial time instant on (integral sliding mode), the closed-loop frequency dynamics is

$$\dot{\omega}_{i} = -\sum_{j=0}^{N} \alpha_{ij} \cdot \hat{k}_{ij,1}(t) (\omega_{i}(t - \tau_{ij}(t)) - \omega_{j}(t - \tau_{ij}(t))) -\sum_{j=1}^{N} \alpha_{ij} \cdot \hat{k}_{ij,2}(t) (u_{n_{i}}(t - \tau_{ij}(t)) - u_{n_{j}}(t - \tau_{ij}(t)))$$

Error variables definition

$$e_i(t) = \omega_i(t) - \omega_0$$

Disagreement vector of the frequency restoration control actions

$$\boldsymbol{\varepsilon}(t) = \tilde{P} \left[u_{n_1}(t), \dots, u_{n_N}(t) \right]'$$
$$\tilde{P} = \operatorname{diag} \left(1, \dots, 1 \right) - \frac{1}{N} \cdot [1, \dots, 1] [1, \dots, 1]^T$$

Sketch of the proof

$$\begin{aligned} \tilde{x}(t) &= \begin{bmatrix} e_1(t) & e_2(t) & \cdots & e_N(t) \end{bmatrix}^T \\ \boldsymbol{\varepsilon}(t) &= \begin{bmatrix} \boldsymbol{\varepsilon}_1(t) & \boldsymbol{\varepsilon}_2(t) & \cdots & \boldsymbol{\varepsilon}_N(t) \end{bmatrix}^T \end{aligned}$$

$$\dot{\tilde{x}} = \Phi(t)\tilde{x}(t) - \sum_{l=1}^{q} A_l(t) \int_{t-\tau_l(t)}^{t} \dot{\tilde{x}}(s) ds - \sum_{g=1}^{m} \hat{A}_g(t) \int_{t-\sigma_g(t)}^{t} \dot{\tilde{x}}(s) ds$$
$$+ \sum_{g=1}^{m} \tilde{A}_g(t)\varepsilon(t) - \sum_{g=1}^{m} \tilde{A}_g(t) \int_{t-\sigma_g(t)}^{t} \dot{\varepsilon}(s) ds$$

$$\begin{split} \dot{\varepsilon}(t) = &\tilde{P}\Phi(t)\tilde{x}(t) - \sum_{l=1}^{q}\tilde{P}A_{l}(t)\int_{t-\tau_{l}(t)}^{t}\dot{\tilde{x}}(s)ds - \sum_{g=1}^{m}\tilde{P}\hat{A}_{g}(t)\int_{t-\sigma_{g}(t)}^{t}\dot{\tilde{x}}(s)ds \\ &+ \sum_{g=1}^{m}\tilde{A}_{g}(t)\varepsilon(t) - \sum_{g=1}^{m}\tilde{A}_{g}\int_{t-\sigma_{g}(t)}^{t}\dot{\varepsilon}(s)ds \end{split}$$

Sketch of the proof – Lyapunov-Krasovskii functional

$$\overline{V}(t) = \sum_{i=1}^{10} \overline{V}_i(t)$$

$$\begin{split} \overline{V}_{1}(t) &= \tilde{x}(t)^{T} P \tilde{x}(t) \\ \overline{V}_{2}(t) &= \sum_{l=1}^{q} \int_{t-\tau_{l}(t)}^{t} \tilde{x}(s)^{T} Q_{l} \tilde{x}(s) ds \\ \overline{V}_{2}(t) &= \sum_{l=1}^{q} \int_{j=0}^{t} \tilde{x}(s)^{T} Q_{l} \tilde{x}(s) ds \\ \overline{V}_{3}(t) &= \sum_{g=1}^{m} \int_{t-\sigma_{g}(t)}^{t} \tilde{x}(s)^{T} Q_{g} \tilde{x}(s) ds \\ \overline{V}_{3}(t) &= \sum_{g=1}^{m} \int_{t-\sigma_{g}(t)}^{t} \tilde{x}(s)^{T} Q_{g} \tilde{x}(s) ds \\ \overline{V}_{4}(t) &= \eta \sum_{l=1}^{q} \int_{-\tau_{l}^{*}}^{0} \int_{t+\theta}^{t} \dot{x}(s)^{T} W_{l} \dot{x}(s) ds d\theta \\ \overline{V}_{5}(t) &= \eta \sum_{g=1}^{m} \int_{-\sigma_{g}^{*}}^{0} \int_{t+\theta}^{t} \dot{x}(s)^{T} W_{g} \dot{x}(s) ds d\theta \\ \overline{V}_{5}(t) &= \eta \sum_{g=1}^{m} \int_{-\sigma_{g}^{*}}^{0} \int_{t+\theta}^{t} \dot{x}(s)^{T} W_{g} \dot{x}(s) ds d\theta \\ \overline{V}_{10}(t) &= \sum_{i=1}^{N} \sum_{j=0}^{N} \frac{1}{2} (\hat{k}_{ij,2}^{*} - \hat{k}_{ij,2}(t))^{T} (\hat{k}_{ij,2}^{*} - \hat{k}_{ij,2}(t)) \end{split}$$

By further defining the following state vectors

$$\begin{split} \boldsymbol{\xi}(t) &= [\tilde{\boldsymbol{x}}(t)^T, \tilde{\boldsymbol{x}}(t - \tau_1(t))^T, \dots, \tilde{\boldsymbol{x}}(t - \tau_q(t))^T, \tilde{\boldsymbol{x}}(t - \sigma_1(t))^T, \dots, \\ \tilde{\boldsymbol{x}}(t - \sigma_m(t))^T, \boldsymbol{\varepsilon}(t)^T, \boldsymbol{\varepsilon}(t - \sigma_1(t))^T, \dots, \boldsymbol{\varepsilon}(t - \sigma_m(t))^T]^T \\ \boldsymbol{\rho}(t) &= [\tilde{\boldsymbol{x}}(t), \boldsymbol{\varepsilon}(t), \int_{t - \tau_l^\star}^t \dot{\tilde{\boldsymbol{x}}}(s) ds, \int_{t - \sigma_g^\star}^t \dot{\tilde{\boldsymbol{x}}}(s) ds, \int_{t - \sigma_g^\star}^t \dot{\boldsymbol{\varepsilon}}(s) ds]^T \end{split}$$

one manipulates the right-hand side of the LK functional as follows

$$\begin{split} \dot{\overline{V}}(t) &\leq \rho(t)^{T} \Sigma(t) \rho(t) + \eta \xi(t)^{T} \Theta(t) \xi(t) - \sum_{i=1}^{N} \sum_{i=0}^{N} (\hat{k}_{ij,1}^{\star} - \hat{k}_{ij,1}(t))^{T} \dot{\hat{k}}_{ij,1}(t) \\ &- \sum_{i=1}^{N} \sum_{j=0}^{N} (\hat{k}_{ij,2}^{\star} - \hat{k}_{ij,2}(t))^{T} \dot{\hat{k}}_{ij,2}(t) \end{split}$$

Proposed Voltage Restoration Controller

$$\begin{split} \dot{v}_{n_i} &= \tilde{u}_{n_i} + \tilde{u}_{d_i} \\ \tilde{u}_{n_i} &= -\sum_{j=0}^N \alpha_{ij} \tilde{k}_{ij} \begin{bmatrix} v_i (t - \tau_{ij}) - v_j (t - \tau_{ij}) \\ \dot{v}_i (t - \tau_{ij}) - \dot{v}_j (t - \tau_{ij}) \end{bmatrix} \\ \tilde{u}_{d_i} &= -\tilde{m}_i \cdot sign(s_i) \end{split}$$

Linear consensus algorithm with adaptive gains and dynamic input extension

$$s_{i} = c^{T} \begin{bmatrix} v_{i} \\ \dot{v}_{i} \end{bmatrix} + z_{i} , \quad c = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\dot{z}_{i} = -c^{T} \begin{bmatrix} A \begin{bmatrix} v_{i} \\ \dot{v}_{i} \end{bmatrix} - B_{i} \sum_{j=0}^{N} \alpha_{ij} \tilde{k}_{ij} \begin{bmatrix} v_{i}(t - \tau_{ij}) - v_{j}(t - \tau_{ij}) \\ \dot{v}_{i}(t - \tau_{ij}) - \dot{v}_{j}(t - \tau_{ij}) \end{bmatrix} \end{bmatrix}$$

$$z_{i}(0) = -c^{T} \begin{bmatrix} v_{i}(0) \\ \dot{v}_{i}(0) \end{bmatrix}$$

$$\dot{\tilde{k}}_{ij,1}(t) = \tilde{\zeta}_{ij,1} \cdot |v_{i}(t - \tau_{ij}) - v_{j}(t - \tau_{ij})|^{2}$$

$$\ddot{\tilde{k}}_{ij,2}(t) = \tilde{\zeta}_{ij,2} \cdot |\dot{v}_{i}(t - \tau_{ij}) - \dot{v}_{j}(t - \tau_{ij})|^{2}$$

Mono-directional adaptation laws

- MG with 4 generators and four local loads
- Load changes
 - Step 1 (t = 0 5sec): Only the PC is used with $\omega_{ni} = 2\pi 50$ Hz, $v_{ni} = 220$ V_{RMS} (per phase rms);
 - Step 2 (t = 5sec): The frequency SC (20)-(22) is activated with $\omega_0 = 2\pi 50$ Hz;
 - Step 3 (t = 6sec): The voltage SC (55)-(56) is activated with $v_0 = 220V_{RMS}$
 - Step 4 (t = 15 20sec): The load (P_{L3}, Q_{L3}) is added;
 - Step 5 (t = 20sec): The set-point for the voltage SC is changed to $v_0 = 225V_{RMS}$;
 - Step 6 (t = 25sec): The reference value for the frequency SC is changed to $\omega_0 = 2\pi 50.1$ Hz;

TABLE I PARAMETERS OF THE MICROGRID TEST SYSTEM

	DG1		DG2		DG3		DG4	
Model	$ au_{P_1}$	0.016	$ au_{P_2}$	0.016	$ au_{P_3}$	0.016	$ au_{P_4}$	0.016
	τ_{Q_1}	0.016	τ_{Q_2}	0.016	τ_{Q_3}	0.016	τ_{Q_4}	0.016
	k_{P_1}	6e-5	k_{P_2}	3e-5	k_{P_3}	2e-5	k_{P_4}	1.5e-5
	k_{Q_1}	4.2e-4	k_{Q_2}	4.2e-4	k_{Q_3}	4.2e-4	k_{Q_4}	4.2e-4
	k_{V_1}	1e-2	k_{V_2}	1e-2	k_{V_3}	1e-2	k_{V_4}	1e-2
Load	P_{1_1}	0.01	P_{1_2}	0.01	P_{1_3}	0.01	P_{1_4}	0.01
	P_{2_1}	1	P_{2_2}	2	P_{2_3}	3	P_{2_4}	4
	P_{3_1}	1e4	P_{3_2}	1e4	P_{3_3}	1e4	$P_{3_{4}}$	1e4
	Q_{1_1}	0.01	Q_{1_2}	0.01	Q_{1_3}	0.01	Q_{1_4}	0.01
	Q_{2_1}	1	Q_{2_2}	2	Q_{2_3}	3	Q_{2_4}	4
	Q_{3_1}	1e4	Q_{3_2}	1e4	Q_{3_3}	1e4	Q_{3_4}	1e4
Line	$B_{12}=10\Omega^{-1}, B_{23}=10.67\Omega^{-1}, B_{34}=9.82\Omega^{-1}$							

Fig. 2. Frequencies and RMS voltages (ω_i, υ_i) of DGs, i = 1, 2, 3, 4.

Fig. 3. Frequency and voltage SC actions $(\omega_{ni}, \upsilon_{ni})$, i = 1, 2, 3, 4.

Table of Contents

- I. MICROGRIDs and Modern Power Systems
 - a. Hierarchical Control of MICROGRIDs
 - b. Centralized vs distributed Secondary Control
- II. Delay-free measurements
 - a. Finite-time Frequency Restoration
 - b. Finite-time Voltage Restoration
- III. Delayed measurements
 - a. Asymptotic Frequency Restoration
 - b. Asymptotic Voltage Restoration
- IV. Secondary frequency and voltage restoration with seamless connection to the grid
- V. Conclusions

SEAMLESS CONNECTION TO THE MAIN GRID-PRELIMINARY RESULTS

The idea: changing the reference voltage and frequency values by an integral feedack depending on the voltage magnitude and phase errors between the main grid and the micro-grid

Novel frequency and voltage restoration laws

$$\begin{split} & \bigoplus_{i} = \bigoplus_{ni} - m_{i} P_{i} & e_{\theta} = \theta_{g}^{PCC} - \theta_{mg}^{PCC} & \text{to zero} \\ & \vdots \\ & \vdots$$

Magnitude error tends to zero

$$\begin{split} v_{i} = v_{ni} - n_{i} Q_{i} & e_{v} = V_{g}^{PCC} - V_{mg}^{PCC} \\ \dot{v}_{ni} = -\xi_{1} sign \left(\sum_{j \in N_{i}} (v_{oi} - v_{oj}) + g_{i} (v_{oi} - V_{g}^{PCC} + \eta \int e_{v} dt) \right) \\ -\xi_{2} sign \left(\sum_{j \in N_{i}} (\dot{v}_{oi} - \dot{v}_{oj}) + g_{i} (\dot{v}_{oi} - (V_{g}^{PCC} + \eta e_{v})) \right) \end{split}$$

Conclusion and future developments

- Conclusions:
 - Distributed sliding mode control techniques have been developed to attack the voltage and frequency restoration problems in the secondary control layer of a microgrid, also including the presence of measurement and communication delays.
 - Preliminary results on SC design by addressing the seamless connection to the grid were also given
 - Simulations, carried out using realistic grid components models, show promising results.
 - Future developments
 - Active loads management
 - Reactive power sharing

- Experimental validation

Vielen Dank für Ihre Aufmerksamkeit!

VII. Daipeng Zhang: Parameter Preference for the Super-Twisting Algorithm Induced by $H_{\rm inf}\text{-Norm}$ Analysis

Parameter Preference for the Super-Twisting Algorithm Induced by $\mathcal{H}_\infty\text{-Norm}$ Analysis

Daipeng Zhang^a, Jaime A. Moreno^b and Johann Reger^a

^aControl Engineering Group, Technische Universität Ilmenau, Germany ^bInstituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México, Mexico

Retzhof Seminar, 11th of September, 2019

Leibnitz, Austria

Outline

- 1 Motivation and Contribution
- 2 Homogeneous \mathcal{H}_{∞} norm of non-zero degree
- 3 Homogeneous \mathcal{H}_{∞} -norm of zero-degree
- 4 Analysis and Simulation

5 Conclusions

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Outline

1 Motivation and Contribution

- 2 Homogeneous \mathcal{H}_{∞} norm of non-zero degree
- 3 Homogeneous \mathcal{H}_{∞} -norm of zero-degree
- 4 Analysis and Simulation
- 5 Conclusions

Motivation

Super twisting algorithm (STA): homogeneous, thus, achieves finite time convergence (FTC) for certain type of bounded disturbance

Only lower bounds on parameters provided so as to ensure FTC [Seeber, Horn, 18], [Moreno, Osorio, 12]

- If a disturbance trespasses the presumed bound occasionally only, states may diverge from the equilibrium, but converge again in finite time once the disturbance reenters the bound [Zhang, Reger, 18].
- A homogeneous \mathcal{H}_{∞} -norm for STA of non-zero degree is studied in [Zhang, Reger, 18] by carrying out a traditional linear \mathcal{H}_{∞} -norm analysis with the linear-like transformed system of STA.

The norm is local, but the region of optimal parameter set is global.

Contribution

- We propose a homogeneous \mathcal{H}_{∞} -norm of zero degree, thus, global and constant. Such norm cannot be directly applied to STA. We resort to a generalized system, including linear systems and STA.
- We provide a method for calculating this norm. After data collection, we are able to verify the region derived by [Zhang, Reger, 18] by calculating its corresponding homogeneous H_∞-norm.

This way, we justify control parameter preferences for such systems.

- We present the analytical closed norm in the above preference region, and reproduce the worst input that achieves such norm. This makes the norm a tight H_∞-norm.
- Interesting behavior of such non-linear system is also studied.

Outline

1 Motivation and Contribution

- 2 Homogeneous \mathcal{H}_{∞} norm of non-zero degree
- 3 Homogeneous \mathcal{H}_{∞} -norm of zero-degree
- 4 Analysis and Simulation
- 5 Conclusions

System model of STA and transformed coordinate

The disturbed STA in closed loop reads [Moreno, Osorio, 08]

$$\dot{x}_{1}(t) = -k_{1} [x_{1}(t)]^{\frac{1}{2}} + x_{2}(t) + c |x_{1}(t)|^{\frac{1}{2}} \phi_{1}(t)$$

$$\dot{x}_{2}(t) = -k_{2} [x_{1}(t)]^{0} + b \phi_{2}(t)$$

where $\lceil x \rfloor^{p}$ is the sign preserving power $\lceil \cdot \rfloor^{p} = |\cdot|^{p} \operatorname{sign}(\cdot)$. For most of the time we have $|\phi_{1}| < 1$ and $|\phi_{2}| < 1$.

A sufficient stability result [Moreno, Osorio, 08] gives lower bounds for the gains to ensure FTC:

$$k_1 > 2c, \quad k_2 > k_1 rac{ck_1 + 3b + 2(c/4 + b/k_1)^2}{(k_1 - 2c)}.$$

Let
$$\phi^{\top} = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}$$
 and introduce a state transformation as $\xi^{\top} = \begin{bmatrix} x_1 \rfloor^{\frac{1}{2}} \\ x_2 \end{bmatrix}$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Linear like structure and $\mathcal{H}_\infty\text{-norm}$

Then

$$\dot{\xi} = |x_1|^{-1/2} A \xi + B \phi, A = \begin{bmatrix} -\frac{1}{2}k_1 & \frac{1}{2} \\ -k_2 & 0 \end{bmatrix}, B = \begin{bmatrix} \frac{c}{2} & 0 \\ 0 & b \end{bmatrix}, x_1 \neq 0.$$

The \mathcal{H}_{∞} -norm can be interpreted as \mathcal{L}_2 gain from a transformed input to a transformed output [Khalil, 03], [Hong, 01].

Allowing ϕ_2 to trespass the bound finitely many times, s.t.

$$\Phi = \left\{ \phi_1, \phi_2 \in \mathcal{L}_2 \middle| \begin{array}{l} k_2 < |b\phi_2(t)| < M, \ t \in [t_0, t_1] \\ |b\phi_2(t)| \le b, \ t \in \mathbb{R} \setminus [t_0, t_1] \end{array} \right\},$$

then we can use the traditional definition of $\mathcal{H}_\infty\text{-}$ norm

$$\lambda(k_1, k_2) = \sup_{\phi \in \Phi} \frac{\|E\xi\|_2}{\|\phi\|_2}$$

where $E = \text{diag}\{\sqrt{E_1}, \sqrt{E_2}\}, E_1, E_2 > 0$, as means to put emphasis.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Algebraic Riccati Inequality

Similar to [Başar, Bernhard, 95], choose $V = \xi^{\top} P \xi$ with $P^{\top} = P > 0$ and define $J = \dot{V} + \xi^{\top} E^{\top} E \xi - \lambda^2 \phi^{\top} \phi$.

Then for $\xi(0) = 0$ we have V(0) = 0 and if $J(t) \le 0$ for $t \in [0, T]$

$$\begin{split} &\int_0^T J \, dt = V(T) - V(0) + \int_0^T \xi^\top E^\top E \, \xi \, dt - \lambda^2 \int_0^T \phi^\top \phi \, dt \le 0. \Leftrightarrow \|E\xi\|_2 \le \lambda \|\phi\|_2 \\ &J = 2 \, \xi^\top P \, \dot{\xi} + \xi^\top E^\top E \, \xi - \lambda^2 \phi^\top \phi \\ &= |x_1|^{-\frac{1}{2}} \xi^\top (PA + A^\top P + |x_1|^{\frac{1}{2}} (E^\top E + \lambda^{-2} PBB^\top P)) \xi - \lambda^2 |\phi - \lambda^{-2} B^\top P \xi|^2. \end{split}$$

Since $-\lambda^2 |\phi - \lambda^{-2} B^\top P \xi|^2 \le 0$, satisfying the following algebraic Riccati equation (ARE) with an estimate max $|x_1| < x_b$ leads to $J \le 0$:

$$PA + A^{ op}P + x_b^{1/2}\lambda^{-2}PBB^{ op}P + x_b^{1/2}E^{ op}E = 0.$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

The \mathcal{H}_{∞} -norm parameter range

In [Zhang, Reger, 19] it is shown that the optimal k_1 for a fixed k_2 is

$$k_1^{\star} \triangleq \sqrt{4k_2 + \frac{c^2 E_1 - 4b^2 E_2}{c^2 E_2 k_2^2 + 4b^2 E_2 k_2 + b^2 E_1} k_2^2},$$
$$\lambda^{\star}(k_1^{\star}, k_2) \triangleq \sqrt{\frac{c^2 E_2 k_2^2 + 4b^2 E_2 k_2 + b^2 E_1}{k_2^2} x_b}.$$

As in [Zhang, Reger, 18] the optimal k_1^* is devoid of x_b .

Further note that taking the limits of ratio E_1/E_2 leads to

$$\underline{k}_1 \triangleq \sqrt{4k_2 - \frac{4b^2k_2}{c^2k_2 + 4b^2}} \leq k_1^* \leq \sqrt{4k_2 + \frac{c^2}{b^2}k_2^2} \triangleq \overline{k}_1.$$

The authors of [Zhang, Reger, 18] recommend for controller design to choose $k_1 \ge \overline{k}_1$ and for observer design $k_1 = \overline{k}_1$.

Outline

- **1** Motivation and Contribution
- 2 Homogeneous \mathcal{H}_{∞} norm of non-zero degree
- 3 Homogeneous \mathcal{H}_{∞} -norm of zero-degree
- 4 Analysis and Simulation
- 5 Conclusions

SOSMA and its homogeneous \mathcal{H}_{∞} -norm of zero-degree

The SOSMA in general form has the closed loop form [Sánchez, ect, 17]

$$\dot{x}_1 = -k_1 \lceil x_1 \rfloor^{\frac{1}{1-d}} + x_2$$

$$\dot{x}_2 = -k_2 \lceil x_1 \rfloor^{\frac{1+d}{1-d}} + b\phi$$
(1)

This system is of homogeneous degree $d \in [-1, 0]$ with homogeneous weight $\tau_{x_1} = 1 - d$, $\tau_{x_2} = 1$ of $\tau_{\phi} = 1 + d$.

For d = 0 system (1) is the linear case, for d = -1 it is the STA.

Now use transformed state $\xi = (\lceil x_1 \rfloor^{\frac{1}{1-d}}, x_2)^{\top}$, see [Moreno, Osorio, 08]. As in [Zhang, Reger, 18] define a homogeneous \mathcal{H}_{∞} -norm of degree 0, which for any $d \in (-1, 0]$ is

$$\gamma'(k_1, k_2, b) = \sup_{\phi \neq 0} \frac{\|E\xi\|_2}{\|[\phi]^{\frac{1}{1+d}}\|_2}.$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Lemma

Lemma (Hestenes, 66)

Let $\psi : \mathbb{R}^n \to \mathbb{R}$ and $\omega : \mathbb{R}^n \to \mathbb{R}_+$, $\omega(x) \ge 0 \ \forall x \in \mathbb{R}^n$, be continuous homogeneous functions with the same weight $\tau = (\tau_1, \cdots, \tau_n)$ and degree m such that

$$\{x \in \mathbb{R}^n \setminus \{0\} : \omega(x) = 0\} \subseteq \{x \in \mathbb{R}^n \setminus \{0\} : \psi(x) < 0\}.$$

Then there exists a real number γ^* such that for all $\gamma \ge \gamma^*$ and all $x \in \mathbb{R}^n \setminus \{0\}$, and some c > 0, we have $\psi(x) - \gamma \omega(x) < -c \|x\|_{\tau,p}^m$.

Defining
$$J_{\gamma} = \dot{V}_{\gamma} + E_1 |x_1|^{\frac{2}{1-d}} + E_2 |x_2|^2 - \gamma^2 |\phi|^{\frac{2}{1+d}}$$
 we can prove with
 $\omega(x_1, x_2, \phi) \triangleq |\phi|^{\frac{2}{1+d}}$
 $\psi(x_1, x_2, \phi) \triangleq \dot{V}_{\gamma} + E_1 |x_1|^{\frac{2}{1-d}} + E_2 |x_2|^2$

Fachgebiet Regelungstechnik **Technische Universität Ilmenau**

Transform into search

Theorem

If the unperturbed system (1) with $d \in (-1, 0]$ is asymptotically stable with (k_1, k_2) , then it is input-to-state stable (ISS). We can find $V_{\gamma} \in C^1$ which satisfies

$$J_{\gamma}\big|_{\phi\equiv 0} = \dot{V}_{\gamma}\big|_{\phi\equiv 0} + E_1|x_1|^{\frac{2}{1-d}} + E_2|x_2|^2 < 0 \ \forall x \in \mathbb{R}^2 \setminus \{0\}.$$
(2)
For such V_{γ} a finite γ^* exists for any $\gamma > \gamma^*$ and $J_{\gamma} < 0$ holds.

The bound γ^{\star} can be obtained from a search of

$$\gamma^{2} = \max_{x_{1}, x_{2}, \phi} \zeta(V_{\gamma}, E_{1}, E_{2}, x_{1}, x_{2}, \phi)$$

$$\zeta = \frac{\dot{V}_{\gamma} + E_{1} |x_{1}|^{\frac{2}{1-d}} + E_{2} |x_{2}|^{2}}{|\phi|^{\frac{2}{1+d}}}$$
(3)

on the unit sphere wrt. x_1, x_2, ϕ . Then search for $\gamma' = \min_{V_{\gamma}} \gamma^2(V_{\gamma})$.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Simplified search

Corollary Let $B = \begin{bmatrix} 0 & b \end{bmatrix}^{\top}$ and denote $f(x) = \begin{bmatrix} f_1(x) & f_2(x) \end{bmatrix}^{\top}$ where $f_1(x) = -k_1 \begin{bmatrix} x_1 \end{bmatrix}^{\frac{1}{1-d}} + x_2, \quad f_2(x) = -k_2 \begin{bmatrix} x_1 \end{bmatrix}^{\frac{1+d}{1-d}}$ such that (1) becomes $\dot{x} = f(x) + B\phi$.

Then with V_{γ} from the Theorem, the search in (3) simplifies to

$$\gamma^{2} = \left| \max_{x_{1}, x_{2}} \eta(V_{\gamma}, E_{1}, E_{2}, x_{1}, x_{2}) \right|^{\frac{1-d}{1+d}}$$

$$\eta = C \frac{\left| \frac{\partial V_{\gamma}}{\partial x} B \right|^{\frac{2}{1-d}}}{-J_{\gamma} |_{\phi \equiv 0}} \quad \text{with} \quad C = \left| \frac{(1+d)}{2} \right|^{\frac{1+d}{1-d}} - \left| \frac{(1+d)}{2} \right|^{\frac{2}{1-d}}$$
(4)

on the curve of the unit circle wrt. x_1, x_2 .

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Lyapunov function

Similar to [Moreno, Sanchez, Cruz-Zavala, 19] we build a homogeneous Lyapunov function of homogeneous degree 2 - d, that is

$$V_{\gamma} = a_1 V = a_1 \left(\frac{1-d}{2-d} |x_1|^{\frac{2-d}{1-d}} - a_{12} x_1 x_2 + \frac{a_2}{2-d} |x_2|^{2-d} \right)$$

with parameter $k_2 > 0$ and $k_1 > \sqrt{k_2}$ (for STA). In order to ensure positive definiteness of *V* we use Young's inequality [Moreno, Osorio, 12]

$$\left(\frac{1}{a_{12}}\right)^{1-d} \geq \frac{a_{12}}{a_2} \quad \Leftrightarrow \quad a_2 \geq a_{12}^{2-d}.$$

For negative definiteness of V, we need $k_2a_{12} \le k_1$. Then condition (2) becomes

$$J_{\gamma}|_{\phi\equiv 0} = a_1\left(\dot{V}|_{\phi\equiv 0} + \frac{E_1}{a_1}|x_1|^{\frac{2}{1-d}} + \frac{E_2}{a_1}|x_2|^2\right) < 0.$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Search process

The search for any single $\gamma'(k_1, k_2, b, E_1, E_2)$ is performed as follows:

- 1. First find an $\underline{a}_1 \ge 0$ small enough, yet under which the range of (a_{12}, a_2) satisfing (2) still exists. Use such \underline{a}_1 as the first a_1 .
- 2. Fix an a_1 from Step 1 or Step 5. Search the region of (a_{12}, a_2) satisfing (2) by carrying out a search on the unit circle $x_1^2 + x_2^2 = 1$.
- 3. Within the region of (a_{12}, a_2) from Step 2, carry out a maximum search for $\zeta(a_1, a_{12}, a_2)$ in (3) on the unit sphere $x_1^2 + x_2^2 + \phi^2 = 1$ or search for $\eta(a_1, a_{12}, a_2)$ in (4) on the unit circle $x_1^2 + x_2^2 = 1$.
- 4. Conduct more refined searches and record the smallest γ among this search as $\gamma(a_1)$.
- 5. Compare between $\gamma(a_1)$ and choose the next a_1 to return to Step 2 for next loop from Step 2 to Step 4 done until $\gamma(a_1)$ converges.
- 6. The smallest $\gamma(a_1)$ will be recorded as γ' .

Convergence of $\gamma(a_1)$

We show the convergence of $\gamma^2(a_1)$ formed by the outermost iteration

Figure: d = -0.50, $k_1 = \frac{1}{3}(2\underline{k}_1^* + \overline{k}_1^*)$, $k_2 = b = 3$, $E_1 = 0$, $E_2 = 1$.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Region and optimal *a*₁₂, *a*₂

Plot of the range for a_{12} , a_2 and the optimal pair in red cross by the refined search as described in Step 2, 3, and 4:

Figure: d = -0.50, $k_1 = \frac{1}{3}(2\underline{k}_1^* + \overline{k}_1^*)$, $k_2 = b = 3$, $E_1 = 0$, $E_2 = 1$.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Value of γ

We plot $\gamma^2(a_1, a_{12}, a_2)$ for each point of the last figure. To show convexity of $\gamma^2(a_1, a_{12}, a_2)$ wrt. a_{12}, a_2 , we set a max. to 500.

Figure: d = -0.50, $k_1 = \frac{1}{3}(2\underline{k}_1^{\star} + \overline{k}_1^{\star})$, $k_2 = b = 3$, $E_1 = 0$, $E_2 = 1$.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Outline

1 Motivation and Contribution

- 2 Homogeneous \mathcal{H}_{∞} norm of non-zero degree
- 3 Homogeneous \mathcal{H}_{∞} -norm of zero-degree
- 4 Analysis and Simulation
- 5 Conclusions

Linear case

For d = 0 the Lyapunov function has the homogeneous degree p = 2 - d = 2, which amounts to the quadratic form $V = \xi^{\top} P \xi$.

Then Riccati equations and Hamiltonian matrices may help verify our numerical approach using the homogeneous search. We may use that

$$P(1,1) = \frac{a_1}{2}, \ P(1,2) = -\frac{a_1a_{12}}{2}, \ P(2,2) = \frac{a_1a_2}{2}$$

In simulations, not shown here, the two agree with each other. The optimal k_1 for fixed k_2 and any E_1 , E_2 are

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Linear case $\gamma(k_1)$

We plot $\gamma(k_1)$ in the linear case d = 0 for $k_2 = b = 3$.

When $k_1 < \overline{k}_1$, it is harmful to keep x_1 small, while a bigger $k_1 \ge \overline{k}_1$ is not improving $|x_1|$ significantly.

Note that at $k_1 = \underline{k}_1$ a minimum of the \mathcal{L}_2 -gain to x_2 is achieved.

Linear case $\gamma(k_2)$

Now consider $\gamma(k_2)$ in the linear case d = 0 for $k_1 = 4, b = 3$.

Whenever k_1 is fixed first, then raising k_2 will reduce the gain.

Linear case Bode plot

Figure: Bode plot for linear case, $d = 0, k_2 = b = 3$.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Table for d = -0.5, $k_2 = b$, to state ξ_1

То	<i>k</i> ₁	a ₁	<i>a</i> ₁₂	a ₂	γ^2
ξ1	0.8 <u>k</u> *	3.6242	0.2781	0.1640	1.6502
ξ1	0.9 <u>k</u> *	3.0672	0.3049	0.1712	1.2121
ξ1	<u>k</u> *	2.6150	0.3332	0.1837	1.0353
ξ1	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2.4857	0.3450	0.1898	1.0086
ξ1	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2.4447	0.3491	0.1920	1.0038
ξ1	$\frac{1}{2}(\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2.3670	0.3571	0.1964	1.0000
ξ1	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	2.4098	0.3489	0.1859	1.0000
ξ1	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	3.4675	0.3449	0.1477	1.0000
ξ1	\overline{k}_1^{\star}	3.2298	0.3334	0.1436	1.0000
ξ1	$1.1\overline{k}_1^*$	2.5034	0.3030	0.1394	1.0000
ξ1	$1.2\overline{k}_1^*$	1.4941	0.2778	0.1713	1.0000
ξ1	$10\overline{k}_{1}^{\star}$	0.1177	0.0337	0.0692	1.0000

Table: Simulation results for d = -0.5, $k_2 = b = 3$.

$$\underline{k}_1^{\star} \triangleq \sqrt{\frac{3}{2}(1-d)k_2}, \ \overline{k}_1^{\star} \triangleq$$

Fachge Techni

Fachgebiet Regelungstechnik **Technische Universität Ilmenau** \mathcal{H}_{∞} -Norm Analysis for STC Retzhof Seminar, 2019 – Daipeng Zhang

 $/2(1 - d)k_2$ similar to [Zhang, Reger, 18]

Table for d = -0.5, $k_2 = b$, to state ξ_2

То	<i>k</i> ₁	a ₁	<i>a</i> ₁₂	a ₂	γ^2
ξ2	0.8 <u>k</u> *	20.7440	0.3194	0.1640	10.1215
ξ2	0.9 <u>k</u> *	19.0724	0.3528	0.1736	8.2788
ξ2	<u>k</u> *	18.3070	0.3881	0.1879	7.8163
ξ2	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	17.8256	0.4031	0.1953	7.9012
ξ2	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	17.7650	0.4080	0.1979	7.9595
ξ2	$\frac{1}{2}(\underline{k}_1^{\star}+\overline{k}_1^{\star})$	17.4967	0.4184	0.2036	8.1223
ξ2	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	17.3311	0.4288	0.2094	8.3478
ξ2	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	17.2163	0.4342	0.2128	8.4847
ξ2	\overline{k}_1^{\star}	17.8597	0.4466	0.2147	9.0000
ξ2	$1.1\overline{k}_1^{\star}$	26.2157	0.3793	0.1557	10.8900
ξ2	$10\overline{k}_{1}^{\star}$	77.4825	0.0590	0.0947	899.6336

Table: Simulation results for d = -0.5, $k_2 = b = 3$.

Table for d = -0.9, $k_2 = b$, to state ξ_1

То	<i>k</i> ₁	a ₁	<i>a</i> ₁₂	a ₂	γ^2
ξ1	0.8 <u>k</u> *	29.2440	0.2393	0.0650	194.925
ξ1	0.9 <u>k</u> *	24.7026	0.2593	0.0648	9.0321
ξ1	<u>k</u> *	21.1062	0.2819	0.0673	1.7372
ξ1	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	18.9762	0.2914	0.0690	1.2458
ξ1	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	19.3528	0.2947	0.0696	1.1532
ξ1	$\frac{1}{2}(\underline{k}_1^{\star}+\overline{k}_1^{\star})$	18.7921	0.3016	0.0710	1.0395
ξ1	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	18.2543	0.3086	0.0726	1.0003
ξ1	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	18.1248	0.3064	0.0713	1.0000
ξ1	\overline{k}_{1}^{\star}	16.7298	0.2962	0.0688	1.0000
ξ1	$1.1\overline{k}_1^*$	21.7285	0.2693	0.0476	1.0000
ξ1	$10\overline{k}_{1}^{\star}$	1.3828	0.0296	0.0060	1.0000

Table: Simulation results for d = -0.9, $k_2 = b = 3$.

Table for d = -0.9, $k_2 = b$, to state ξ_2

-		1	•		
То	k_1	k_1 a_1 a_{12}		a ₂	γ^2
ξ2	0.8 <u>k</u> *	241.7791	0.2426	0.0647	1491.2
ξ2	0.9 <u>k</u> *	216.4065	0.2633	0.0647	77.4146
ξ2	<u>k</u> *	201.3166	0.2865	0.0672	16.5137
ξ2	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	191.8945	0.2964	0.0690	12.2779
ξ2	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	189.8602	0.2998	0.0696	11.5111
ξ2	$\frac{1}{2}(\underline{k}_1^{\star}+\overline{k}_1^{\star})$	190.7349	0.3067	0.0710	10.6335
ξ2	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	188.4056	0.3139	0.0726	10.4764
ξ2	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	189.2390	0.3170	0.0731	10.6491
ξ2	\overline{k}_1^*	225.5373	0.3050	0.0636	11.4000
ξ2	$1.1\overline{k}_1^*$	289.0625	0.2762	0.0491	13.7940
ξ2	$10\overline{k}_{1}^{\star}$	1375.0	0.0311	0.0069	1140.0

Table: Simulation results for d = -0.9, $k_2 = b = 3$.

Table for d = -0.99, $k_2 = b$, to state ξ_1

То	<i>k</i> ₁	a ₁	a ₁₂	a ₂	γ'^2
ξ1	0.8 <u>k</u> *	367.6528	0.2234	0.0476	$1.6535 imes 10^{37}$
ξ1	0.9 <u>k</u> *	351.5625	0.2398	0.0461	$6.4817 imes 10^{16}$
ξ1	<u>k</u> *	266.9678	0.2586	0.0467	$3.4859 imes 10^5$
ξ1	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	284.3696	0.2666	0.0474	894.6875
ξ1	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	226.8147	0.2694	0.0477	186.9980
ξ1	$\frac{1}{2}(\underline{k}_1^{\star}+\overline{k}_1^{\star})$	228.1454	0.2752	0.0484	15.4647
ξ1	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	206.5975	0.2812	0.0493	2.9063
ξ1	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	212.6851	0.2842	0.0497	1.6847
ξ1	\overline{k}_1^{\star}	227.9690	0.2894	0.0493	1.0000
ξ1	$1.1\overline{k}_1^*$	241.7137	0.2631	0.0378	1.0000
ξ1	$10\overline{k}_{1}^{\star}$	13.0735	0.0289	0.0045	1.0000

Table: Simulation results for $d = -0.99, k_2 = b = 3$.

Table for d = -0.99, $k_2 = b$, to state ξ_2

То	<i>k</i> ₁	a ₁	<i>a</i> ₁₂	<i>a</i> ₂	γ'^2	
ξ2	0.8 <u>k</u> *	2929.412	0.2237	0.0476	$1.3503 imes 10^{38}$	
ξ2	$0.9\underline{k}_{1}^{\star}$ 2800.		0.2401 0.0461		5.9904×10^{17}	
ξ2	<u>k</u> *	2696.375	0.2589	0.0467	$3.6363 imes 10^{6}$	
ξ2	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2847.656	0.2670	0.0474	9477.517	
ξ2	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2739.331	0.2698	0.0477	2025.8	
ξ2	$\frac{1}{2}(\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2603.147	0.2756	0.0484	172.1261	
ξ2	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	2571.023	0.2815	0.0493	32.8112	
ξ2	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	2507.431	0.2846	0.0497	19.2136	
ξ2	\overline{k}_1^*	2730.862	0.2901	0.0493	11.9400	
ξ2	$1.1\overline{k}_1^*$	3841.735	0.2636	0.0361	14.4474	
ξ2	$10\overline{k}_{1}^{\star}$	25564.98	0.0290	0.0027	1194.0	

Table: Simulation results for $d = -0.99, k_2 = b = 3$.

Table for $d = -0.99, k_2 = 1.01b$, to state ξ_1

То	k_1 a_1		<i>a</i> ₁₂	a ₂	γ'^2
ξ1	0.8 <u>k</u> *	351.5625	0.2223	0.0469	$2.2829 imes 10^{36}$
ξ1	0.9 <u>k</u> *	332.3364	0.2386	0.0454	8.8258×10^{15}
ξ1	<u>k</u> *	267.6265	0.2573	0.0460	4.7689×10^4
ξ1	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	251.4499	0.2653	0.0467	120.6760
ξ1	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	232.8552	0.2681	0.0470	25.4515
ξ1	$\frac{1}{2}(\underline{k}_1^{\star} + \overline{k}_1^{\star})$	220.9900	0.2738	0.0477	2.1378
ξ1	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	212.0911	0.2794	0.0486	0.3969
ξ1	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	212.1474	0.2828	0.0490	0.2305
ξ1	\overline{k}_1^{\star}	241.8813	0.2880	0.0498	0.1367
ξ1	$1.1\overline{k}_1^*$	241.6992	0.2618	0.0372	0.1367
ξ1	$10\overline{k}_{1}^{\star}$	11.2610	0.0288	0.0050	0.1367

Table: Simulation results for d = -0.99, $k_2 = 1.01b = 3.03$.

Table for $d = -0.99, k_2 = 1.01b$, to state ξ_2

То	<i>k</i> ₁	a ₁	a ₁₂	a ₂	γ'^2
ξ2	0.8 <u>k</u> *	3002.930	0.2226	0.0469	$1.8665 imes 10^{37}$
ξ2	0.9 <u>k</u> *	2942.578	0.2389	0.0454	$8.1233 imes 10^{16}$
ξ2	<u>k</u> *	2543.900	0.2577	0.0460	$4.9994 imes 10^{5}$
ξ2	$\frac{1}{4}(3\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2483.235	0.2657	0.0467	1315.306
ξ2	$\frac{1}{3}(2\underline{k}_1^{\star}+\overline{k}_1^{\star})$	3062.924	0.2684	0.0470	279.9135
ξ2	$\frac{1}{2}(\underline{k}_1^{\star}+\overline{k}_1^{\star})$	2395.833	0.2741	0.0477	24.0043
ξ2	$\frac{1}{3}(\underline{k}_1^{\star}+2\overline{k}_1^{\star})$	2828.125	0.2801	0.0485	4.5349
ξ2	$\frac{1}{4}(\underline{k}_1^{\star}+3\overline{k}_1^{\star})$	2536.647	0.2832	0.0490	2.6579
ξ2	\overline{k}_1^{\star}	275.5264	0.2887	0.0485	1.6484
ξ2	$1.1\overline{k}_1^*$	2669.271	0.2625	0.0433	1.9945
ξ2	$10\overline{k}_{1}^{\star}$	14651.16	0.0289	0.0047	164.8369

Table: Simulation results for d = -0.99, $k_2 = 1.01b = 3.03$.

Gain γ wrt. state ξ

Figure: Simulation results for $\gamma^2(\xi_1, \xi_2)$ with optimal a_1 , a_{12} , a_2 , d = -0.5, $E_1 = 0, E_2 = 1, k_2 = b = 3, k_1 = \frac{1}{3}(2\underline{k}_1^* + \overline{k}_1^*)$.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Constant input

If we input a constant ϕ , then at the equilibrium (\bar{x}_1, \bar{x}_2) we have

$$0 = -k_1 \lceil \bar{x}_1 \rfloor^{\frac{1}{1-d}} + \bar{x}_2$$
$$0 = -k_2 \lceil \bar{x}_1 \rfloor^{\frac{1+d}{1-d}} + b\phi$$

which yields

$$\bar{x}_1 = \left(\frac{b}{k_2}\phi\right)^{\frac{1-d}{1+d}}, \quad \bar{x}_2 = k_1\left(\frac{b}{k_2}\phi\right)^{\frac{1}{1+d}}$$

Thus the \mathcal{L}_2 -gain from $\left\lceil \phi \right\rfloor^{\frac{1}{1+d}}$ to $\overline{\xi}_1$ is

$$\gamma_{\xi_1}^2 = \frac{\left(\frac{b}{k_2}\phi\right)^{\frac{2}{1+d}}}{(\phi)^{\frac{2}{1+d}}} = \left(\frac{b}{k_2}\right)^{\frac{2}{1+d}}, \quad \gamma_{\xi_2}^2 = k_1^2 \frac{\left(\frac{b}{k_2}\phi\right)^{\frac{2}{1+d}}}{(\phi)^{\frac{2}{1+d}}} = k_1^2 \left(\frac{b}{k_2}\right)^{\frac{2}{1+d}}$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Worst input

We may build a worst input as

$$\phi(t) = W(D \operatorname{sign} (\operatorname{sin}(\omega t)) + (1 - D) \operatorname{sin}(\omega t))$$

where W is the magnitude of ϕ and ω is the frequency in *rad/s* of the sine component.

D will proportionate the ratio between the step function and sine function.

d	<i>k</i> 1	W	D	f	$\gamma^2_{\xi_1}$	$\gamma^2_{\xi_2}$
-0.75	$10\overline{k}_1^{\star}$	0.5	0.45	0.01	0.9975	1047.3
-0.90	$10\overline{k}_1^*$	0.7	0.65	0.01	0.9974	1137.1
-0.99	$10\overline{k}_1^*$	0.98	0.96	0.002	0.9989	1192.6
-0.999	$10\overline{k}_{1}^{\star}$	0.999	0.999	0.0001	0.9364	1123.1

Table: \mathcal{L}_2 -gain for $k_2 = b = 3$, $T = 10^{-4} s$.

Worst input: simulation

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Figure showing disturbance rejection

We plot $\gamma^2(\phi) = \max_{x_1^2 + x_2^2 = 1 - \phi^2} \zeta$ with optimal a_1, a_{12}, a_2 collected by Matlab or C.

Figure: $\gamma^2(\phi)$ on the unit sphere, sliced with ϕ , for values d = -0.5, $k_2 = b = 3$, $E_1 = 0$, $E_2 = 1$.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Outline

1 Motivation and Contribution

- 2 Homogeneous \mathcal{H}_{∞} norm of non-zero degree
- 3 Homogeneous \mathcal{H}_{∞} -norm of zero-degree
- 4 Analysis and Simulation
- 5 Conclusions

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Conclusions

We study the SOSMA in general form with a homogeneous \mathcal{H}_{∞} -norm with zero homogeneous degree, thus, constant and global.

- *H*_∞-norm optimal parameter range, derived in [Zhang, Reger, 18], is verified by calculating its corresponding global and constant *γ*.
 We provide the closed form of such *γ* for the recommended region.
- For fixed k_2 and controller design, we recommend $k_1 \ge \overline{k}_1^*$. We notice that even though with larger k_1 the worst γ remains constant, yet the worst ϕ need to be much slower to reach such gain. So practically, larger k_1 renders x_1 smaller.
- For observer design, we notice optimality for k_1 shifting from \underline{k}_1 to \overline{k}_1^{\star} from linear case to STA, in accordance with [Zhang, Reger, 18]. Thus, we recommend using $k_1 = \overline{k}_1^{\star}$ in this case.

References

- J.A. Moreno, M. Osorio, "A Lyapunov approach to second-order sliding mode controllers and observers," 47th IEEE CDC, 2008, pp. 2856–2861.

- J.A. Moreno, M. Osorio, "Strict Lyapunov functions for the super-twisting algorithm," IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 1035–1040, 2012.
- A. Barth, M. Reichhartinger, K. Wulff, J. Reger, S. Koch, and M. Horn. "Indirect Adaptive Sliding-Mode Control Using the Certainty-Equivalence Principle.", Springer-Verlag, 2017.
- D. Zhang, J. Reger, " \mathcal{H}_{∞} Optimal Parameters for the Super-Twisting Algorithm with Intermediate Disturbance Bound Mismatch," 15th International Workshop on Variable Structure Systems (VSS), Graz, Austria, 2018, pp. 303–308.
- A. Levant, "Sliding Order and Sliding Accuracy in Sliding Mode Control," Int. Journal of Control. vol. 58, no. 6, pp. 1247-1263, 1993.
- H
 - H. Khalil, Nonlinear Systems, Prentice Hall, 2003.
 - T. Başar, P. Bernhard, \mathcal{H}_{∞} -Optimal Control and Related Minimax Design Problems A Dynamic Game Approach, Birkhäuser, 1995.
 - K. Zhou, J.C. Doyle, K. Glover, *Robust and Optimal Control*, Prentice Hall, 1996.

A. Bacciotti and L. Rosier, *Liapunov Functions and Stability in Control Theory*, Springer, 2005.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

References

- T. Sánchez, E. Cruz-Zavala, J.A. Moreno, "An SOS method for the design of continuous and discontinuous differentiators," *Int. Journal of Control*, [accepted for publication]
- T. Sánchez, J.A. Moreno, "A constructive Lyapunov function design method for a class of homogeneous systems," 53rd IEEE CDC, 2014, Los Angeles, USA, pp. 5500–5505.
- R. Seeber, M. Horn, "Necessary and sufficient stability criterion for the super-twisting algorithm," 15th International Workshop on Variable Structure Systems (VSS), Graz, Austria, 2018, pp. 120–125.
- J.A. Moreno, T. Sánchez, E. Cruz-Zavala, "A smooth Lyapunov function for the Super–Twisting Algorithm," Archive

- Y. Hong, " \mathcal{H}_{∞} control, stabilization, and input–output stability of nonlinear systems with homogeneous properties," Automatica, vol. 37, no. 6, 2001, pp. 819–829.
- E. Cruz-Zavala, J.A. Moreno, "Lyapunov Functions for Continuous and Discontinuous Differentiators," 10th IFAC Symposium on Nonlinear Control Systems NOLCOS, Monterey, California, USA, 2016.
- M.R. Hestenes, *Calculus of variations and optimal control theory*, John Wiley & Sons, New York, 1966.

VIII. Nicole Gehring: An infinite-dimensional Output Feedback Tracking Controller for a Pneumatic System with Distributed Parameters An infinite-dimensional output feedback tracking controller for a pneumatic system with distributed parameters

Nicole Gehring¹, Richard Kern²

¹Institute of Automatic Control and Control Systems Technology, Johannes Kepler University Linz

> ²Chair of Automatic Control, Technical University of Munich

21st Styrian Workshop on Automatic Control Retzhof Castle, Austria, September 11th, 2019

for constructive and fiscal reasons: significant spatial distance between pneumatic actuators and corresponding compressed air supply

test bench at Technical University of Munich

emulates set-up, with tank instead of pneumatic actuator

Motivation ○● Modeling

Feedforward Design

Output Feedback Design

Results and Conclusion

Problem Statement

starting point

- ► control input: valve voltage → mass flow through valve (into tube)
- measurement: pressure downstream of valve
- goal: track fast pressure changes in tank
- challenge: time delay induced by significant tube length

outline of the talk

- 1. modelling of test bench
- 2. design of a flatness-based feedforward controller
- 3. design of a backstepping-based state feedback controller
- 4. design of a backstepping-based state observer
- 5. experimental validation of the output feedback tracking controller

Motivation	Modeling ●00000000	Feedforward Design	Output Feedback Design	Results and Conclusion
$\land \land$	•			

An Overview

(modelling follows [Kern, 2017])

0000000 00 0000 00000 The Tube differential balance of mass, momentum and energy assuming Δz diffusion-free 1D flow F_{fric} m_z $m_{z+\Delta z}$ negligible effects due to gravity $F_{\boldsymbol{z}}$ constant geometry $z + \Delta z$ zcalorically perfect gas Friction and heat transfer by correlation (f_{comp}, α) \downarrow **3rd order hyperbolic PDE** (extended Euler equations) $\partial_t \rho - \partial_z (\rho v) = 0$ $\partial_t(\rho v) - \partial_z(\rho v^2 + p) = -f_{\rm comp} \frac{\rho v |v|}{2D}$ $\partial_t(\rho e) - \partial_z(v(\rho e + p)) = \alpha \frac{\pi D}{\Lambda} (T_0 - T) - f_{\mathsf{comp}} \frac{\rho v^2 |v|}{2D}$

Output Feedback Design

Feedforward Design

Motivation

Modeling

Results and Conclusion

Modeling ○○●○○○○○○ Feedforward Design

Output Feedback Design

Results and Conclusion

The Tank

integral balance of mass and energy

assuming

- perfectly mixed air in tank
 ⇒ spatially concentrated model
- constant geometry

\Downarrow

2nd order ODE $\widehat{=}$ boundary system at z=0

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\rho_{\mathrm{vol}}(t) &= \frac{A}{V_{\mathrm{vol}}}(\rho v)(0,t) \\ \frac{\mathrm{d}}{\mathrm{d}t}p_{\mathrm{vol}}(t) &= A\frac{\gamma-1}{V_{\mathrm{vol}}}\Big[\frac{1}{2}(\rho v^3)(0,t) + \frac{\gamma}{\gamma-1}p_{\mathrm{vol}}(t)v(0,t) \\ &+ \frac{1}{AR_{\mathrm{vol}}}\left(T_0 - \frac{p_{\mathrm{vol}}(t)}{R_{\mathrm{s}}\rho_{\mathrm{vol}}(t)}\right)\Big] \end{split}$$

Modeling ○○○●<u>○○○○○</u> Feedforward Design

Output Feedback Design

Results and Conclusion

The Valve

proportional directional 5/3-way control valve

- assumption of negligible electrical and mechanical dynamics
- identification of 2 grid maps

static relations $\widehat{=}$ boundary system at z = L

$$\dot{m}_{in}(t) = f_{\dot{m}}\left(\frac{p_{in}(t)}{p_{sup}(t)}, \nu(t)\right)$$
$$\rho_{in}(t) = \frac{1}{R_s T_0 + R_s f_T \left(p_{in}(t), \dot{m}_{in}(t)\right)} p_{in}(t)$$

 \Downarrow

Plant Model

coupling of submodels for

- valve (static relations)
- tube (3rd order quasilinear PDE)
- tank (2nd order nonlinear ODE)

by **boundary conditions** (inflow, outflow):

Feedforward Design

Output Feedback Design

Results and Conclusion

Simplified Models: Isothermal Model

additional assumption

- almost instantaneous thermal equilibrium with surroundings
- \Rightarrow isothermal flow with $T(z,t) = T_0$
- \Rightarrow energy equation is redundant / superfluous

isothermal model (2nd order quasilinear PDE, 1st order linear ODE)

$$\begin{split} \partial_t \rho + \partial_z (\rho v) &= 0\\ \partial_t (\rho v) + \partial_z (\rho v^2 + a_{\rm iso}^2 \rho) &= -f_{\rm comp} \frac{\rho v |v|}{2D}\\ (\rho v)(0,t) &= \frac{1}{A} \dot{m}_{\rm in}(t)\\ \frac{\rm d}{\rm dt} \rho_{\rm vol}(t) &= \frac{A}{V_{\rm vol}} (\rho v)(L,t)\\ \rho(L,t) &= \rho_{\rm vol}(t) \end{split}$$

with isothermal speed of sound $a_{\rm iso} = \sqrt{\gamma R_{\rm s} T_0}$

Modeling ○○○○○○●○○ Feedforward Design

Output Feedback Design

Results and Conclusion

Simplified Models: Linear Model

additional assumption

- small pressure variations
- \Rightarrow laminar flow with Ma < 0.1
- $\Rightarrow\,$ nonlinear acceleration term ρv^2 is negligible
- \Rightarrow linear friction

linear model (2nd order quasilinear PDE, 1st order linear ODE)

$$\begin{split} \partial_t \rho + \partial_z (\rho v) &= 0\\ \partial_t (\rho v) + a_{\rm iso}^2 \partial_z \rho &= -k_{\rm fric} \frac{32\eta_0}{D^2} \frac{1}{\rho_0} \rho v\\ (\rho v)(0,t) &= \frac{1}{A} \dot{m}_{\rm in}(t)\\ \frac{\rm d}{\rm d} t \rho_{\rm vol}(t) &= \frac{A}{V_{\rm vol}} (\rho v)(L,t)\\ \rho(L,t) &= \rho_{\rm vol}(t) \end{split}$$

with additional friction factor $k_{\rm fric}$

Modeling ○○○○○○○●○

Feedforward Design

Output Feedback Design

Results and Conclusion

Model Comparison 1/2

 \blacktriangleright measurements: tank pressure $p_{\rm vol}(t)$ and pressure $p_{\rm in}(t)$ downstream of value

▶ simulation of all three models based on (measured) input $p_{in}(t)$

Modeling

Feedforward Design

Output Feedback Design

Results and Conclusion

Model Comparison 2/2

- friction in linear model too small
- ▶ manual adjustment of friction factor $\rightarrow k_{\text{fric}} = 4$

Modeling

Feedforward Design ●○○○ Output Feedback Design

Results and Conclusion

Goal and Basic Idea

objective

transition the system (and the tank pressure in particular) between two steady states

method

- flatness-based feedforward control for quasilinear hyperbolic PDEs that are coupled to boundary ODEs ([Knüppel, 2015], [Knüppel and Woittennek, 2015])
 - ▶ plant model 🗸
 - isothermal model
 - 🕨 linear model 🗸
- \blacktriangleright reliant on classical notion of flatness for boundary ODE at z=0
 - plant model X
 - isothermal model
 - 🕨 linear model 🗸

 \Rightarrow application to isothermal model (as more accurate than linear model)

 Motivation
 Modeling
 Feedforward Design
 Output Feedback Design
 Results and Conclusion

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

boundary ODE at z = L

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\mathrm{vol}}(t) = \frac{A}{V_{\mathrm{vol}}}(\rho v)(L,t)$$
$$\rho(L,t) = \rho_{\mathrm{vol}}(t)$$

• differentially flat with flat output $y(t) = p_{vol}(t)$ (tank pressure)

parametrization of tube's boundary values:

$$\rho(L,t) = \frac{1}{R_{\rm s}T_0} y(t), \qquad (\rho v)(L,t) = \frac{V_{\rm vol}}{AR_{\rm s}T_0} \dot{y}(t)$$

method of characteristics

- for hyperbolic systems: solution propagates along characteristic curves with finite velocities
- velocities correspond to entries of diagonal matrix in special representation of isothermal model:

$$\partial_t \boldsymbol{x} + \begin{bmatrix} a_{\text{iso}}(1-x_1-x_2) & 0\\ 0 & -a_{\text{iso}}(1+x_1+x_2) \end{bmatrix} \partial_z \boldsymbol{x} = \boldsymbol{f}(\boldsymbol{x})$$

Modeling

Feedforward Design ○○●○ Output Feedback Design

Results and Conclusion

Feedforward Controller

- ► choice of desired (polynomial) trajectory $t \mapsto p_{vol}^{r}(t)$ for tank pressure
- ▶ forward and backward integration (numerically) along characteristic curves from z = L to $z = 0 \Rightarrow w^{r}(z, t)$
- ▶ feedforward controller $U^{\mathsf{r}}(t) = A(\rho v)^{\mathsf{r}}(0,t)$ from boundary at z = 0

Experimental Results: Feedforward Controller

2

1

3

time in [s]

4

5

6

-0.5

-0.6

-0.7 L 0 Feedforward Design

Output Feedback Design

Results and Conclusion

Backstepping Form

backstepping form for linear model

- ▶ normalized tube length $z \in [0, 1]$
- ▶ input (mass flow $\dot{m}_{in}(t)$ through valve) acts on boundary at z = 1
- ▶ state transformation (ODE state is scaled density / pressure, PDE state is linear combination of $(\rho v)(z,t)$ and $\rho(z,t)$)

with
$$q_0 = 1$$
, $c = -1$, $q_1 = -e^{-2\alpha\tau_0}$, $d = \frac{e^{-\alpha\tau_0}}{A}$, $a = -\frac{a_{iso}A}{V_{vol}}$, $b = \frac{2a_{iso}A}{V_{vol}}$,

$$\mathbf{\Lambda} = \begin{bmatrix} -\frac{1}{\tau_0} & 0\\ 0 & \frac{1}{\tau_0} \end{bmatrix}, \quad \mathbf{A}(z) = \begin{bmatrix} 0 & -\alpha e^{2\alpha\tau_0 z}\\ -\alpha e^{-2\alpha\tau_0 z} & 0 \end{bmatrix}$$

$$\boxed{\begin{array}{c} \mathsf{ODE} \\ \eta(t) \end{array}} \leftrightarrow \boxed{\begin{array}{c} \mathsf{PDE} \\ \boldsymbol{w}(z,t) \end{array}} \leftarrow u$$

goal: design a feedback of the states w(z,t) and $\eta(t)$ in order to stabilize the equilibrium $(w(z,t),\eta(t)) = (\mathbf{0},0)$

backstepping approach

- originally only for ODEs, later adopted to PDEs (e.g. [Krstic and Smyshlyaev, 2008])
- over the last year, focus on coupled PDE-ODE and ODE-PDE-ODE systems (e.g. [Di Meglio et al., 2018, Deutscher et al., 2018])

new and simplified approach based on strict feedback structure

$$\dot{\eta} = f_1(\eta, oldsymbol{w}) \ \dot{oldsymbol{w}} = f_2(\eta, oldsymbol{w}, u)$$

(for pneumatic system: same results as in [Kern and Gehring, 2017])

Modeling

Feedforward Design

Output Feedback Design

Results and Conclusion

1st Step: Stabilization of ODE 1/2

goal: stabilization of ODE subsystem

 $\dot{\eta}(t) = a\eta(t) + bw_2(0,t)$

virtual feedback

$$w_2(0,t) = -k_\eta \eta(t)$$

such that $(a - bk_{\eta}) < 0$

state transformation (error state)

$$\tilde{\boldsymbol{w}}(z,t) = \boldsymbol{w}(z,t) + \boldsymbol{n}(z)\eta(t)$$

- ► motivated by error $\tilde{w}_2(0,t) = w_2(0,t) + k_\eta \eta(t) \Rightarrow \boldsymbol{e}_2^T \boldsymbol{n}(0) = k_\eta$
- choose n(z) such that ODE is stabilized and η impacts the PDE only at z = 1, i.e. the actuated boundary

Modeling

Feedforward Design

Output Feedback Design

Results and Conclusion

1st Step: Stabilization of ODE 2/2

transformed system

$$\dot{\eta}(t) = (a - bk_{\eta})\eta(t) + b\tilde{w}_{2}(0, t)$$

$$\tilde{w}_{1}(0, t) = q_{0}\tilde{w}_{2}(0, t)$$

$$\partial_{t}\tilde{w}(z, t) = \mathbf{\Lambda}\partial_{z}\tilde{w}(z, t) + \mathbf{A}(z)\tilde{w}(z, t) + b\mathbf{n}(z)\tilde{w}_{2}(0)$$

$$\tilde{w}_{2}(1, t) = q_{1}\tilde{w}_{1}(1, t) + (\mathbf{e}_{2}^{T} - q_{1}\mathbf{e}_{1}^{T})\mathbf{n}(1)\eta(t) + du(t)$$

initial value problem

$$\frac{\mathrm{d}}{\mathrm{d}z}\boldsymbol{n}(z) = \boldsymbol{\Lambda}^{-1} \big((a - bk_{\eta})\boldsymbol{I} - \boldsymbol{A}(z) \big) \boldsymbol{n}(z), \quad z \in (0, 1]$$
$$\boldsymbol{n}(0) = \begin{bmatrix} q_0 k_{\eta} - c \\ k_{\eta} \end{bmatrix}$$

- (explicit) solution is exponential function
- \blacktriangleright transformation is fixed, depending on design parameter k_{η}

MotivationModeling
00000000Feedforward Design
0000Output Feedback Design
0000Results and Conclusion
00002nd Step:Backstepping Transformation 1/2

goal: cascading of the two hyperbolic PDEs

$$\tilde{w}_1(0,t) = q_0 \tilde{w}_2(0,t)$$

$$\partial_t \tilde{w}(z,t) = \mathbf{\Lambda} \partial_z \tilde{w}(z,t) + \mathbf{A}(z) \tilde{w}(z,t) + b\mathbf{n}(z) \tilde{w}_2(0)$$

$$\tilde{w}_2(1,t) = q_1 \tilde{w}_1(1,t) + (\mathbf{e}_2^T - q_1 \mathbf{e}_1^T) \mathbf{n}(1) \eta(t) + du(t)$$

classical backstepping transformation

$$\bar{\boldsymbol{w}}(z,t) = \tilde{\boldsymbol{w}}(z,t) + \int_0^z \boldsymbol{K}(z,\zeta) \tilde{\boldsymbol{w}}(\zeta,t) \, \mathrm{d}\zeta = \mathcal{T}_c[\tilde{\boldsymbol{w}}(t)](z)$$

- ► Volterra integral transform with kernel $K(z, \zeta) \in \mathbb{R}^{2 \times 2}$ to be determined
- see [Krstic and Smyshlyaev, 2008] for the generalization of ODE backstepping to PDES

 Motivation
 Modeling
 Feedforward Design
 Output Feedback Design
 Results and Conclusion

 00
 00000000
 0000
 000000000
 00000

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

2nd Step: Backstepping Transformation 2/2

transformed system

$$\dot{\eta}(t) = (a - bk_{\eta})\eta(t) + b\bar{w}_{2}(0, t)$$

$$\bar{w}_{1}(0, t) = q_{0}\bar{w}_{2}(0, t)$$

$$\partial_{t}\bar{w}(z, t) = \Lambda \partial_{z}\bar{w}(z, t) + a_{0}(z)\bar{w}_{2}(0, t)$$

$$\bar{w}_{2}(1, t) = q_{1}\bar{w}_{1}(1, t) + \dots n(1)\eta(t) + \int_{0}^{1} \dots \bar{w}(z, t) \,dz + du(t)$$

with $\boldsymbol{a}_0(z) = [a_1(z), 0]^T$ defined by solution $\boldsymbol{K}(z, \zeta)$

kernel equations with integral boundary condition

$$\begin{split} \mathbf{\Lambda}\partial_{z}\mathbf{K}(z,\zeta) &+ \partial_{\zeta}\mathbf{K}(z,\zeta)\mathbf{\Lambda} = \mathbf{K}(z,\zeta)\mathbf{A}(\zeta), \qquad 0 < \zeta < z < 1\\ \mathbf{K}(z,0)\mathbf{\Lambda}(\mathbf{e}_{2} + q_{0}\mathbf{e}_{1}) &= b\mathbf{n}(z) + \int_{0}^{z}\mathbf{K}(z,\zeta)b\mathbf{n}(\zeta)\,\mathrm{d}\zeta - \mathbf{a}_{0}(z)\\ \mathbf{\Lambda}\mathbf{K}(z,z) - \mathbf{K}(z,z)\mathbf{\Lambda} &= \mathbf{A}(z) \end{split}$$

- solvability based on classical kernel equations [Hu et al., 2015] and those in [Deutscher et al., 2018, Lemma 6]
- **solution** $K(z, \zeta)$ is piecewise continuous and found numerically

Motivation
0Modeling
0Feedforward Design
0Output Feedback Design
0Results and Conclusion
03rd Step:Feedback

state feedback (such that
$$\bar{w}_2(1,t) = 0$$
)

$$u(t) = -\frac{1}{d} \Big(q_1 w_1(1,t) + \boldsymbol{e}_2^T \int_0^1 \boldsymbol{K}(1,z) \boldsymbol{w}(z,t) \, \mathrm{d}z + \boldsymbol{e}_2^T \mathcal{T}_c[\boldsymbol{n}](1) \eta(t) \Big)$$

stabilized system

$$\begin{split} \dot{\eta}(t) &= (a - bk_{\eta})\eta(t) + b\bar{w}_{2}(0, t) \\ \bar{w}_{1}(0, t) &= q_{0}\bar{w}_{2}(0, t) \\ \begin{bmatrix} \partial_{t}\bar{w}_{1}(z, t) \\ \partial_{t}\bar{w}_{2}(z, t) \end{bmatrix} = \begin{bmatrix} -\frac{1}{\tau_{0}} & 0 \\ 0 & \frac{1}{\tau_{0}} \end{bmatrix} \begin{bmatrix} \partial_{z}\bar{w}_{1}(z, t) \\ \partial_{z}\bar{w}_{2}(z, t) \end{bmatrix} + \begin{bmatrix} a_{1}(z) \\ 0 \end{bmatrix} \bar{w}_{2}(0, t) \\ \bar{w}_{2}(1, t) &= 0 \end{split}$$

$$w(z,t) = -\boldsymbol{n}(z)\eta(t) = -\boldsymbol{n}(z)e^{(a-bk_{\eta})t}\eta(\frac{1}{\tau_0}), \ t > \frac{2}{\tau_0}$$

 $ar{w}_1(z,t)$

$$\begin{array}{c|c} \hline \mathsf{ODE} \\ \eta(t) \end{array} \leftrightarrow \begin{array}{c} \mathsf{PDE} \\ \boldsymbol{w}(z,t) \end{array} \rightarrow y$$

goal: design an observer that provides estimates for the states w(z,t) and $\eta(t)$ based on the collocated measurement of the pressure $p_{in}(t)$ downstream of the value:

$$p_{\rm in}(t) = \frac{R_{\rm s}T_0}{a_{\rm iso}} \left(\frac{1}{A} u(t) - 2 e^{-\alpha \tau_0} w_1(1,t) \right) \quad \to \quad \bar{y}_{\rm valve}(t) = w_1(1,t)$$

backstepping approach

- dual to controller design
- new and simplified approach based on strict feedforward structure

$$\dot{\eta} = f_1(\eta, oldsymbol{w})$$

 $\dot{oldsymbol{w}} = f_2(\eta, oldsymbol{w})$
 $y = oldsymbol{w}$

(for pneumatic system: same results as in [Kern et al., 2018])

Motivation	Modeling	Feedforward Design	Output Feedback Design	Results and Conclusion
00	00000000	0000	000000000000	00000
\frown	A .			
Observer	Ansatz			

ansatz for the observer

$$\begin{split} \hat{\eta}(t) &= a\hat{\eta}(t) + b\hat{w}_{2}(0,t) + \ell_{\eta}(\bar{y}_{\mathsf{valve}}(t) - \hat{w}_{1}(1,t)) \\ \hat{w}_{1}(0,t) &= q_{0}\hat{w}_{2}(0,t) + c\hat{\eta}(t) + \ell_{1}(\bar{y}_{\mathsf{valve}}(t) - \hat{w}_{1}(1,t)) \\ \partial_{t}\hat{w}(z,t) &= \mathbf{\Lambda}\partial_{z}\hat{w}(z,t) + \mathbf{A}(z)\hat{w}(z,t) + \ell(z)(\bar{y}_{\mathsf{valve}}(t) - \hat{w}_{1}(1,t)) \\ \hat{w}_{2}(1,t) &= q_{1}\hat{w}_{1}(1,t) + du(t) + \ell_{2}(\bar{y}_{\mathsf{valve}}(t) - \hat{w}_{1}(1,t)) \end{split}$$

 \blacktriangleright copy of linear model with injection of error $\bar{y}_{valve}(t) - \hat{w}_1(1,t)$ lack measurement could be used at boundary: $q_1\hat{w}_1(1,t) \rightarrow q_1\bar{y}_{valve}(t)$ \blacktriangleright observer gains $\ell(z)$, ℓ_1 , ℓ_2 and ℓ_η to be determined

error dynamics (with $\boldsymbol{e}_w(z,t) = \boldsymbol{w}(z,t) - \hat{\boldsymbol{w}}(z,t)$, $e_\eta(t) = \eta(t) - \hat{\eta}(t)$)

$$\dot{e}_{\eta}(t) = ae_{\eta}(t) + be_{w,2}(0,t) - \ell_{\eta}e_{w,1}(1,t)$$

$$e_{w,1}(0,t) = q_{0}e_{w,2}(0,t) + ce_{\eta}(t) - \ell_{1}e_{w,1}(1,t)$$

$$\partial_{t}e_{w}(z,t) = \mathbf{\Lambda}\partial_{z}e_{w}(z,t) + \mathbf{A}(z)e_{w}(z,t) - \ell(z)e_{w,1}(1,t)$$

$$e_{w,2}(1,t) = (q_{1} - \ell_{2})e_{w,1}(1,t)$$

00

Modeling 00000000 Feedforward Design 0000

Output Feedback Design

Results and Conclusion 00000

1st Step: Stabilization of ODE 1/2

goal: stabilization of ODE subsystem

$$\dot{e}_{\eta}(t) = ae_{\eta}(t) + be_{w,2}(0,t) - \ell_{\eta}e_{w,1}(1,t)$$
$$e_{w,1}(0,t) = ce_{\eta}(t) + q_0e_{w,2}(0,t) - \ell_1e_{w,1}(1,t)$$

 \blacktriangleright requires (a, c) to be reconstructable

state transformation

$$\tilde{e}_{\eta}(t) = e_{\eta}(t) + \int_{0}^{1} \boldsymbol{m}^{T}(z) \boldsymbol{e}_{w}(z,t) \,\mathrm{d}z$$

dual to first transformation in feedback design:

$$\tilde{\boldsymbol{w}}(z,t) = \boldsymbol{w}(z,t) + \boldsymbol{n}(z)\eta(t)$$

• choose $m^T(z)$ such that ODE is stabilized and destabilizing terms are moved to boundary at z = 1, where they can be compensated by the observer gains

Modeling

Feedforward Design

Output Feedback Design

Results and Conclusion

1st Step: Stabilization of ODE 2/2

transformed error dynamics

$$\begin{split} \dot{\tilde{e}}_{\eta}(t) &= (a - m_{\eta}c)\tilde{e}_{\eta}(t) - \tilde{\ell}_{\eta}e_{w,1}(1,t) \\ e_{w,1}(0,t) &= q_{0}e_{w,2}(0,t) + c\tilde{e}_{\eta}(t) - \int_{0}^{1}cm^{T}(z)e_{w}(z,t)\,\mathrm{d}z - \ell_{1}e_{w,1}(1,t) \\ \partial_{t}e_{w}(z,t) &= \Lambda\partial_{z}e_{w}(z,t) + A(z)e_{w}(z,t) - \ell(z)e_{w,1}(1,t) \\ e_{w,2}(1,t) &= (q_{1} - \ell_{2})e_{w,1}(1,t) \end{split}$$

with auxiliary observer gain $\tilde{\ell}_{\eta}$ (for simplification)

initial value problem

$$\frac{\mathrm{d}}{\mathrm{d}z}\boldsymbol{m}^{T}(z) = \boldsymbol{m}^{T}(z) \big(\boldsymbol{A}(z) - (a - m_{\eta}c)\boldsymbol{I}\big)\boldsymbol{\Lambda}^{-1}$$
$$\boldsymbol{m}^{T}(0) = \begin{bmatrix} m_{\eta} & b - m_{\eta}q_{0} \end{bmatrix} \boldsymbol{\Lambda}^{-1}$$

analogous to IVP for feedback design
 ⇒ explicit solution is exponential function

transformation is fixed, depending on design parameter m_{η} such that $a - m_{\eta}c < 0$

goal: cascading of the two hyperbolic PDEs

$$\begin{aligned} e_{w,1}(0,t) &= q_0 e_{w,2}(0,t) + c \tilde{e}_{\eta}(t) - \ell_1 e_{w,1}(1,t) - \int_0^1 c \boldsymbol{m}^T(z) \boldsymbol{e}_w(z,t) \, \mathrm{d}z \\ \partial_t \boldsymbol{e}_w(z,t) &= \mathbf{\Lambda} \partial_z \boldsymbol{e}_w(z,t) + \mathbf{A}(z) \boldsymbol{e}_w(z,t) - \boldsymbol{\ell}(z) e_{w,1}(1,t) \\ e_{w,2}(1,t) &= (q_1 - \ell_2) e_{w,1}(1,t) \end{aligned}$$

classical backstepping transformation

$$\boldsymbol{e}_w(z,t) = \tilde{\boldsymbol{e}}_w(z,t) - \int_z^1 \boldsymbol{P}_I(z,\zeta) \tilde{\boldsymbol{e}}_w(\zeta,t) \,\mathrm{d}\zeta = \mathcal{T}_{o,1}^{-1}[\tilde{\boldsymbol{e}}_w(t)](z)$$

- ► Volterra integral transform with kernel $P_I(z, \zeta) \in \mathbb{R}^{2 \times 2}$ to be determined
- inverse transformation with integral over [z, 1] due to measurement at z = 1

transformed system

$$\begin{split} \dot{\tilde{e}}_{\eta}(t) &= (a - m_{\eta}c)\tilde{e}_{\eta}(t) - \tilde{\ell}_{\eta}\tilde{e}_{w,1}(1,t) \\ \tilde{e}_{w,1}(0,t) &= q_{0}\tilde{e}_{w,2}(0,t) + c\tilde{e}_{\eta}(t) + \int_{0}^{1}\boldsymbol{g}_{0}^{T}(z)\tilde{e}_{w}(z,t) \,\mathrm{d}z - \ell_{1}\tilde{e}_{w,1}(1,t) \\ \partial_{t}\tilde{\boldsymbol{e}}_{w}(z,t) &= \boldsymbol{\Lambda}\partial_{z}\tilde{\boldsymbol{e}}_{w}(z,t) - \tilde{\boldsymbol{\ell}}(z)\tilde{e}_{w,1}(1,t) \\ \tilde{e}_{w,2}(1,t) &= (q_{1} - \ell_{2})\tilde{e}_{w,1}(1,t) \end{split}$$

with $\boldsymbol{g}_0^T(z) = \begin{bmatrix} 0 & g_2(z) \end{bmatrix}$ defined by $\boldsymbol{P}_I(z,\zeta)$ and auxiliary gain $\tilde{\boldsymbol{\ell}}(z)$

kernel equations with integral boundary condition

$$\begin{split} \mathbf{\Lambda}\partial_{z} \mathbf{P}_{I}(z,\zeta) + \partial_{\zeta} \mathbf{P}_{I}(z,\zeta) \mathbf{\Lambda} &= -\mathbf{A}(z) \mathbf{P}_{I}(z,\zeta), \qquad 0 < z < \zeta < 1\\ (\mathbf{e}_{1}^{T} - q_{0}\mathbf{e}_{2}^{T}) \mathbf{P}_{I}(0,\zeta) &= \mathbf{g}_{0}^{T}(\zeta) + c\mathbf{m}^{T}(\zeta) - \int_{0}^{\zeta} c\mathbf{m}^{T}(\sigma) \mathbf{P}_{I}(\sigma,\zeta) \,\mathrm{d}\sigma\\ \mathbf{\Lambda} \mathbf{P}_{I}(z,z) - \mathbf{P}_{I}(z,z) \mathbf{\Lambda} &= -\mathbf{A}(z) \end{split}$$

3rd Step: Observer Gains

00000000

Modeling

observer gains such that no $\tilde{e}_{w,1}(1,t)$ in error dynamics:

Feedforward Design

0000

$$\ell(z) = \boldsymbol{P}_{I}(z, 1)\boldsymbol{\Lambda}\boldsymbol{e}_{1}, \qquad \ell_{1} = 0, \qquad \ell_{2} = q_{1}$$
$$\ell_{\eta} = \left(\boldsymbol{m}^{T}(1) - \int_{0}^{1} \boldsymbol{m}^{T}(z)\boldsymbol{P}_{I}(z, 1) \,\mathrm{d}z\right)\boldsymbol{\Lambda}\boldsymbol{e}_{1}$$

Output Feedback Design

00000000000000

stabilized system

$$\begin{split} \dot{\tilde{e}}_{\eta}(t) &= (a - m_{\eta}c)\tilde{e}_{\eta}(t) \\ \tilde{e}_{w,1}(0,t) &= q_{0}\tilde{e}_{w,2}(0,t) + c\tilde{e}_{\eta}(t) + \int_{0}^{1} \begin{bmatrix} 0 & g_{2}(z) \end{bmatrix} \begin{bmatrix} \tilde{e}_{w,1}(z,t) \\ \tilde{e}_{w,2}(z,t) \end{bmatrix} \, \mathrm{d}z \\ \begin{bmatrix} \partial_{t}\tilde{e}_{w,1}(z,t) \\ \partial_{t}\tilde{e}_{w,2}(z,t) \end{bmatrix} &= \begin{bmatrix} -\frac{1}{\tau_{0}} & 0 \\ 0 & \frac{1}{\tau_{0}} \end{bmatrix} \begin{bmatrix} \partial_{z}\tilde{e}_{w,1}(z,t) \\ \partial_{z}\tilde{e}_{w,2}(z,t) \end{bmatrix} \qquad \underbrace{\tilde{e}_{\eta}(t)}_{\tilde{e}_{w,2}(z,t)} \\ \tilde{e}_{w,2}(1,t) &= 0 \end{split}$$

 ▶ decoupling into separate subsystems by additional transformation
 ▶ original state decays exponentially for t > 2/τ₀ (similar to control error)

N. Gehring, R. Kern

Motivation

00

Results and Conclusion

00000

Motivation 00	Modeling 000000000	Feedforward Design	Output Feedback Design	Results and Conclusion ••••••
	tation.			

observer-based compensator

Implementation

state observer (Lax-Wendroff with 21 grid points)

$$\begin{split} \partial_t \hat{w}(z,t) &= \Lambda \partial_z \hat{w}(z,t) + A(z) \hat{w}(z,t) + \ell(z) (\bar{y}_{\text{valve}}(t) - \hat{w}_1(1,t)) \\ \hat{w}_1(0,t) &= q_0 \hat{w}_2(0,t) + c \hat{\eta}(t) \\ \hat{w}_2(1,t) &= q_1 \bar{y}_{\text{valve}}(t) \\ \dot{\hat{\eta}}(t) &= a \hat{\eta}(t) + b \hat{w}_2(0,t) + \ell_\eta (\bar{y}_{\text{valve}}(t) - \hat{w}_1(1,t)) \end{split}$$

► controller $U(t) = U^{\mathsf{r}}(t) + U^{\mathsf{c}}(t)$ as sum of feedforward part $U^{\mathsf{r}}(t)$ and feedback part $U^{\mathsf{c}}(t)$ based on control errors:

$$U^{\mathsf{c}}(t) = -\frac{q_1}{d} \left(\hat{w}_1(1,t) - w_1^{\mathsf{r}}(1,t) \right) - k_0 \left(\hat{\eta}(t) - \eta^{\mathsf{r}}(t) \right) - \int_0^1 \mathbf{k}^T(z) \left(\hat{w}(z,t) - w^{\mathsf{r}}(z,t) \right) \mathsf{d}z$$

offline calculations

- desired eigenvalues for ODEs chosen as $-20 \ 1/s \Rightarrow k_{\eta}$ and m_{η}
- ► solution of kernel equations and IVPs (with only 21 grid points) ⇒ controller gain $\mathbf{k}^T(z), k_0$ and observer gains $\boldsymbol{\ell}(z), \ell_{\eta}$

MotivationModelingFeedforward DesignOOOOOOOOOOOOOOO

Output Feedback Design

Results and Conclusion ○●○○○

Experimental Set-Up

Motivation
OModeling
OFeedforward Design
OOutput Feedback Design
OResults and Conclusion
OExperimental Results: State Estimation

Experimental Results: Output Feedback Tracking

Motivation	Modeling	Feedforward Design	Output Feedback Design	Results and Conclusion
00	00000000	0000	0000000000000	0000●
Summary	,			

main features

- complete design process from modeling to experimental validation
- systematic use of models of different complexity
- derivation of infinite-dimensional output feedback tracking controller

further remarks

- backstepping-based anti-collocated observer (based on measured tank pressure) outperforms presented collocated observer
- good performance of controllers designed based on early-lumping
- ▶ also promising results for a tube of L = 20 m

References I

Deutscher L Gehring N and Kern R (2018)
Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems. Automatica, 95:472–480.
Di Meglio, F., Bribiesca Argomedo, F., Hu, L., and Krstic, M. (2018). Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems. <i>Automatica</i> , 87:281–289.
Hu, L., Vazquez, R., Meglio, F. D., and Krstic, M. (2015). Boundary exponential stabilization of 1-D inhomogeneous quasilinear hyperbolic systems. <i>arXiv preprint arXiv:1512.03539</i> .
Kern, R. (2017). Physical modelling of a long pneumatic transmission line: models of successively decreasing complexity and their experimental validation. <i>Math. Comput. Model Dyn. Syst.</i> , 23:536–553.

Kern, R. and Gehring, N. (2017).

Tracking control for a long pneumatic transmission line.

In Proc. 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pages 180–185.

References II

Kern, R., Gehring, N., Deutscher, J., and Meißner, M. (2018).

Design and experimental validation of an output feedback controller for a pneumatic system with distributed parameters.

In Proc. 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Korea, October 17-20, 2018, pages 1391–1396.

Knüppel, T. (2015).

Beiträge zum flachheitsbasierten Steuerungsentwurf für quasilineare hyperbolische Systeme. PhD thesis, TU Dresden.

Knüppel, T. and Woittennek, F. (2015).

Control design for quasi-linear hyperbolic systems with an application to the heavy rope. *IEEE Trans. Autom. Control*, 60:5–18.

Krstic, M. and Smyshlyaev, A. (2008). Boundary Control of PDEs.

SIAM.

\overline{D}	inner tube diameter	$5.7 \cdot 10^{-3} \text{ m}$
A	cross-section area of the tube	$5.03 \cdot 10^{-5} \mathrm{m}^2$
L	length of the tube	$5 \mathrm{m}$
$ ho_0$	ambient air density	$1.21 \mathrm{kg/m^3}$
p_0	ambient air pressure	1.01 bar
T_0	ambient air temperature	$293.15 { m K}$
$R_{\sf s}$	specific gas constant of air	$287.05~\mathrm{J/kg\cdot K}$
η_0	dynamic viscosity	$1.82 \cdot 10^{-5} \text{ Pa} \cdot \text{s}$
${\mathcal E}$	height of roughness elements	$1.5 \cdot 10^{-6} {\rm m}$
γ	ratio of specific heats	1.4
$V_{\sf vol}$	tank volume	$6.46 \cdot 10^{-4} \mathrm{m}^3$
R_{vol}	thermal resistance	$4 \cdot 10^{-3} \text{ K/w}$

IX. Dietrich Fränken: Passive Radar for Air Surveillance

Dr. Dietrich Fränken, Dr. Oliver Zeeb HENSOLDT Sensors GmbH

Detect and Protect

Outline

- 1. HENSOLDT's passive radar system
- 2. Tracking and data fusion
- 3. Results with real-world data

Detect and Protect

2

11 September 2019

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. @ Copyright Airbus DS Electronics and Border Security 2017. All rights reserve

TWINVIS: HENSOLDT's passive radar system

Multiband coverage \rightarrow simultaneous processing of transmitters:

- 16x FM transmitters (88 108 MHz)
- Up to 5 single-frequency networks
 - DAB (174 240 MHz)
 - DVB-T (474 786 MHz)

Processing:

- Real-time signal processing
- Real-time tracking and data fusion system

External output-interfaces:

- Professional user HMI
- Standardized data format (ASTERIX)

Different setups:

- Fully mobile vehicle
- Portable
- Stationary

Detect and Protect

3

11 September 2019

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserv

3-stage tracking and data fusion / software-architecture

1.) R³-Tracking:Bistatic plots (range, range-rate)→ R³-Tracks2.) Data Fusion:Range/range-rate-tracks→ 3D-Tracks3.) Feedback-Loop:Cartesian tracking with bistatic plots

Detect and Protect

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserved.

11 September 2019

Measurements after plot-extraction

Passive localization:

"Non-cooperative illuminators (transmitters)"

- Transmitter **not** a part of the system
- Transmitter dislocated from receiver / sensor (e.g. radio / TV stations)
- Measurements are TDOAs (time-differences of arrival) + (coarse) azimuth + Doppler
- From there obtain "bistatic range" $R = r_1 + r_2 L$ (delay path) + "bistatic range-rate"

Detect and Protect

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserved

Tracking in (bistatic) range/range-rate-space

• Non-maneuvering targets:

Non-linear movements in R³-space

• Maneuvering targets:

Partially **extremely sharp maneuvers** in R³-space

Detect and Protect

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserve

¹¹ September 2019

Tracking in (bistatic) range/range-rate-space

- Non-maneuvering targets:
 - Non-linear movements in R³-space
- Maneuvering targets:

Partially **extremely sharp maneuvers** in R³-space

- Measurements with uncertainties
 - (Bistatic) range error may be > 1 km for FM
- Clutter (false alarms)

Detect and Protect

- Correlation/association, tracking in R³-space
- Pre-validation and filtering of the data

Range-Rate

11 September 2019

nis document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. C Copyright Airbus DS Electronics and Border Security 2

3-stage tracking and data fusion / software-architecture

<u>1.) R³-Tracking:</u>	Bistatic plots (range, range-rate)	→ R ³ -Tracks
2.) Data Fusion:	Range/range-rate-tracks	\rightarrow 3D-Tracks
3.) Feedback-Loop:	Cartesian tracking with bistatic plots	

Detect and Protect

8

11 September 2019

Correlation of range/range-rate-tracks, fusion to obtain 3D-tracks

- R³-track defines ellipse (2D) resp. ellipsoid (3D)
- Two ellipses have up to four intersection points (two at most if common focal point)
- Intersect with further R³-tracks
- Association for intersection of at least 3 R³-tracks
- Result is a **3D-track**
- R³-track is updated ⇒ **update intersection results**
- Remember: all inputs with uncertainties
- → Introduce z-planes (altitude hypotheses) to initially intersect
- → Perform filter updates on hypotheses
- → Monitor component likelihood within this altitude mixture
- → Apply mixture reduction
- Remember: targets are possibly maneuvering
- Use IMM for tracking

- For all possible combinations of illuminators
- High number of possibilities to combine,

very high numerical complexity

Track-to-track-correlation, SD-assignment (MHT)

Detect and Protect

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserve

FM vs. single-frequency networks (SFN)

FM: transmission of unique signals

Detect and Protect

1

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserved

FM vs. single-frequency networks (SFN) Ghost targets

- FM: transmission of unique signals
- SFN: same signal from different transmitters

Detect and Protect

1

11 September 2019

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. @ Copyright Airbus DS Electronics and Border Security 2017. All rights rese

3-stage tracking and data fusion / software-architecture

1.) R³-Tracking:Bistatic plots (range, range-rate)→ R³-Tracks2.) Data Fusion:Range/range-rate-tracks→ 3D-Tracks3.) Feedback-Loop:Cartesian tracking with bistatic plots

Detect and Protect

12

11 September 2019

Generation of 3D-tracks from range/range-rate-tracks ...and vanishing of R³-tracks

 Correlation/association of bistatic plots to 3D-tracks
 Associated plots do not enter R3tracking
 R3-tracks die out

 Significant load-reduction in the fusion stage

Detect and Protect

13

11 September 2019

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. Copyright Airbus DS Electronics and Border Security 2017. All rights res

Some target situation pictures created with real-world data

 Fighter aircraft
 Small slow aircraft

 Image: Comparison of the strength of the strengen of the strength of the strengen of the

Helicopter with cluster of 3 sensors

HENSOLDT

Detect and Protect

11 September 2019

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. @ Copyright Airbus DS Electronics and Border Security 2017. All rights reserved.

Why all the hassle when there is ADS-B? Automatic Dependent Surveillance – Broadcast

ADS-B Passive Radar

Good match between passive radar and ADS-B

Detect and Protect

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserve

Why all the hassle when there is ADS-B? Automatic Dependent Surveillance – Broadcast

ADS-B Passive Radar

Fair match between passive radar and ADS-B altitude

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reser

Why all the hassle? Not every aircraft is sending ADS-B! Automatic Dependent Surveillance – Broadcast

ADS-B Passive Radar

Passive radar observes aircraft w/o ADS-B

Detect and Protect

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. @ Copyright Airbus DS Electronics and Border Security 2017. All rights reserv

Why all the hassle? Do you trust ADS-B? Automatic Dependent Surveillance – Broadcast (AKA Aircraft-Twitter)

ADS-B DLH1EL Passive Radar

ADS-B here constantly is off by about 2.5 km in x/y! \rightarrow Can use passive radar to validate ADS-B

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. © Copyright Airbus DS Electronics and Border Security 2017. All rights reserve

Thank you very much!

Passive radar:

- Single sensor detection range up to 250 km, highly agile targets
- High update rate (ca. 0.5 seconds) => good velocity accuracy
- Silent surveillance, no electromagnetic emission
- Support and/or backup of active systems, gap-filling

Detect and Protect

19

This document and its content is the property of Airbus DS Electronics and Border Security GmbH. It shall not be communicated to any third party without the owner's written consent. Covyright Airbus DS Electronics and Border Security 2017. All rights reserve

X. Alberto Ismael Castillo Lopez: Barrier Sliding Mode Control for a Hydraulic Actuated Crane

Barrier Sliding Mode Control for a Hydraulic Actuated Cranes

Ismael Castillo

Institute of Automation and Control

Outline

2 Modelling

- Mechanical Model
- Hydraulics
- Third-order Model

3 Control Design

- Singular Perturbations
- Trajectory Tracking and Dead Zone
- Sliding Mode Controllers
 - Barrier SMC Properties
- 4 On-Line Trajectory Generation
- 5 Results

6 Conclusions

Mobile Hydraulic Machines

- Industry Applications: Forestry, mining, agriculture
- Robust for long periods of time
- Best Ratio force/space for mobility and autonomy
- Reliability, safety in emergency hold/stop

(forwarder)

Mobile Hydraulic Machines

Automation Objectives

- Improve Efficiency
- Safety
- Driver stress alleviation
- Autonomous or Supervised execution of frequent motions

Control Task

- Feasible trajectories: safety actuator constrains
- Solve Redundant kinematics
- Robust Trajectory Tracking
- Low accuracy instrumentation

Complex System dynamics

- Highly non-linear dynamics
- Dead Zone
- Big number of Unknown parameters
- External perturbations

Mobile Hydraulics

- Lack of instrumentation
- Low accuracy

Mechanical Model

Euler-Lagrange + Friction + Perturbations

 $M(q)\ddot{q}+C(q,\dot{q})\dot{q}+G(q)+F(\dot{q})= au+\Phi(t), \hspace{1em} q\in \mathbb{R}^4$

- M Inertia
- C Coriolis
- G Gravity
- F Friction
- au Control forces
- $\Phi(t)$ External forces

Independent Joint Control Approach

Euler-Lagrange + Friction + Perturbations $M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) + F(\dot{q}) = \tau + \Phi(t), \quad q \in \mathbb{R}^4$

- M Inertia
- C Coriolis
- G Gravity
- F Friction
- au Control forces
- $\Phi(t)$ External forces

i-th Joint Dynamics $(x_{1i} = q_i, x_{2i} = \dot{q}_i)$

$$\dot{x}_{1i} = x_{2i}$$

 $\dot{x}_{2i} = N_i(x_{1i})(\tau_i + f_{li})$

Hydraulic Actuators

i – *th* Hydraulic Force

$$f_{hi} = p_{ai} A_{ai} - p_{bi} A_{bi},$$

$$\dot{p}_{ai} = \frac{\beta}{V_{ai}(x_{pi})} \left(-\dot{x}_{pi} A_{ai} + q_{ai} \right),$$

$$\dot{p}_{bi} = \frac{\beta}{V_{bi}(x_{pi})} \left(\dot{x}_{pi} A_{bi} - q_{bi} \right),$$

Figure: Piston Components

$$\begin{bmatrix} q_{ai} \\ q_{bi} \end{bmatrix} = \begin{cases} \begin{bmatrix} c_{sai}S_{ai}(x_{si})\sqrt{p_s - p_{ai}} \\ c_{bti}S_{bi}(x_{si})\sqrt{p_{bi} - p_t} \\ -c_{ati}S_{ai}(x_{si})\sqrt{p_{ai} - p_t} \\ -c_{sbi}S_{bi}(x_{si})\sqrt{p_s - p_{bi}} \end{bmatrix} \quad \text{if } x_{si} < 0. \end{cases}$$
 Dead Zone

Third-order Model

$$\begin{split} \varphi_{0i} &= \frac{A_{ai}^2}{V_{ai}(x_{pi})} + \frac{A_{bi}^2}{V_{bi}(x_{pi})}, \quad \varphi_{1i} &= \frac{A_{ai}}{V_{ai}(x_{pi})} \phi_{ai} + \frac{A_{ai}}{V_{ai}(x_{pi})} \phi_{bi}. \\ \phi_{ai} &= c_{sai} \sqrt{p_s - p_{ai}} \frac{\operatorname{sign}(x_{si}+1)}{2} - c_{ati} \sqrt{p_{ai} - p_t} \frac{\operatorname{sign}(x_{si}-1)}{2}, \\ \phi_{bi} &= c_{bti} \sqrt{p_{bi} - p_t} \frac{\operatorname{sign}(x_{si}+1)}{2} - c_{sbi} \sqrt{p_s - p_{bi}} \frac{\operatorname{sign}(x_{si}-1)}{2}. \end{split}$$

Third-order Model

Third-order Model of
$$i - th$$
 link
 $(x_{3i} = f_{hi})$
 $\dot{x}_{1i} = x_{2i}$
 $\dot{x}_{2i} = N_{1i}(x_1)(\lambda_i(x_{1i})x_{3i} + f_{li})$
 $\dot{x}_{3i} = \beta [-\lambda_i(x_{1i})x_{2i}\varphi_{0i} + \varphi_{1i}S_i(x_{si})].$

$$i - th$$

$$\begin{split} \varphi_{0i} &= \frac{A_{ai}^2}{V_{ai}(x_{pi})} + \frac{A_{bi}^2}{V_{bi}(x_{pi})}, \quad \varphi_{1i} &= \frac{A_{ai}}{V_{ai}(x_{pi})} \phi_{ai} + \frac{A_{ai}}{V_{ai}(x_{pi})} \phi_{bi}. \\ \phi_{ai} &= -C_{sai} \sqrt{p_s - p_{ai}} \frac{\operatorname{sign}(x_{si}+1)}{2} - C_{ati} \sqrt{p_{ai} - p_t} \frac{\operatorname{sign}(x_{si}-1)}{2}, \\ \phi_{bi} &= -C_{bti} \sqrt{p_{bi} - p_t} \frac{\operatorname{sign}(x_{si}+1)}{2} - C_{sbi} \sqrt{p_s - p_{bi}} \frac{\operatorname{sign}(x_{si}-1)}{2}. \end{split}$$

CONTROL DESIGN: Neglecting Fast Dynamics

A1 - Valve and Spool dynamics

- High-response servo valves
- Dead Zone and Proportional Spool displacement to input signal

 x_{si}

$$\psi_i(u_i) = S_i(x_{si})$$

A2 - Hydraulic Force Dynamics

- Very big bulk modulus ($\beta \approx 1.7 imes 10^9$ Pa)
- Small "time-constant" $\epsilon_{\tau} = \frac{1}{\beta}$
 - $\epsilon_{\tau} \dot{x}_{3i} = -\lambda_i(x_{1i}) x_{2i} \varphi_{0i} + \varphi_{1i} \psi_i(u_i); \quad \epsilon_{\tau} \approx 0$

Reduced Order Model

$$\dot{x}_{1i} = \frac{\varphi_{1i}}{\lambda_i(x_{1i})\,\varphi_{0i}}\,\psi_i(u_i).$$

Dead Zone Inverse

$$u_i = \psi^{-1}(\nu_i) = \begin{cases} \nu_i + b_{ri} & \text{if } \nu_i > \delta_i \\ 0 & \text{if } |\nu_i| \le \delta_i \\ \nu_i - b_{\ell i} & \text{if } \nu_i < -\delta_i. \end{cases}$$

Tracking error

- Desired trajectory x_{1di}
- Tracking error

$$e_i = x_{1i} - x_{1di}$$

Error Dynamics

$$\dot{e}_i = rac{arphi_{1i}}{\lambda_i(x_{1i})\,arphi_{0i}}\,
u_i - \dot{x}_{1di}.$$

Classical Sliding Mode Control

$$\operatorname{sign}(\sigma) = \begin{cases} 1 & \text{if } \sigma > 0\\ [-1, 1] & \text{if } \sigma = 0\\ -1 & \text{if } \sigma < 0 \end{cases}$$

Second-Order Sliding Mode Control

Properties

- "Non-linear PI" controller
- Exact compensation of Matched perturbations
- Finite-time convergence to zero
- Continuous signal of control

Drawbacks

Chattering Effect

High frequency oscilations of outputs due to discontinuous signal of control in presence of non-idealities.

Sliding Mode Controllers

Barrier First Order Sliding Mode Control (FOSMC)

First Order SMC
$$k_f > 0$$
 $\nu_i(e_i) = -K_{lb}(e_i) \operatorname{sign}(e_i) + k_f \dot{x}_{1di}$

Log Barrier Function

$$\alpha_{fi} > 0$$

 $K_{lb}(e_i) = \alpha_{fi} \ln \left(\frac{\epsilon}{\epsilon - |e_i|}\right)$

Barrier Function

 $\alpha_{si} > 0$

Barrier Super-Twisting Algorithm (STA)

Super-Twisting $k_{f} > 0$ $\nu_i(e_i) = -h_1 L_b(e_i) |e_i|^{\frac{1}{2}} \operatorname{sign}(e_i) + \eta_i + k_f \dot{x}_{1d_i}$ $\dot{\eta}_i = -h_2 L_b^2(e_i) \operatorname{sign}(e_i).$ $L_b(e_i) = \alpha_{si} \frac{|e_i|}{\epsilon - |e_i|}$ $h_1 = 1.5$ and $h_2 = 1.1$.
Barrier SMC Properties

Log Barrier Function $\alpha_{fi} > 0$

$$K_{lb}(e_i) = \alpha_{fi} \ln\left(\frac{\epsilon}{\epsilon - |e_i|}\right)$$

•
$$K_{lb}(0) = 0$$

•
$$\lim_{e_i \to |\epsilon|} K_{lb}(e_i) = \infty$$

• $L_b(0) = 0$

•
$$\lim_{e_i \to |\epsilon|} L_b(e_i) = \infty$$

On-Line Trajectory Generation; Weighting Velocity Limits

Example of functions w_{iMin} and w_{iMax} .

Actuator Constrains i = 1, ..., 4

Weighting Functions

$$ar{ar{q}}_{iMin} = w_{iMin}(\dot{q}_{iMin}, q_i), \ \dot{ar{q}}_{iMax} = w_{iMax}(\dot{q}_{iMax}, q_i).$$

•
$$w_{iMin}(\cdot, q_{iMin}) = 0$$

• $w_{iMax}(\cdot, q_{iMax}) = 0$

Set of weighted velocities

$$\Omega = \left\{ oldsymbol{q}_{2-4} \in \mathbb{R}^3 | oldsymbol{ar{q}}_{iMin} \leq q_i \leq oldsymbol{ar{q}}_{iMax}
ight\}.$$

Boundary $oldsymbol{q}^*_{2-4} \in \partial(\Omega)$.

On-Line Trajectory Generation: Map Cylindric Coordinates

Cylindric coordinates (r, ϕ, z) and velocity vector inputs for the grapple.

$$\dot{q}_{1d} = \frac{1}{r} \left(-\dot{x}_d \sin q_1 + \dot{y}_d \cos(q_1) \right),$$

$$m_d = \begin{bmatrix} \dot{r}_d \\ \dot{z}_d \end{bmatrix} = \begin{bmatrix} \dot{x}_d \cos \phi + \dot{y}_d \sin \phi \\ \dot{z}_d \end{bmatrix}$$

Reduced Jacobian
$$J_r \in \mathbb{R}^{2 \times 3}$$

$$\begin{bmatrix} \dot{r} \\ \dot{z} \end{bmatrix} = J_r \begin{bmatrix} \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \end{bmatrix}$$

On-Line Trajectory Generation:

Projected velocity limits \dot{q}_{2-4} to the plane (r, z)

Attainable velocities

$$\Phi = \left\{ oldsymbol{m} \in \mathbb{R}^2 | oldsymbol{m} = J_r \dot{oldsymbol{q}}_{2-4}, \dot{oldsymbol{q}}_{2-4} \in \Omega
ight\}. \ \partial(\Phi) : ext{Convex hull}$$

Linear combination

$$a\hat{m}_{d} = m_{j}^{*} + bm_{jk}^{*},$$

where $m_{jk}^{*} = m_{k}^{*} - m_{j}^{*}$

Desired velocites

$$\dot{q}_{d2-4} = q^*_{j2-4} + b\dot{q}^*_{jk2-5},$$

where $\dot{q}^*_{jk} = \dot{q}^*_k - \dot{q}^*_j$

Results Barrier FOSMC

Results Barrier FOSMC

Results Barrier STA

Results Barrier STA

Barrier Sliding Mode Control:

- Robust not oscillatory independent joint control
 - Error is ensured to belong to a vicinity of the origin
 - Weakening at the origin property alleviates oscillations of high frequency
- Ease of implementation in spite of high complexity and high uncertainty in parameters
- Invariant with respect to uncertainty and time-dependent variations in parameters
- Does not require system identification

Thank you!

i.castillo@tugraz.at

XI. Lars Watermann: Backstepping Induced Variable Gain Sliding Mode Control

Backstepping Induced Variable Gain Sliding Mode Control

Lars Watermann^a, Markus Reichhartinger^b, Johann Reger^a

lars.watermann@tu-ilmenau.de

^a Control Engineering Group, TU Ilmenau, Germany ^b Institute of Automation and Control, Graz University of Technology, Austria

11th September 2019

21. Styrian Workshop on Automatic Control, Retzhof, Austria

Outline

1 Preliminaries

- 2 Introduction
- 3 Main Concept
- 4 Robust Variable Gain Backstepping SMC
- 5 More General Design for the Double Integrator
- 6 Simulation

7 Conclusion and Further Work

Notation and Solution Concept

We use the notation $(a, b \in \mathbb{R})$

$$\lceil a \rfloor^b = \operatorname{sign}(a) |a|^b,$$

with almost everywhere

$$\frac{\mathrm{d}}{\mathrm{d}a}|a|^{b} = b\left[a\right]^{b-1}, \qquad \frac{\mathrm{d}}{\mathrm{d}a}\left[a\right]^{b} = b|a|^{b-1}$$

We consider the Filippov solution [Filippov, 1988] for the system

$$\dot{x} = f(x, t), \quad x(t_0) = x_0, \quad x \in \mathbb{R}^n, \ t \in [t_0, \infty),$$

with f probably discontinuous in x.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Motivational Questions

Is it possible to synthesize a sliding mode control law by the use of the backstepping design process?

If yes, what is the advantage?

Preliminary Work

Combinations of backstepping and sliding mode control:

- Sliding manifold design via backstepping (e.g. [Bartolini et al., 1996], [Ferrara and Giacomini, 1998])
 - backstepping until n-1-step
 - conventional sliding mode design afterwards
- Combined backstepping sliding mode design process (e.g. [Ríos-Bolívar et al., 1997], [Koshkouei and Zinober, 2000])
 - augmention of the Lyapunov function in terms of the sliding variable in the last step

New interpretation:

- Sliding mode control as a result of backstepping.
 - Based on extended non-smooth Lyapunov Theory for discontinuous systems

Conventional Backstepping [Krstić et al., 1995]

Consider the double integrator

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = u.$$

We assume $x_2 = \alpha(x_1)$ and use as control Lyapunov function (CLF) for the first subsystem

$$V_1(x_1) = \frac{1}{2} x_1^2$$

$$\frac{d}{dt} V_1(x_1) = x_1 \alpha(x_1) = W_1(x_1) < 0.$$

We claim

$$W_1(x_1) = -k_1 x_1^2, \quad k_1 > 0$$

 $\alpha(x_1) = -k_1 x_1.$

Fachgebiet Regelungstechnik Fechnische Universität Ilmenau

Conventional Backstepping [Krstić et al., 1995]

$$\dot{x}_1 = \alpha \left(x_1 \right) + \left(x_2 - \alpha(x_1) \right)$$
$$\dot{x}_2 = u$$

Augmented CLF:

$$V = V_1(x_1) + V_2(x_2 - \alpha(x_1))$$

= $\frac{1}{2}x_1^2 + \frac{1}{2}(x_2 - \alpha(x_1))^2$
 $\frac{d}{dt}V = \underbrace{x_1\alpha(x_1)}_{=W_1(x_1)} + \underbrace{x_1(x_2 - \alpha(x_1)) + (x_2 - \alpha(x_1))(u - \frac{d}{dt}\alpha(x_1))}_{=W_2(x_1, x_2)} = W$

Choose $W_2(x_1, x_2) = -k_2 (x_2 - \alpha(x_1))^2$ with $k_2 > 0$.

$$\Rightarrow u = -k_2 \left(x_2 - \alpha(x_1) \right) + \frac{\mathrm{d}}{\mathrm{d}t} \alpha(x_1) - x_1$$

Backstepping Induced SMC

Conventional backstepping:

$$V = \frac{1}{2}x_1^2 + \frac{1}{2}(x_2 - \alpha(x_1))^2$$
$$W = -k_1x_1^2 - k_2(x_2 - \alpha(x_1))^2$$
$$u = -k_2(x_2 - \alpha(x_1)) + \frac{d}{dt}\alpha(x_1) - x_1$$

Backstepping induced sliding mode control:

$$V = |x_1| + \frac{1}{2} (x_2 - \alpha(x_1))^2$$

$$\frac{d}{dt} V = [x_1]^0 \alpha(x_1) + [x_1]^0 (x_2 - \alpha(x_1)) + (x_2 - \alpha(x_1)) (u - \frac{d}{dt}\alpha(x_1))$$

$$W = -k_1 |x_1| - k_2 |x_2 - \alpha(x_1)|$$

$$u = -k_2 [x_2 - \alpha(x_1)]^0 + \frac{d}{dt}\alpha(x_1) - [x_1]^0$$

$$= -k_2 [x_2 + k_1 x_1]^0 - k_1 x_2 - [x_1]^0$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Conventional SMC Design

1 Definition of sliding manifold (*sliding phase*) \Rightarrow 1 LF $V_1(x)$

$$s = x_2 + k_1 x_1 \implies x_2 = -k_1 x_1, \qquad \dot{x}_1 = -k_1 x_1$$
$$V_1(x_1) = \frac{1}{2} x_1^2, \qquad \frac{d}{dt} V_1(x_1) = -k_1 x_1^2$$

2 Definition of discontinuous control law (*reaching phase*) \Rightarrow 1 LF $V_{\rm s}(s)$ (or other proof)

$$V_{\rm s}(s) = \frac{1}{2}s^2, \qquad \frac{\mathrm{d}}{\mathrm{d}t}V_{\rm s}(s) = s\left(u + k_1x_2\right)$$
$$u = u_{\rm sm} = -k_2\left[s\right]^0 - k_1x_2 = -k_2\left[x_2 + k_1x_1\right]^0 - k_1x_2$$

Backstepping induced control law \Rightarrow 1 LF for overall dynamics V(x)

$$u = u_{\rm bs} = -k_2 \left[x_2 + k_1 x_1 \right]^0 - k_1 x_2 - \left[x_1 \right]^0$$

 Fachgebiet Regelungstechnik

 Technische Universität Ilmenau

Main Idea and Motivation

Is it possible to synthesize a sliding mode control law by the use of the backstepping design process?

Yes!

What is the advantage?

- Approach yields 1 LF for the whole closed loop dynamics
 ⇒ Certainty-equivalence based adaptive controller design possible
- Change of perspective for Higher Order Sliding Modes (HOSM)
 - Classical approach:
 - Control law $u(x) \Rightarrow$ Search for LF V(x)
 - Backstepping (like) approach: LF $V(x) \Rightarrow$ Synthesize control law u(x)

Problem Statement

$$\Sigma_{\delta}: \begin{cases} \dot{x}_1 = x_2 + \delta_1(t)\varphi(x_1) & x_1(t), x_2(t) \in \mathbb{R} \\ \dot{x}_2 = u + \delta_2(t) & u(t) \in \mathbb{R} \end{cases}$$

with
$$|\delta_1(t)| \leq \overline{\delta}_1$$
, $|\delta_2(t)| \leq \overline{\delta}_2$, $\varphi \in C^1$, and $\varphi(0) = 0$.

• Let $\varphi(x_1)$ be known

Let $\delta_i(t)$ be unknown but uniformly bounded

Objective: Find a state feedback that asymptotically stabilizes the origin of Σ_{δ} in the presence of the unknown disturbances.

Stabilize the first subsystem

$$\dot{x}_1 = \alpha(x_1) + \delta_1(t)\varphi(x_1)$$

with auxiliary control

$$\alpha(x_1) = -k_{11}x_1 - k_{12} \left[x_1 \right]^0 |\varphi(x_1)| \qquad k_{11} > 0, \ k_{12} > \overline{\delta}_1$$

First (linear) term to achieve exponential stability

Second term to compensate disturbance

$$V_{1} = \frac{k_{1}^{*}}{b} |x_{1}|^{b}, \qquad k_{1}^{*}, b > 0$$

$$\frac{d}{dt} V_{1} = k_{1}^{*} [x_{1}]^{b-1} \left(-k_{11}x_{1} - k_{12} [x_{1}]^{0} |\varphi(x_{1})| + \delta_{1}(t)\varphi(x_{1}) \right)$$

$$= -k_{1}^{*}k_{11} |x_{1}|^{b} - k_{1}^{*} |x_{1}|^{b-1} \left(k_{12} |\varphi(x_{1})| - \delta_{1}(t) [x_{1}]^{0} \varphi(x_{1}) \right)$$

$$\leq -k_{1}^{*}k_{11} |x_{1}|^{b} - k_{1}^{*} |x_{1}|^{b-1} \left(k_{12} - \overline{\delta}_{1} \right) |\varphi(x_{1})| = W_{1}(x_{1}) < 0$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Use the control Lyapunov function

$$V = \frac{k_1^*}{b} |x_1|^b + \frac{1}{c} |x_2 - \alpha(x_1)|^c, \qquad c > 0$$

with the derivative

$$\frac{\mathrm{d}}{\mathrm{d}t}V = k_1^* \left[x_1 \right]^{b-1} \left(x_2 + \delta_1(t)\varphi(x_1) + \alpha(x_1) - \alpha(x_1) \right) \\ + \left[x_2 - \alpha(x_1) \right]^{c-1} \left(\dot{x}_2 + \frac{\partial\alpha(x_1)}{\partial x_1} \dot{x}_1 \right) \\ \leq W_1(x_1) + k_1^* \left[x_1 \right]^{b-1} \left[x_2 - \alpha(x_1) \right]^1 \\ + \left[x_2 - \alpha(x_1) \right]^{c-1} \left(u + \delta_2(t) - \frac{\partial\alpha(x_1)}{\partial x_1} \left(x_2 + \delta_1(t)\varphi(x_1) \right) \right)$$

Split $u = u_1 + u_2$ for better readability:

- u_1 for the known terms
- u_2 for the unknown terms

Fachgebiet Regelungstechnik Technische Universität Ilmenau

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} V &\leq W_1(x_1) \\ &+ \left\lceil x_2 - \alpha(x_1) \right\rfloor^{c-1} \underbrace{\left(u_1 - \frac{\partial \alpha(x_1)}{\partial x_1} x_2 + k_1^* \left\lceil x_1 \right\rfloor^{b-1} \left| x_2 - \alpha(x_1) \right|^{2-c} \right)}_{=\tilde{W}_{21}=0} \\ &+ \underbrace{\left\lceil x_2 - \alpha(x_1) \right\rfloor^{c-1} \left(u_2 + \delta_2(t) - \delta_1(t) \frac{\partial \alpha(x_1)}{\partial x_1} \varphi(x_1) \right)}_{=\tilde{W}_{22}(x,t)} \\ \tilde{W}_{22} &\leq |x_2 - \alpha(x_1)|^{c-1} \left(\left\lceil x_2 - \alpha(x_1) \right\rfloor^0 u_2 + \overline{\delta}_2 + \overline{\delta}_1 \left| \frac{\partial \alpha(x_1)}{\partial x_1} \varphi(x_1) \right| \right) = W_2 \\ \mathrm{Choose} \ u_1 \ \mathrm{such} \ \mathrm{that} \ \tilde{W}_{21} = 0 \ \mathrm{and} \\ u_2 &= - \left(k_2 + \overline{\delta}_1 \left| \frac{\partial \alpha(x_1)}{\partial x_1} \varphi(x_1) \right| \right) \left\lceil x_2 - \alpha(x_1) \right\rfloor^0, \qquad k_2 > \overline{\delta}_2. \end{split}$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Robust Variable Gain SMC (Summary)

Consider the following class of uncertain systems

$$\begin{split} \Sigma_{\delta}: & \begin{cases} \dot{x}_1 = x_2 + \delta_1(t)\varphi(x_1) & x_1(t), x_2(t) \in \mathbb{R} \\ \dot{x}_2 = u + \delta_2(t) & u(t) \in \mathbb{R} \end{cases} \\ \text{with} & |\delta_1(t)| \leq \overline{\delta}_1, \quad |\delta_2(t)| \leq \overline{\delta}_2, \quad \varphi \in C^1, \quad \text{and} \quad \varphi(0) = 0. \end{split}$$
 With the backstepping procedure using $V = \frac{k_1^*}{b} |x_1|^b + \frac{1}{c} |x_2 - \alpha(x_1)|^c$ a robustly stabilizing variable gain sliding mode control law is

$$u = -\left(k_2 + \overline{\delta}_1 \left| \frac{\partial \alpha(x_1)}{\partial x_1} \varphi(x_1) \right| \right) \left[x_2 - \alpha(x_1) \right]^0 + \frac{\partial \alpha(x_1)}{\partial x_1} x_2 \\ - k_1^* \left[x_1 \right]^{b-1} |x_2 - \alpha(x_1)|^{2-c},$$

with and

$$\alpha(x_1) = -k_{11}x_1 - k_{12} \left[x_1 \right]^0 \left| \varphi(x_1) \right|$$
$$\frac{\partial \alpha(x_1)}{\partial x_1} = -k_{11} - k_{12} \left[x_1 \right]^0 \left[\varphi(x_1) \right]^0 \frac{\partial \varphi(x_1)}{\partial x_1}.$$

ro

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Comparison to Conventional SMC Design

Definition of sliding manifold (*sliding phase*)

 $s = x_2 - \alpha(x_1), \quad V_1(x_1) = \frac{1}{2}x_1^2$ (similar to backstepping design)

2 Definition of discontinuous control law (*reaching phase*)

$$V_{\rm s}(s) = \frac{1}{2}s^2, \qquad \frac{\mathrm{d}}{\mathrm{d}t}V_{\rm s}(s) = \cdots$$

$$\Rightarrow \quad u = u_{\rm sm} = -\left(k_2 + \overline{\delta}_1 \left|\frac{\partial\alpha(x_1)}{\partial x_1}\varphi(x_1)\right|\right) \left[x_2 - \alpha(x_1)\right]^0 + \frac{\partial\alpha(x_1)}{\partial x_1}x_2$$

But $V = V_1 + V_s$ is not a LF for the overall closed loop dynamics! \Rightarrow Certainty-equivalence based adaptive control design **not possible**.

Backstepping induced control law

$$u = u_{\rm bs} = u_{\rm sm} - k_1^* \left[x_1 \right]^{b-1} \left| x_2 - \alpha(x_1) \right|^{2-c}$$

Here $V = V_1 + V_2$ is a LF for the overall closed loop dynamics. \Rightarrow Certainty-equivalence based adaptive control design **possible**.

More General Design for the Double Integrator

For the first subsystem we choose

$$V_{1}(x_{1}) = \frac{k_{1}^{*}}{b} |x_{1}|^{b}, \qquad b > 0, \ k_{1}^{*} > 0,$$
$$W_{1}(x_{1}) = -k_{1}k_{1}^{*} |x_{1}|^{\beta}, \qquad \beta \in \mathbb{R}, \ k_{1} > 0.$$
$$\Rightarrow \alpha(x_{1}) = -k_{1} \lceil x_{1} \rfloor^{\beta - b + 1} \quad \text{and} \quad \frac{\partial \alpha(x_{1})}{\partial x_{1}} = -(\beta - b + 1) k_{1} |x_{1}|^{\beta - b}$$

For the extension of the CLF we choose ($z_2 = x_2 - \alpha(x_1)$)

$$V_{2}(z_{2}) = \frac{1}{c} |z_{2}|^{c}, \qquad c > 0$$

$$W_{2}(z_{2}) = -k_{2} |z_{2}|^{\gamma}, \quad \gamma \in \mathbb{R}, \ k_{2} > 0.$$

$$\Rightarrow u = -k_{2} [z_{2}]^{\gamma - c + 1} - k_{1}^{*} |z_{2}|^{2 - c} [x_{1}]^{b - 1}$$

$$- (\beta - b + 1) k_{1} |x_{1}|^{\beta - b} (z_{2} - k_{1} [x_{1}]^{\beta - b + 1})$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

More General Design for the Double Integrator

The general closed loop dynamics are

$$\dot{x}_1 = -k_1 \left[x_1 \right]^{\beta - b + 1} + z_2$$
$$\dot{z}_2 = -k_2 \left[z_2 \right]^{\gamma - c + 1} - k_1^* |z_2|^{2 - c} \left[x_1 \right]^{b - 1}$$

with a strict LF

$$V(x_1, z_2) = \frac{k_1^*}{b} |x_1|^b + \frac{1}{c} |z_2|^c$$

under the conditions

$$egin{aligned} η \geq b \geq 1, && 2 \geq c > 0, \ &\gamma \geq c-1, && k_1, k_2, k_1^* > 0. \end{aligned}$$

Discontinuous control law if $\gamma = c - 1$ or b = 1.

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Examples

Example 1: b = 2, c = 2, $\beta = 2$, $\gamma = 1$ (close to 1-sliding)

$$\dot{x}_1 = -k_1 x_1 + z_2$$
$$\dot{z}_2 = -k_2 \operatorname{sign}(z_2) - k_1^* x_1$$

Example 2: b = 1, c = 2, $\beta = 1$, $\gamma = 1$, $k_2 < k_1^*$ (close to twisting)

$$\dot{x}_1 = -k_1 x_1 + z_2$$

 $\dot{z}_2 = -k_2 \operatorname{sign}(z_2) - k_1^* \operatorname{sign}(x_1)$

Example 3: b = 1, c = 2, $\beta = 1$, $\gamma = 1$, $k_2 > k_1^*$ (1-sliding)

$$\dot{x}_1 = -k_1 x_1 + z_2$$
$$\dot{z}_2 = -k_2 \operatorname{sign}(z_2)$$

Simulation

Example 1: ($b = c = \beta = 2$, $\gamma = 1$) – States

Example 1: $(b = c = \beta = 2, \gamma = 1) - LF$

Lyapunov function (candidate):

$$V(t) = \frac{k_1^*}{2}x_1^2 + \frac{1}{2}z_2^2$$

$$\Sigma_{\rm sm}: \begin{cases} \dot{x}_1 = -k_1 x_1 + z_2 \\ \dot{z}_2 = -k_2 \text{sign}(z_2) \end{cases}$$
$$\Sigma_{\rm bs}: \begin{cases} \dot{x}_1 = -k_1 x_1 + z_2 \\ \dot{z}_2 = -k_2 \text{sign}(z_2) - k_1^* x_1 \end{cases}$$

Fachgebiet Regelungstechnik Technische Universität Ilmenau

Conclusion and Further Work

Is it possible to synthesize a sliding mode control law by the use of the backstepping design process?

■ Yes! ✓

What is the advantage?

- Approach yields 1 LF for the whole closed loop dynamics \$\Rightarrow\$ Certainty-equivalence based adaptive controller design possible
- Change of perspective for Higher Order Sliding Modes (HOSM)
 - Classical approach:
 - Control law $u(x) \Rightarrow$ Search for LF V(x)
 - ► Backstepping (like) approach: LF $V(x) \Rightarrow$ Synthesize control law u(x)

... more advantages and disadvantages?

- G. Bartolini, A. Ferrara, L. Giacomini, and E. Usai. A Combined Backstepping/Second Order Sliding Mode Approach to Control a Class of Nonlinear Systems. In *IEEE International Workshop on Variable Structure Systems*, pages 205–210, 1996.
- A. Ferrara and L. Giacomini. Control of a Class of Mechanical Systems With Uncertainties Via a Constructive Adaptive/Second Order VSC Approach. *Journal of Dynamic Systems, Measurement, and Control*, 122(1):33–39, 1998.
- Aleksej Fedorovič Filippov. *Differential equations with discontinuous righthand sides*, volume 18 of *Mathematics and its applications Soviet series*. Kluwer, Dordrecht, 1988.
- Ali Jafari Koshkouei and Alan S.I. Zinober. Adaptive Output Tracking Backstepping Sliding Mode Control of Nonlinear Systems. In *IFAC Robust Control Design*, pages 167–172, 2000.
- Miroslav Krstić, Ioannis Kanellakopoulos, and Petar V. Kokotović. *Nonlinear and adaptive control design*. Wiley, 1995.
- M. Ríos-Bolívar, A. S. I. Zinober, and H. Sira-Ramírez. Dynamical adaptive sliding mode output tracking control of a class of nonlinear systems. *International Journal of Robust and Nonlinear Control*, 7(4):387–405, 1997.

Thank you for your attention!

Fachgebiet Regelungstechnik Technische Universität Ilmenau

XII. Juan G. Rueda-Escobedo: Fixed-time Parameter Estimation Under Lack of Persistency of Excitation

Brandenburgische Technische Universität Cottbus - Senftenberg

Fixed-Time Parameter Estimation under Lack of Persistency of Excitation

Juan G. Rueda-Escobedo Chair of Control Systems and Network Control Technology Brandenburg University of Technology Cottbus - Senftenberg

In collaboration with Jaime A. Moreno Eléctrica y Computación, Instituto de Ingeniería, UNAM, México. September 11th, 2019

1 Preliminaries

3 Main Result

5 Conclusions

Regression Model: Nominal Case

$$y(t)=C(t)\theta,$$

where

- Unknown constant parameters: $\theta \in \mathbb{R}^n$.
- The regressor: $C : \mathbb{R}_{\geq 0} \to \mathbb{R}^{m \times n}$, piecewise continuous and uniformly bounded $\|C(t)\| \leq \overline{c}$.
- Nominal output: $y(t) \in \mathbb{R}^m$.

Remark

Eq. (1) represents a set of *m* time-varying linear equations. In the general case, however, n > m, and then, C(t) is not instantaneously left invertible.

(1)

Regression Model: Perturbed Case

$$y_{\delta}(t) = C(t) heta + \delta(t),$$

where

- Measured output: $y_{\delta}(t) \in \mathbb{R}^m$.
- Noise/disturbance: $\delta(t) \in \mathbb{R}^m$, integrable signal and uniformly bounded $\|\delta(t)\| \leq \overline{\delta}$.

(2)

Parameter Identification

Identifiability Gramian

$$\mathcal{W}(t_1, t_0) := \int_{t_0}^{t_1} C^{\top}(\sigma) C(\sigma) \mathrm{d}\sigma$$

Direct Inversion Approach

$$egin{aligned} &\widehat{ heta} = \mathcal{W}^{-1}(t_1,t_0) \int_{t_0}^{t_1} \mathcal{C}^ op(\sigma) y_\delta(\sigma) \mathrm{d}\sigma \ &= heta + \mathcal{W}^{-1}(t_1,t_0) \int_{t_0}^{t_1} \mathcal{C}^ op(\sigma) \delta(\sigma) \mathrm{d}\sigma. \end{aligned}$$

- There is a unique solution on $[t_0, t_1]$ iff $\mathcal{W}(t_1, t_0)$ is invertible.
- The properties of $\mathcal{W}(t_1, t_0)$ depends on C(t) and $[t_0, t_1]$.
- Depending on the condition number of $\mathcal{W}(t_1, t_0)$, the noise might be amplified.
- To implement the method, one has to check the invertibility of $\mathcal{W}(t_1, t_0)$.

Excitation Level I

Definition: Regressor Excitation Level [loannou and Sun, 1995]

Consider the time interval $[t_0, t_1]$. Let $\alpha > 0$ and assume that

$$\int_{t_0}^{t_1} C^{\top}(\sigma) C(\sigma) \mathrm{d}\sigma \geq \alpha \mathbf{I}.$$

Then, it is said that C(t) has a excitation level α on the interval $[t_0, t_1]$.

Persistence of Excitation [loannou and Sun, 1995]

If there exist positive constants $\beta \ge \alpha > 0$ and T > 0, all independent of t, such that

$$\beta \mathbf{I} \geq \int_{t-T}^{t} C^{\top}(\sigma) C(\sigma) \mathrm{d}\sigma \geq \alpha \mathbf{I} \ \forall t \geq t_0 + T,$$

it is said that C(t) is of persistence of excitation.

Characterization of the Excitation Level

Let $k \in \mathbb{Z}^*$ and consider three sequences of non-negative numbers $\{t_k\}_0^\infty$, $\{\beta_k\}_0^\infty$ and $\{\alpha_k\}_0^\infty$ with $t_{k+1} > t_k$, $\beta_k \ge \alpha_k \ge 0$, $\lim_{k\to\infty} t_k = \infty$, and such that

$$\beta_k \mathbf{I}_n \geq \int_{t_{k-1}}^{t_k} C^{\top}(\sigma) C(\sigma) \mathrm{d}\sigma \geq \alpha_k \mathbf{I}.$$

The three sequences characterize the excitation of the regressor. A measure of the regressor energy can be given as

$$\mathbf{E}(C(t)) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{\alpha_k}{1 + \beta_k}$$

Linear Gradient Algorithm

Cost Function

$$egin{aligned} &\mathcal{J}(\hat{ heta}) = rac{1}{2} \left(\mathcal{C}^{ op}(t) \hat{ heta}(t) - y_{\delta}(t)
ight)^{ op} \Gamma \left(\mathcal{C}^{ op}(t) \hat{ heta}(t) - y_{\delta}(t)
ight), \ &rac{\partial}{\partial \hat{ heta}} \mathcal{J}(\hat{ heta}) = \Gamma \left(\mathcal{C}^{ op}(t) \hat{ heta}(t) - y_{\delta}(t)
ight). \end{aligned}$$

Linear Gradient Algorithm

$$\dot{\hat{\theta}}(t) = -\frac{\partial \mathcal{J}}{\partial \hat{\theta}} = -\Gamma\left(C^{\top}(t)\hat{\theta}(t) - y_{\delta}(t)\right), \ \Gamma > 0,$$

$$\dot{\tilde{\theta}}(t) = -\Gamma C^{\top}(t)C(t)\tilde{\theta}(t) + \Gamma \delta(t).$$
(4)

Classical Results [Narendra and Annaswamy, 1989]

- Consider (4) with $\delta(t) = 0$. If C(t) is of persistence of excitation, $\tilde{\theta} = 0$ is a globally uniformly asymptotically stable equilibrium solution.
- If C(t) is of persistence of excitation, (4) is input-to-state stable (ISS) with respect to δ(t).

Linear Gradient Algorithm

Cost Function

$$egin{aligned} &\mathcal{J}(\hat{ heta}) = rac{1}{2} \left(\mathcal{C}^ op(t) \hat{ heta}(t) - y_\delta(t)
ight)^ op \Gamma \left(\mathcal{C}^ op(t) \hat{ heta}(t) - y_\delta(t)
ight), \ &rac{\partial}{\partial \hat{ heta}} \mathcal{J}(\hat{ heta}) = \Gamma \left(\mathcal{C}^ op(t) \hat{ heta}(t) - y_\delta(t)
ight). \end{aligned}$$

Linear Gradient Algorithm

$$\dot{\hat{\theta}}(t) = -\frac{\partial \mathcal{J}}{\partial \hat{\theta}} = -\Gamma\left(C^{\top}(t)\hat{\theta}(t) - y_{\delta}(t)\right), \ \Gamma > 0,$$

$$\dot{\tilde{\theta}}(t) = -\Gamma C^{\top}(t)C(t)\tilde{\theta}(t) + \Gamma \delta(t).$$

$$(4)$$

New Results

- [Barabanov and Ortega, 2017] Consider (4) with $\delta(t) = 0$. Assume that $\mathbf{E}(C(t)) = \infty$, then, the equilibrium solution $\tilde{\theta}(t) = 0$ is globally asymptotically stable (no uniformly in t_0).
- [Efimov et al., 2018] Assume that $\mathbf{E}(C(t)) = \infty$, (4) is non-uniformly integral input-to-state stable (iISS) with respect to $\delta(t)$.

Gramian-Based Non-Linear Algorithm I

Cost Function

$$egin{aligned} \mathcal{J}(\hat{ heta}) &= \sum_{j=1}^2 rac{\gamma_j}{p_j+1} ig\| N(t) \hat{ heta}(t) - \psi_\delta(t) ig\|_{p_j+1}^{p_j+1}, \, \gamma_j > 0, \, p_1 \in [0,1), \, p_2 > 1, \ \dot{N}(t) &= -N(t) Q \, N(t) + C^{ op}(t) C(t), \, N(t_0) = 0, \, Q > 0, \ \dot{\psi}_\delta(t) &= -N(t) Q \, \psi_\delta(t) + C^{ op}(t) y_\delta(t), \, \psi_\delta(t_0) = 0, \ \dot{\psi}_\delta(t) &= -N(t) Q \, \psi_\delta(t) + C^{ op}(t) y_\delta(t), \, \psi_\delta(t_0) = 0, \ \dot{\theta}_\delta(t) &= \sum_{j=1}^2 \gamma_j N(t) ig[N(t) \hat{ heta} - \psi_\delta(t) ig]^{p_j}. \end{aligned}$$

Non-Linear Gradient Algorithm [Noack et al., 2016]

$$\dot{\hat{ heta}}(t) = -rac{\partial \mathcal{J}}{\partial \hat{ heta}} = -\sum_{j=1}^{2} \gamma_j N(t) [N(t)\hat{ heta} - \psi_{\delta}(t)]^{p_j}.$$

 $x \in \mathbb{R}^n$, $x = [x_1, \cdots, x_n]^\top$, $p \ge 0$, $[x]^p = [|x_1|^p \operatorname{sign}(x_1), \cdots, |x_n|^p \operatorname{sign}(x_n)]^\top$.

Gramian-Based Non-Linear Algorithm II

• Define
$$\psi(t) = N(t)\theta$$
, then

$$egin{aligned} \dot{\psi}(t) &= \dot{\mathsf{N}}(t) heta &= \left(-\mathsf{N}(t)\mathsf{Q}\,\mathsf{N}(t) + \mathsf{C}^ op(t)\mathsf{C}(t)
ight) heta \ &= -\mathsf{N}(t)\mathsf{Q}\,\psi(t) + \mathsf{C}^ op(t)\mathsf{y}(t). \end{aligned}$$

Since $N(t_0)\theta = 0$, $\psi(t_0) = 0$.

Notice that the difference between ψ(t) and ψ_δ(t) is that the first depends on y(t) while the second on y_δ(t) and ξ(t) = ψ(t) - ψ_δ(t) satisfies

$$\dot{\xi}(t) = -N(t)Q\xi(t) - C^{\top}(t)\delta(t), \ \xi(t_0) = 0.$$

• Finally, notice that the difference $N(t)\hat{\theta}(t) - \psi_{\delta}(t)$ satisfies

$$egin{aligned} &\mathcal{N}(t)\hat{ heta}(t)-\psi_{\delta}(t)=\mathcal{N}(t)\hat{ heta}(t)-\psi(t)+ig(\psi(t)-\psi_{\delta}(t)ig)\ &=\mathcal{N}(t) ilde{ heta}(t)+\xi(t). \end{aligned}$$

Gramian-Based Non-Linear Algorithm III

Error Dynamics

$$\dot{\tilde{\theta}}(t) = -\sum_{j=1}^{2} \gamma_j N(t) \left\lceil N(t) \tilde{\theta}(t) + \xi(t) \right\rfloor^{p_j}.$$
(5)

Proposition 1

[Noack et al., 2016] Consider δ(t) = 0 (ξ(t) = 0). If C(t) is of persistence of excitation, then there exist η > 0 such that N(t) ≥ ηI for all t ≥ t₀ + T. Furthermore, the equilibrium point θ̃ = 0 is fixed-time stable uniformly in the initial time t₀. An estimate of the convergence time, for any θ̃(t₀), is given by

$$\mathcal{T}+\sum_{j=1}^2rac{1}{\gamma_j\eta^{p_j+1}|p_j-1|}$$

• [Rueda-Escobedo, 2018] If C(t) is of persistence of excitation, $\xi(t)$ is uniformly bounded and (5) is ISS with respect to $\xi(t)$.

Properties of N(t) **I**

$$\dot{N}(t) = -N(t)QN(t) + C^{\top}(t)C(t).$$
 (6)

- Eq. (6) is a Riccati equation and for $N(t_0) \ge 0$, the solution N(t) remains positive semi-definite for all $t \ge t_0$.
- If C(t) is uniformly bounded and Q > 0, then there exist a constant $\bar{\eta} > 0$ such that $\bar{\eta} \ge ||N(t)||$ for all $t \ge t_0$.
- Given the sequences $\{t_k\}_0^\infty$, $\{\alpha_k\}_0^\infty$, $\{\beta_k\}_0^\infty$ associated to C(t), it is possible to estimate the corresponding ones to N(t):

$$\bar{\eta}(t_k - t_{k-1}) \mathbf{I} \geq \int_{t_{k-1}}^{t_k} N(\sigma) \mathrm{d}\sigma \geq \eta_k \mathbf{I},$$

with

$$\eta_k = \frac{\alpha_{k-1}\lambda_{\min}(Q)\ln\left(1+\lambda_{\max}(Q)(t_k-t_{k-1})\right)}{\lambda_{\max}(Q)(\lambda_{\min}(Q)+n^2\beta_{k-1}\lambda_{\max}^2(Q)(t_{k-1}-t_{k-2}))}$$

Properties of N(t) II

$$\dot{N}(t) = -N(t)QN(t) + C^{\top}(t)C(t).$$

• Let $N(t_k) > 0$. Then

$$\int_{t_k}^t \lambda_{\min}(N(\sigma)) \mathrm{d}\sigma \geq \frac{\ln\left(1 + \lambda_{\max}(Q)(t - t_k)\right)}{\lambda_{\max}(Q)} \lambda_{\min}(N(t_k)) \mathbf{I}.$$

• Furthermore,

$$\lim_{t\to\infty}\int_{t_k}^t \lambda_{\min}(N(\sigma))\mathrm{d}\sigma = \infty.$$

Main Result I

Theorem

Consider the estimation algorithm:

$$\dot{\hat{\theta}}(t) = -\sum_{j=1}^{2} \gamma_j N(t) [N(t)\hat{\theta} - \psi(t)]^{p_j},$$

with $\gamma_j > 0$, $p_1 \in [0, 1)$, $p_2 > 1$, and where N(t) and $\psi(t)$ are computed as before.

Assume that there exist $k_1 < k_2 < \infty$ such that

$$\sum_{k=0}^{k_1} \eta_k = \alpha_1 < \infty \quad \text{and} \quad \sum_{k=k_1}^{k_2} \eta_k = \alpha_2 < \infty.$$

Then, $\hat{\theta}(t) \rightarrow \theta$ in fixed-time if the gains γ_1 and γ_2 are chosen such that

$$\gamma_1 \ge rac{(t_{k_2} - t_{k_1})^{p_1}}{\alpha_2^{p_1 + 1}(1 - p_1)} \quad ext{and} \quad \gamma_2 \ge rac{(t_{k_1} - t_0)^{p_2}}{\alpha_1^{p_2 + 1}(p_2 - 1)}$$

Main Result II

Corollary 1

Consider the estimation algorithm:

$$\dot{\hat{ heta}}(t) = -\sum_{j=1}^{2} \gamma_j N(t) [N(t)\hat{ heta} - \psi(t)]^{p_j},$$

with $\gamma_j > 0$, $\mathbf{p_1} = \mathbf{0}$, $p_2 > 1$, and where N(t) and $\psi(t)$ are computed as before.

Assume that there exist $k_1 < \infty$ such that $\eta_{k_1} > 0$. Then, $\hat{\theta}(t) \rightarrow \theta$ in fixed-time for any positive gains $\gamma_1 > 0$ and γ_2 .

Remark

In both cases, the convergence is non-uniform in the initial time.

- In Theorem 1, the convergence time is given by t_{k_2} .
- In Corollary 1, an estimate of the convergence time can be given in terms of the gains and η_{k_1} . The convergence time, although finite, it might be very large.

Consider the error equation (5) for $\delta(t) = 0$:

$$\dot{\tilde{\theta}}(t) = -\sum_{j=1}^{2} \gamma_j N(t) \left[N(t) \tilde{\theta}(t) \right]^{p_j},$$
(7)

and define the candidate Lyapunov function $V(\tilde{\theta}) = \tilde{\theta}^{\top} \tilde{\theta}$. The derivative of $V(\tilde{\theta})$ along (7) satisfies

$$\dot{V}(t) = 2\tilde{ heta}^{ op}(t)\dot{ ilde{ heta}}(t) = -2\sum_{j=1}^{2}\gamma_{j}\tilde{ heta}^{ op}(t)N(t)\left[N(t)\tilde{ heta}(t)
ight]^{p_{j}}$$

Sketch of the Proof II

$$\begin{split} \dot{V}(t) &= -2\sum_{j=1}^{2} \gamma_{j} \tilde{\theta}^{\top}(t) N(t) \left[N(t) \tilde{\theta}(t) \right]^{p_{j}} \\ &= -2\sum_{j=1}^{2} \gamma_{j} \left\| N(t) \tilde{\theta}(t) \right\|_{p_{j}+1}^{p_{j}+1} \\ &\leq -2\gamma_{1} \lambda_{\min}^{p_{1}+1}(N(t)) \|\tilde{\theta}(t)\|_{2}^{p_{1}+1} - 2\gamma_{2} n^{\frac{1-p_{2}}{2}} \lambda_{\min}^{p_{2}+1}(N(t)) \|\tilde{\theta}(t)\|_{2}^{p_{2}+1} \\ &\leq -\bar{\gamma}_{1} \lambda_{\min}^{p_{1}+1}(N(t)) V^{\frac{p_{1}+1}{2}} - \bar{\gamma} \lambda_{\min}^{p_{2}+1}(N(t)) V^{\frac{p_{2}+1}{2}}. \end{split}$$
Notice that $\frac{p_{1}+1}{2} < 1$ while $\frac{p_{2}+1}{2} > 1$.

The previous inequality can be split in two differential inequalities:

$$\dot{V}(t) \leq -\bar{\gamma}_1 \lambda_{\min}^{p_1+1}(N(t)) V^{\frac{p_1+1}{2}}, \qquad (8)$$

$$\dot{V}(t) \leq -\bar{\gamma}_2 \lambda_{\min}^{p_2+1}(N(t)) V^{\frac{p_2+1}{2}}.$$
 (9)

The solution to both differential inequalities can be summarized as

$$V(t) \leq \left(V^{1-p_j}(t_0) - (1-p_j)\overline{\gamma}_j \int_{t_0}^t \lambda_{\min}^{p_j+1}(N(\sigma)) \mathrm{d}\sigma \right)^{\frac{1}{1-p_j}}$$

Sketch of the Proof IV

Without loss of generality, $V(t_0)$ can be assumed greater that 1. Then, (9) can be used to estimate the size of the integral needed to make $V(t) \leq 1$, and (8) to estimate it in order to reach zero:

$$\begin{split} V(t_1) &\leq \frac{1}{\left(\frac{1}{V^{p_2-1}(t_0)} + (p_2-1)\bar{\gamma}_2 \int_{t_0}^{t_1} \lambda_{\min}(N(\sigma)) \mathrm{d}\sigma\right)^{\frac{1}{p_2-1}}} \leq 1, \\ V(t_2) &\leq \left(V^{1-p_1}(t_1) - (1-p_1)\bar{\gamma}_1 \int_{t_1}^{t_2} \lambda_{\min}^{p_1+1}(N(\sigma)) \mathrm{d}\sigma\right)^{\frac{1}{1-p_1}} \leq 0 \end{split}$$

This yields:

$$\int_{t_0}^{t_1} \lambda_{\min}^{p_2+1}(N(\sigma)) \mathrm{d}\sigma \geq rac{1}{ar{\gamma}_2(p_2-1)}, \ \int_{t_1}^{t_2} \lambda_{\min}^{p_1+1}(N(\sigma)) \mathrm{d}\sigma \geq rac{1}{ar{\gamma}_1(1-p_1)}.$$

Using the Hölder's Inequality, the integral of $\lambda_{\min}^{p_j+1}(N(t))$ can be estimate as

$$\int_{t_1}^{t_2} \lambda_{\min}^{p_j+1} (N(\sigma)) \mathrm{d}\sigma \geq \frac{1}{(t_2 - t_1)^{p_j}} \left(\int_{t_1}^{t_2} \lambda_{\min} (N(\sigma)) \mathrm{d}\sigma \right)^{p_j+1}$$

From here, it is possible to estimate the gains that ensures the fixed-time convergence.

About the Noise

• If $\delta(t) \neq 0$, the term $\xi(t)$ will appears in the dynamics of $\tilde{\theta}(t)$ and in the derivative of V(t):

$$\dot{V}(t) = -2\sum_{j=1}^{2}\gamma_{j}\Big(N(t)\widetilde{ heta}(t)\Big)^{ op}[N(t)\widetilde{ heta}(t) + \xi(t)]^{p_{j}}$$

• Following an inequality in [Rueda-Escobedo et al., 2019], the previous terms can be split as

$$\dot{V}(t) \leq -\sum_{j=1}^{2} ar{\gamma}_{j} \lambda_{\min}^{p_{j}+1}(N(t)) V^{rac{p_{j}+1}{2}}(t) + \sum_{j=1}^{2} \kappa_{j} \|\xi(t)\|^{p_{j}+1}.$$

• However, given the powers in V(t), it is difficult to give a bound in terms of the integral of $\xi(t)$ in order to show iISS.

Simulation Examples I

- Regressor: $C(t) = \exp(-0.5t)[\sin(3t), 1]$.
- Algorithm parameters: $p_1 = 1/2$, $p_2 = 3/2$, $\gamma_1 = \gamma_2 = 10$, Q = I.
- Norm of the initial conditions: 10, 10^2 , 10^3 , 10^4 , 10^5 .

Simulation Examples II

Logarithmic plot of the error norm.

Simulation Examples III

Simulation Examples IV

- Regressor: $C(t) = [\exp(-0.5t)\sin(3t), 1].$
- Estimator parameters: $p_1 = 1/2$, $p_2 = 3/2$, $\gamma_1 = \gamma_2 = 10$, Q = I.
- Norm initial conditions: 10, 10^2 , 10^3 , 10^4 , 10^5 .

Simulation Examples V

26/33

Simulation Examples VI

Simulation Examples VII

- Regressor: $C(t) = [\exp(-0.5t)\sin(3t) + 1, 1].$
- Noise: $\delta(t) = 0.5 \sin(100t) 0.2$
- Estimator parameters: $p_1 = 1/2$, $p_2 = 3/2$, $\gamma_1 = \gamma_2 = 100$, Q = I.
- Norm initial conditions: 10, 10^2 , 10^3 , 10^4 , 10^5 .

Simulation Examples VIII

- The non-uniform fixed-time convergence of a modified version of the algorithm presented in [Noack et al., 2016] is shown.
- Precise conditions for the algorithm gains that ensure the convergence are given. This conditions can be related to the excitation level of the regressor.
- In the lack of persistence of excitation, fixed-time convergent algorithms may play a mayor role since they ensure global convergence.
- When there is lack of persistence of excitation, it is still under investigation the effect of the noise in the estimation and how to bound the error in terms of the integral of the noise.

References

Abou-Kandil, H., Freiling, G., Ionescu, V., and Jank, G. (2003). Matrix Riccati Equations in Control and Systems Theory. Birkhäuser Basell, 1 edition.

Anderson, B. (1971). Stability properties of Kalman-Bucy filters. Journal of the Franklin Institute, 291(2):137 – 144.

- Barabanov, N. and Ortega, R. (2017). On global asymptotic stability of $\dot{x} = -\phi \phi^{\top} x$ with ϕ not persistently exciting. Systems & Control Letters, 109:24 – 29.

Bucy, R. (1972).

The riccati equation and its bounds.

Journal of Computer and System Sciences, 6(4):343 – 353.

References II

- Efimov, D., Barabanov, N., and Ortega, R. (2018).
 Robust stability under relaxed persistent excitation conditions.
 In 2018 IEEE Conference on Decision and Control (CDC), pages 7243–7248.

Ioannou, P. A. and Sun, J. (1995). *Robust Adaptive Control.* Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

- Narendra, K. S. and Annaswamy, A. M. (1989).
 Stable Adaptive Systems.
 Prentice Hall, Englewood Cliffs, New Jersey 07632.

Noack, M., Rueda-Escobedo, J. G., Reger, J., and Moreno, J. A. (2016).

Fixed-time parameter estimation in polynomial systems through modulating functions.

In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 2067–2072.

Rueda-Escobedo, J. G. (2018).

Finite-time observers for linear time-varying systems and its applications.

PhD thesis, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, CDMX, México.

Available at:

http://132.248.9.195/ptd2018/agosto/0778889/Index.html.

Rueda-Escobedo, J. G., Ushirobira, R., Efimov, D., and Moreno, J. A. (2019).

Gramian-based uniform convergent observer for stable Itv systems with delayed measurements.

International Journal of Control, 0(0):1–12.

XIII. Andrej Sarjaš: Optimal Feedback Controllers' Design Based on Evolutionary Computation with Differential Evolution

Feedback Controllers Design Based on Evolutionary Computation with Differential Evolution

Andrej Sarjaš, Dušan Gleich andrej.sarjas@um.si

Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

11th September 2019 21. Styrian Workshop on Automatic Control
Outline:

- Introduction to metaheuristic optimization procedure
- The Differential Evolution
- Design examples and optimization with Differential Evolution

2/26

Optimization:

The optimization procedure is a hart of many natural processes and engineering design.

3/26

To tackle the complex computational problem the scientists have been looking into nature for the inspiration. Where back in the early '50s of the last century emerge an idea to use the Darwin principle of evolution for automated problem-solving. Till the '90s, the different developed algorithms were unified under common name Evolution Computing.

In nowadays Evolution Computation embrace the filed of natural-inspired metaheuristic optimization algorithms such as:

- Evolutionary algorithm (Evolution strategies, Differential evolution, etc.),
- Swarm intelligence (Ant colony optimization, Particle swarm optimization, Bat algorithm, etc.)
- Self-organizing systems (Harmony search, Artificial immune systems, Artificial life, etc..)

Differential evolution-DE:

- The DE was introduced by Storn and Price in 1996.
- The DE algorithm is a population-based algorithm like other genetic algorithms using similar operators; mutation, crossover, and selection. The main difference relies on the mutation operator, whereby mutation operator is based on the differences between randomly selected pairs of candidate solutions in the current population.

4/26

- Today is a DE most robust Evolutionary algorithm and is able to solve a wide range of the optimization problems.
- The advantage of DE is a simple structure, straightforward implementation and a small set of the setting parameters.

Why us Differential Evolution:

• Differential Evolution is a global optimization approach with good exploration and exploitation capability. The DE is capable to find the true global minimum, regardless of the initial parameter values.

5/26

- Due to the 'nature' of the algorithm (simultaneous use of many population vectors), the DE has great capability to avoid local minima.
- In many practical problems, the objective functions are non-differentiable, noncontinues, non-linear, noisy or have many local minima. Such problems are difficult to solve, or even analytical solution doesn't exist.
- DE do not require gradients or higher derivatives of the objective functions. (Derivative-Free Algorithm).

Structure of Differential evolution:

Control parameters of DE:

- NP- Population number
- F weighting factor [0 1]
- CR Crossover constant [0 1]

Optimization vector:

$$X_{n,G} = \left[x_{1,n,G}, x_{2,n,G}, x_{3,n,G}, \dots, x_{D,n,G} \right]$$

D - dimension of parameter vectorn -current vector in populationG-current population

Objective function:

 $X \in \Omega,$ $f(X), (f: \Omega \subseteq \mathfrak{R}^{D} \to \mathfrak{R})$

Stop condition (minimization): $f(X^*) \le f(X), \quad \forall X^* \in \Omega, \ \Omega \neq \emptyset$ $f(X^*) \ne -\infty$

Example 1: Low-order \mathcal{H}_{∞} robust controller design

Closed-loop transfer function:

Characteristic polynomial:

$$Y(s) = \frac{K(s)P_0(s)}{1 + K(s)P_0(s)} V(s)$$
$$Y(s) = \frac{L(s)B(s)}{\underbrace{A(s)R(s) + B(s)L(s)}_{C(s)}} V(s)$$

C(s) = A(s)R(s) + B(s)L(s) 'R(s) and L(s) are unknown polynomials'

Possible solutions of the polynomial equation C(s):

- No exact solution : degR<degA-1
- *Exact solution*: degR=degA-1
- Indeterminate system (parametric solution) : degR>degA-1

Solution of the polynomial equation C(s) is:

 $P_{con} = S_y^{-1} \cdot C$, S_y - Sylvester matrix, C - vector of characteristic polynomial coefficients P_{con} - coefficients of polynomial L(s) and R(s) 21. Styrian Workshop on Automatic Control

Example 1: Regional pole assignment approach

For condition (degR<degA-1) of the polynomial equation C(s), with introduced residual:

$$r = C_t - \underbrace{S_y \cdot P_{con}}_{\tilde{C}_{nx1}}$$

$$C_t - Coefficient vector of target polynomial,$$

$$S_y \cdot P_{con} - solution of the polynomial equation$$

$$degR + degA = degC_t = n$$

The optimal solution is introduced with metric,

$$\|r\|_{2} = \|C_{t} - S_{y} \cdot P_{con}\|_{2}$$

$$J = r^{T}r = (C_{t} - S_{y} \cdot P_{con})^{T} Q(C_{t} - S_{y} \cdot P_{con}) \quad , Q \text{ - weight matrix, } Q \text{-} W$$

Objective function for regional pole assignment is:

$$\min_{P_{con}} J_1 = S_y^T Q S_y - 2 S_y^T Q C$$

Lipatov-Sokolov coefficients ratio for stability check:

Stability criteria:

:

$$\Gamma = \begin{bmatrix} SP_k / (SP_{k+1} \cdot SP_{k-1}) \\ \vdots \\ \vdots \end{bmatrix}, \qquad \Gamma = \Gamma > \Upsilon,$$

$$K = 1, \dots, n-1, SP = S_y P_{con}$$
21. Styrian Workshop on Automatic Control

Example 1: Robustness criteria and uncertainty models

Robust stability criteria, for different uncertainty models :

Where $W_1, W_3 \in \mathcal{RH}_{\infty}$. The weights represent a model uncertainty or closed-loop performance index.

Example 1: Spectral polynomial and positivity condition

The \mathcal{H}_{∞} norm is defined as:

 $\Phi(j\omega) = \gamma^2 I - H(j\omega)H(-j\omega) = \gamma^2 I - \frac{B(j\omega)}{A(j\omega)}\frac{B(-j\omega)}{A(-j\omega)}$

From the robustness property $\|\cdot\|_{\infty} < 1$ and \mathcal{H}_{ω} calculation $\phi(j\omega)$, the spectral polynomial is equal to:

$$\pi(\omega^2) = A(j\omega)A(-j\omega) - B(j\omega)B(-j\omega)$$
, where $\gamma = 1$
= $A(\omega^2) - B(\omega^2) > 0$

Spectral polynomials can be derived for each robust criteria separately:

$$\begin{split} \|W_1 S\|_{\infty} < 1 \implies \pi_s \left(\omega^2, P_r\right) = C_r w_{a1}(\omega^2, P_r) - AR w_{b1}(\omega^2, P_r) \\ = z_{2n} \omega^{2n} + z_{2(n-1)} \omega^{2(n-1)} + z_{2(n-2)} \omega^{2(n-2)} + \dots + z_4 \omega^4 + z_2 \omega^2 + z > 0, \quad n \in \mathbb{N}, z \in \mathbb{R} \end{split}$$

$$\begin{split} \|W_{3}T\|_{\infty} < 1 \implies \pi_{T}\left(\omega^{2}, P_{r}\right) = C_{r}w_{a3}(\omega^{2}, P_{r}) - BLw_{b3}(\omega^{2}, P_{r}) \\ = t_{2n}\omega^{2n} + t_{2(n-1)}\omega^{2(n-1)} + t_{2(n-2)}\omega^{2(n-2)} + \dots + t_{4}\omega^{4} + t_{2}\omega^{2} + t > 0, \quad n \in \mathbb{N}, t \in \mathbb{R} \end{split}$$

Example 1: Optimization procedure

In the optimization procedure with Differential Evolution the given objective functions are used:

$$\min_{P_r} J_1$$
, pole assignment objective function
$$\max_{P_r} \min_{\omega^2} J_2(\omega^2, \tilde{p}) = \begin{bmatrix} \pi_s(\omega^2, P_r) \\ \pi_T(\omega^2, P_r) \end{bmatrix}$$
, robust stability objective function

Necessary condition for robustness stability:

$$\pi_{s}\left(\omega^{2},P_{r}\right) \Longrightarrow z > 0, \quad \pi_{T}\left(\omega^{2},P_{r}\right) \Longrightarrow t > 0.$$

Common objective function:

$$J = k_1 J_1 + k_2 J_2(1, \omega^2, \tilde{p}) + k_3 J_2(2, \omega^2, \tilde{p}), \quad k_1, k_2, k_3 > 0, \quad \sum_i k_i = 1$$

Constrains:

$$\Gamma > \Upsilon, \quad \pi_{S}(\omega^{2}, P_{r}) > 0, \quad \pi_{T}(\omega^{2}, P_{r}) > 0.$$

Example 1: Controller design and application

For design example the transfer function with flexible structure was used [Yang F. (2007)]:

$$P(s,\lambda) = \frac{1}{s\left(s^{2} + 0.1 \cdot \omega_{1}\left(\lambda\right)s + \omega_{1}^{2}\left(\lambda\right)\right)\left(s^{2} + 0.1 \cdot \omega_{2}\left(\lambda\right)s + \omega_{2}^{2}\left(\lambda\right)\right)},$$
$$\omega_{i}(\lambda) = (1 + e\lambda_{i}) \omega_{i0}, |\lambda_{i}| < 1$$

Multiplicative uncertainty weight for condition $||W_3T||_{\infty} < 1$:

$$W_3(s) = \frac{2.1 \cdot 10^{-5} \cdot s^4 + 0.05s^3 + 8.2 \cdot s^2 + 1.4 \cdot s + 16.4}{s^4 + 1.1 \cdot s^3 + 98.6 \cdot s^2 + 10.6 \cdot s + 95.2}$$

Performance weight $||W_1S||_{\infty} < 1$:

 $W_1(s) = \frac{0.53s + 0.043}{s + 4.1 \cdot 10^{-4}}$

Nominal value:

 $\omega_{10} = 1 \ rad/s,$ $\omega_{20} = 10 \ rad/s,$ $e = 4\%, \ \lambda_{nom} = 0.7$

Example 1: Controller design and application

Preselected controllers:

$$K_1(s) = \frac{L(s)}{R(s)} = \frac{l_1 s + l_0}{r_1 s + r_0},$$

 $K_{2}(s) = \frac{L(s)}{R(s)} = \frac{l_{2}s^{2} + l_{1}s + l_{0}}{r_{2}s^{2} + r_{1}s + r_{0}}.$

-4 unknown parameters $[r_0, \dots, l_1]$

-6 unknown parameters $[r_0, \dots, l_2]$

Preselected target polynomials with condition degR + degA = degC are, $C_1(s) = s^6 + 8.5 \cdot s^5 + 29.4 \cdot s^4 + 52.8 \cdot s^3 + 52.24 \cdot s^2 + 27.02 \cdot s + 5.72$, first order controller K1 $C_2(s) = s^7 + 10.1 \cdot s^6 + 138 \cdot s^5 + 977.6 \cdot s^4 + 2958 \cdot s^3 + 3927 \cdot s^2 + 2997 \cdot s + 2700$, second order controller K2

Differential evolution parameters:

$$NP = 60, F = 0.7, CR = 0.8, k = [0.4 \ 0.3 \ 0.3], Q_7 = I_7, Q_6 = I_6$$

 $\min[l_1, l_0, r_1, r_0] = [0.1, 0.1, 0.1, 0.1], \qquad \min[l_2, l_1, l_0, r_2, r_1, r_0] = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],$
 $\max[l_1, l_0, r_1, r_0] = [10^2, 2 \cdot 10^2, 10^2, 3 \cdot 10^2], \qquad \max[l_2, l_1, l_0, r_2, r_1, r_0] = [10^2, 10^2, 2 \cdot 10^2, 10^2, 3 \cdot 10^2]$
Results after optimization:
 $-1.85 \cdot s + 7.75 \qquad K_{-}(s) \qquad 21.5s^2 + 0.036s + 26$

$$K_1(s) = \frac{-1.85 \cdot s + 7.75}{s + 1.34}, \quad K_2(s) = \frac{21.53 + 0.0503 + 20}{1.4s^2 + 4.19s + 4.1}$$

Criter	ia	Controller $K_1(s)$	Controller $K_2(s)$
$ W_{3}T$	"∥∞	0.507	0.17
$ W_1S$	\mathbb{N}^{∞}	0.82	0.74

Example 1: Results

Comparison was made with the controller $K_{\gamma}(s)$ designed by the LMI technique:

Example 2: A Heading-control of the measurement robotic platform

Measurement robotic platform is used to acquire different environmental data from the cooling tower system. The efficiency of the acquiring process and the tower efficacy analysis is closely related to the positioning-heading tracking capability of the robot.

The Colling tower

The robotic platform on the slats floor

The yaw axis -(z axis, heading)

21. Styrian Workshop on Automatic Control

Example 2: Super-Twisted Controller Design

The dynamic around z-axis is presented as:

 $\dot{x}_1 = x_2,$ $\dot{x}_2 = f(x_1, x_2) + gu + d,$ $x - \text{ state vector } x^T = [x_1 \ x_2],$ f() - state function, g - input gain u - input d - disturbance

Introduce tracking error $e_1 = x_d - x_1$:

$$\dot{e}_{1} = e_{2}, \\ \dot{e}_{2} = f(e_{1}, e_{2}) - gu + \mu, \quad -d + f(x_{d}, \dot{x}_{d}) + \ddot{x}_{d} = \mu, |\mu| < \delta, \ \delta > 0$$

Sliding variable:

 $\sigma = e_2 + ce_1, \quad c > 0$

STA controller structure:

$$u_{STA} = k_1 |\sigma|^{1/2} sign(\sigma) + v,$$

$$\dot{v} = k_2 sign(\sigma).$$

Differential inclusion of sliding variable variable with STA:

$$\dot{\sigma} = -k_1 |\sigma|^{1/2} sign(\sigma) + v + \rho$$

$$\dot{v} = -k_2 sign(\sigma).$$

$$\rho = \mu + f(e_1, e_2) + ce_2, |\rho| \le \delta |\sigma|^{1/2}, \delta > 0$$

Example 2: Super-Twisted Controller Design

Proposed Lyapunov function [Moreno(2008)]:

$$V(\sigma) = \frac{1}{2}v^{2} + 2k_{2}|\sigma| + \frac{1}{2}(k_{1}|\sigma|^{1/2}sign(\sigma) - v)^{2}, \qquad P = \frac{1}{2}\begin{bmatrix}4k_{2} + k_{1}^{2} & -k_{1}\\-k_{1} & 2\end{bmatrix}, \zeta^{T} = \begin{bmatrix}|\sigma|^{1/2}sign(\sigma) & v\end{bmatrix}, V(\sigma) = \zeta^{T}P\zeta.$$

Time derivative of $V(\sigma)$:

$$\dot{V}(\sigma) = -|\sigma|^{-1/2} \zeta^T Q \zeta + |\sigma|^{-1/2} \delta q \zeta, \qquad \qquad Q = \begin{bmatrix} k_1 k_2 + \frac{k_1^3}{2} & -\frac{k_1^2}{2} \\ -\frac{k_1^2}{2} & \frac{k_1}{2} \end{bmatrix}, \qquad q = \begin{bmatrix} 2k_2 + \frac{k_1^2}{2} & -\frac{k_1}{2} \\ -\frac{k_1^2}{2} & \frac{k_1}{2} \end{bmatrix},$$

With assumption: $|\rho| \leq \delta |\sigma|^{1/2} sign(\sigma)$,

$$\dot{V}(\sigma) = -\zeta^{T}(Q-\Upsilon)\zeta, \qquad \qquad Q-\Upsilon = |\sigma|^{-1/2} \begin{bmatrix} k_{1}k_{2} + \frac{k_{1}^{3}}{2} - \left(2k_{2} + \frac{k_{1}^{2}}{2}\right)\delta & -\frac{k_{1}^{2}}{2} + k_{1}\delta \\ & -\frac{k_{1}^{2}}{2} + k_{1}\delta & \frac{k_{1}}{2} \end{bmatrix}.$$

The system is globally stable if:

$$k_1 > 2\delta,$$

$$k_2 > \frac{\delta^2 k_1}{8(k_1 - 2\delta)}.$$

Example 2: Optimization and Objective function

The optimization objective is a proper selection of parameters c, k_1 and k_2 to ensure stability and preselected dynamic of the system. Regard to the implementation constrains the proper sampling time need to be specified. The sampling time directly influence on the chattering phenomena at the controller output.

Preselected closed-loop dynamic with reference model:

Step Response 1.2 Overshoot 0.8 0.6 Settling time 0.4 Rise time 0.2 Dead time 0 2 8 10 12 4 6 0 Time (seconds)

Chattering phenomena:

Example 2: Objective function and simulation

From the proposed Reference model the given target output vector is derived $y_{ref}[]$ with preselected acquisition time T_{acq} and simulation time T_{sim_time} .

20/26

Example 2: Controller design and DE settings

Open loop system:

$$\dot{e}_1 = e_2, \dot{e}_2 = -0.885e_2 - 0.25u + \mu,$$

$$\rho = \mu + f(e_1, e_2) + ce_2, \ |\rho| \le \delta |\sigma|^{1/2}, \delta = 25$$

Feedback system time performance objectives: Overshot < 2% Settling time <15s Sampling time [0.01 - 0.05]s

Selected reference dynamic model:

 $H_{ref}(s) = \frac{0.4}{s + 0.4}$ **DE parameters :** NP = 40, F = 0.7, CR = 0.9 $\min[k_1, k_2, c] = [k_{1\min}, k_{2\min}, c]$ $\max[k_1, k_2, c] = [3k_{1\min}, 3k_{2\min}, 10c]$ $g = [0.7 \quad 0.3]$ STA coefficients constraints :

$$\begin{split} k_{1\min} &> 2\delta, \\ k_{2\min} &> k_{1\min} \, \frac{5\delta k_{1\min} + 4\delta^2}{2\left(k_{1\min} - 2\delta\right)}, \\ c_{\min} &> 0. \end{split}$$

Simulation parameters:

$$\begin{split} T_{sim_time} &= 25s, \\ T_{acq} &= 0.1s, \\ T_{sim} &= 1ms, (Forward - Euler Method) \\ T_{STA} &= 20ms, (STA controller Sampling Time) \\ n &= 800(RMS - last 'n' samples of the controller output) \end{split}$$

Objective function 5.0 5.0 Example 2: Results $[k_1, k_2, c] = [95.2, 2.7 \cdot 10^4, 0.402]$ 0 20 40 60 0 Selected reference dynamic model: Iteration Reference Target STA 40 60 80 100 120 140 160 time [s] Disturbance Sigma 40 60 80 100 120 140 160 time [s] -u

21/26

DE results:

200

100

-100 └── 0

100

20

Angle [deg]

Sigma

21. Styrian Workshop on Automatic Control

Example 3: Modified Super-Twisted Controller Design-MSTA

The modified MSTA combines linear and nonlinear terms. Linear terms of the algorithm can deal with stronger linear growing perturbation, which are far away from the origin. The nonlinear terms are superior with the stronger perturbations, which are near to the origin, and are weaker with perturbation, which away from the origin.

MSTA controller structure:

$$u_{STA} = k_1 |\sigma|^{1/2} sign(\sigma) + k_3 \sigma + v,$$

$$\dot{v} = k_2 sign(\sigma) + k_4 \sigma.$$

Sliding variable:

 $\sigma = e_2 + ce_1, \quad c > 0$

Differential inclusion of sliding variable variable with STA:

$$\dot{\sigma} = -k_1 |\sigma|^{1/2} sign(\sigma) - k_3 \sigma + v + \rho$$

$$\dot{v} = -k_2 sign(\sigma) - k_4 \sigma.$$

$$|\rho| \le \delta |\sigma|^{1/2} + \delta_1 |\sigma|, \quad \delta, \delta_1 > 0$$

Example 3: Modified Super-Twisted Controller Design-MSTA

Given Lyapunov function [Moreno(2008)]:

$$V(\sigma) = 2k_{2}|\sigma| + k_{4}\sigma^{2} + \frac{1}{2}v^{2} + \frac{1}{2}(k_{1}|\sigma|^{1/2}sign(\sigma) + k_{3}\sigma - v)^{2}, \qquad \Pi = \begin{bmatrix} k_{1}k_{3} & 2k_{4} + k_{3}^{2} & -k_{3} \\ -k_{1} & -k_{3} & 2 \end{bmatrix}$$
$$V(\sigma) = \zeta^{T}\Pi\zeta$$
$$\zeta^{T} = \begin{bmatrix} |\sigma|^{1/2}sign(\sigma) & \sigma & v \end{bmatrix},$$

Time derivative of $V(\sigma)$:

$$\dot{V}(\sigma) = -\left|\sigma\right|^{-1/2} \zeta^{T} \Omega_{1} \zeta - \zeta^{T} \Omega_{2} \zeta + \omega_{1} \zeta + \left|\sigma\right|^{-1/2} \omega_{2} \zeta,$$

$$\begin{split} \Omega_{1} &= \frac{k_{1}}{2} \begin{bmatrix} 2k_{2} + k_{1}^{2} & 0 & -k_{1} \\ 0 & 2k_{4} + 5k_{3}^{2} & -3k_{3} \\ -k_{1} & -3k_{3} & 1 \end{bmatrix}, \\ \Omega_{1} &= \begin{bmatrix} \frac{3k_{1}k_{2}}{2}\delta & \left(k_{3}^{2} + 2k_{4}\right)\delta & -k_{2}\delta \end{bmatrix}, \\ \Omega_{2} &= k_{3} \begin{bmatrix} k_{2} + 2k_{1}^{2} & 0 & 0 \\ 0 & k_{4} + k_{3}^{2} & -k_{3} \\ 0 & -k_{3} & 1 \end{bmatrix}, \\ \mathcal{O}_{2} &= \delta \begin{bmatrix} \left(\frac{k_{1}^{2}}{2} + 2k_{2}\right) & 0 & -\frac{k_{1}}{2} \end{bmatrix}. \end{split}$$

21. Styrian Workshop on Automatic Control

 $\begin{bmatrix} 4k_2 + k_1^2 & k_1k_3 & -k_1 \end{bmatrix}$

Example 3: Modified Super-Twisted Controller Design-MSTA

The first set of stability condition:

$$\begin{split} k_{1} &> 2\delta, \\ k_{2} &> k_{1} \frac{\delta k_{1} + \frac{1}{8} \delta^{2}}{\left(k_{1} - 2\delta\right)}, \\ k_{3} &> \frac{3}{8} \delta_{1} + \sqrt{\frac{9}{4} \delta_{1}^{2}}, \\ k_{4} &> k_{1} \frac{\left(\frac{1}{2} k_{1} \left(k_{1} + \frac{1}{2} \delta\right)^{2} \left(2k_{3} - \frac{3}{2} \delta_{1} k_{3}\right) + \left(\frac{5}{2} k_{3}^{2} + \frac{3}{2} \delta_{1} k\right) p_{1}\right)}{2 \left(p_{1} - \frac{1}{2} k_{1} \left(k_{1} + \frac{1}{2} \delta\right)^{2} - 2\delta\right) \left(\frac{1}{2} k_{1} - \delta\right)} \\ p_{1} &= k_{1} \left(\frac{1}{4} k_{1}^{2}\right) + \left(\frac{1}{2} k_{1} - \delta\right) \left(\frac{1}{2} k_{1}^{2} + 2k_{2}\right) \end{split}$$

The second set of stability condition:

$$\begin{split} k_{1} &> 2\delta, \\ k_{3} &> 2\delta_{1}, \\ k_{2} &> \frac{\left(k_{3}\delta + \frac{1}{2}k_{1}\delta\right)^{2}}{2k_{3}\left(k_{3} - 2\delta_{1}\right)} + \frac{\frac{3}{2}k_{1}k_{3}\delta - 2\left(k_{3} - \frac{1}{4}\delta\right)k_{1}^{2}}{\left(k_{3} - 2\delta_{1}\right)}, \\ k_{4} &> k_{3}\frac{\left(k_{3}\left(k_{3} + 3\delta_{1}\right) + \frac{1}{2}\delta_{1}^{2}\right)}{\left(k_{3} - 2\delta_{1}\right)}. \end{split}$$

The system is stable if all conditions are fulfilled!

25/26

Example 3: Controller design and DE settings

For the design example, the same system and control requirements as in example 2 are used.

$$\dot{e}_{1} = e_{2}, \\ \dot{e}_{2} = -0.885e_{2} - 0.25u + \mu, \qquad |\rho| \le \delta |\sigma|^{1/2} + \delta_{1} |\sigma|, \quad \delta = 25$$

Selected reference dynamic model:

$$H_{ref}\left(s\right) = \frac{0.4}{s+0.4}$$

DE parameters :

Simulation parameters:

$$NP = 50,$$

$$F = 0.7,$$

$$CR = 0.9,$$

$$\min[k_1, k_2, k_3, k_4, c] = [k_{1\min}, k_{2\min}, k_{3\min}, k_{4\min}, c],$$

$$\max[k_1, k_2, k_3, k_4, c] = [3k_{1\min}, 3k_{2\min}, 3k_{3\min}, 3k_{4\min}, 10c],$$

$$g = [0.7 \quad 0.3].$$

21. Styrian Workshop on

$$\begin{split} T_{sim_time} &= 25s, \\ T_{acq} &= 0.1s, \\ T_{sim} &= 1ms, (Forward - Euler Method) \\ T_{STA} &= 20ms, (STA controller Sampling Time) \\ n &= 800 (RMS - last 'n' samples of the controller output) \end{split}$$

Automatic Control

 $5, \delta_1 = 5.$

STA coefficients constraints :

$$\begin{split} k_{1\min} &> 2\delta, \\ k_{2\min} &> \left[f_{2_{set1}} \left(k_{1\min}, \delta \right) \wedge f_{2_{set2}} \left(k_{1\min}, k_{3\min}, \delta \right) \right], \\ k_{3\min} &> \left[f_{3_{set1}} \left(\delta_{1} \right) \wedge f_{3_{set2}} \left(\delta \right) \right], \\ k_{4\min} &> \left[f_{4_{set1}} \left(k_{1\min}, k_{2\min}, k_{3\min}, \delta, \delta_{1} \right) \wedge f_{4_{set2}} \left(k_{3\min}, \delta \right) \right], \\ c_{\min} &> 0. \end{split}$$

21. Styrian Workshop on Automatic Control

Thank you for your attention!

References:

Doyle J.C., Francis B.A., Tannenbaum A. (1990), *Feedback Control Theory*, New York: Macmillan Publishing Co.

Doyle J.C., Glover K., Khargonekar P., Francis B. (1989), 'State-space solutions to standard H_2 and H_{∞} control problems', *IEEE Transactions on Automatic Control*, 34(8), 831-847

Fleming P.J., Purshouse R. (2002), 'Evolutionary algorithms in control systems engineering: a survey', *Control Engineering Practice*, 10(11), 1223-1241.

Wang. L and Li L. (2011), 'Fixed-structure H∞ controller synthesis based on differential evolution with level comparison', *IEEE Transactions on Evolutionary Computation*, 15(1), 120-129.

Yang F., Gani M., Henrion D. (2007), 'Fixed-Order Robust Controller Design With Regional Pole Assignment', *IEEE Transactions on Automatic control*; 52(10), 1959-1963

Kučera V. (1979), Discrete Linear Control: The Polynomial Equation Approach, Chichester: Wiley

Shenfield A. and Fleming P.J. (2014), 'Multi-objective evolutionary design of robust controllers on the Grid', *Engineering Applications of Artificial Intelligence*, 27, 17-27

Sokolov N. I., Lipatov A. V. (1972), 'On necessary conditions for stability of linear systems', *Tr. Mosk. Aviats. Inst.*, 240, 26-30.

Henrion D., Šebek M., Kučera V. (2003), 'Positive Polynomials and Robust Stabilization with Fixed-Order Controllers', *IEEE Transactions on automatic control*, 48(7), 1178-1186

References:

Utkin, V.; Guldner, J., S. Sliding mode control in electromechanical systems. CRC Press, 1999.

Shtessel Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation. Birkhäuser, 2014.

Boiko, I.; Fridman, L. Analysis of chattering in continuous sliding mode controllers. *IEEE Transactions on Automatic Control* 2005, 50, 1442-1446.

Moreno, J.A.; Osorio, M. A Lyapunov approach to second-order sliding mode controllers and observers. 47th IEEE Conference on Decision and Control 2008, 57, 1035-1040.

Rivera, J., D.; Mora-Soto, C.; Ortega, S.; Raygoza, J., J.; De La Mora, A. Super-twisting control of induction motors with core loss. *11th International Workshop on Variable Structure Systems (VSS)* 2010, pp. 428 -433.

Moreno, J.A.; Osorio, M. Strict Lyapunov functions for the super-twisting algorithm. *IEEE Trans. Autom. Control* 2012, 57, 1035-1040.

Ventura, U., P; Fridman, L. Chattering measurement in SMC and HOSMC. In 2016 14th international workshop on variable structure systems 2016, <u>https://doi.org/10.1109/VSS.2016.7506900</u>, 108-113

Golkani, M.A.; Koch, S.; Reichhartinger, M.; Horn, M. A novel saturated super-twisting algorithm. *Systems & Control Letters* 2018, 119, 52-56.

Ventura, U.P.; Fridman, L. Design of super-twisting control gains: A describing function based methodology. *Automatic* 2019, 99, 175-180.