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Implementation of Model-based Control Concepts 
in Continuous
Pharmaceutical Engineering

Jakob Rehrl / Styrian Workshop on Automatic Control / 
Leibnitz / 2019



Introduction

Pharmaceutical manufacturing

Primary: active pharmaceutical ingredient (API)

Typically: chemical reactions, purification, crystallization

Outcome: API in form of a powder

Secondary: final dosage form (e.g., tablet, capsule)

Different production routes (e.g., granulation, tableting / capsule 
filling)

Different manufacturing approaches: batch vs. continuous

10.09.2019 Retzhof, 20192



Introduction

 “Batch production”
 Isolated processing steps (timely and spatially)
 Intermediate material storage and shipping
Few in-process monitoring, but end product testing

 Trend: Transition from batch to continuous manufacturing
 “Raw materials in”, “final product out”
 Implement real time monitoring (e.g., process analytical technology 

(PAT))
 Implement material discharge of non conforming intermediates
 Implement process control to keep critical quality attributes within 

their limits

10.09.2019 Retzhof, 20193



Investigated process

Hot melt extrusion + Pelletization + 
Blending + Tableting

10.09.2019 Retzhof, 20194



Investigated process
Hot melt extrusion: 

 improve solubility, enable production of oral dosage forms containing 
poorly soluble APIs

 Production of sustained-release tablets and pellets

10.09.2019 Retzhof, 20195

(hot) strand 

containing API 

embedded in 

polymer



Investigated process
Pelletization: 

 Cutting of strand to form pellets, uniform size is desired

 Control of strand temperature at pelletizer inlet via air pressure

 Control of strand thickness at pelletizer inlet via intake speed

10.09.2019 Retzhof, 20196

cooling track

pelletizer



Investigated process
Blending + Tableting: 

 Addition of excipients (to allow tabletability) via blender

 Compaction of tablets
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compaction

blending



Investigated process
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cooling track
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tablet press

blender



Controller design
 2 actuators, 2 controlled variables, 1 measureable disturbance

Sampling rate 350ms

Model predictive control

10.09.2019 Retzhof, 20199

𝑢1
𝑢2𝑑

𝑦1

𝑦2 𝐮 =
𝑢1

𝑢2
𝐲 =

𝑦1

𝑦2
𝐫 =

𝑟1
𝑟2



Plant model - Local linear model tree (LOLIMOT)
 Idea:

 Approximate 
nonlinearity by locally 
affine models:

 LOLIMOT algorithm: 
select validity regions of 
local models and 
estimate local model 
parameters

10.09.2019 Retzhof, 201910



Plant model - Local linear model tree (LOLIMOT)
 Idea:

 Determine “worst” 
model that should 
be split into 2 new 
models

 Select input to split 
according best 
improvement

10.09.2019 Retzhof, 201911



Plant model - Local linear model tree (LOLIMOT)

 Static model

 Dynamic model by 
delaying inputs and 
outputs

10.09.2019 Retzhof, 201912



Plant model - Local linear model tree (LOLIMOT)
Model structure:

10.09.2019 Retzhof, 201913

Creation of

Input  𝐮



Plant model - Local linear model tree (LOLIMOT)

 Identification data

 𝑑1 … expected constant → 4 different 
levels across operating region 
between 110 and 120 °C

 𝑢1, 𝑢2 … pseudo random binary 
signals + deterministic part

10.09.2019 Retzhof, 201914



Plant model - Local linear model tree (LOLIMOT)

10.09.2019 Retzhof, 201915

plant



Plant model - Local linear model tree (LOLIMOT)

*Hartmann B., Ebert T., Fischer T., Belz J., Kampmann G., Nelles O.: "LMNtool - Toolbox zum automatischen Trainieren lokaler Modellnetze", 22. Workshop Computational
Intelligence, Dortmund, Dezember 2012.

10.09.2019 Retzhof, 201916

Model creation*

LOLIMOT

algorithm

model 1

model 2

 𝑦1

 𝑦2

„delays“

𝑑
𝐮

„delays“

local model order 𝑛 = 5
number of local models 𝑀 = 10



Plant model - Local linear model tree (LOLIMOT)

10.09.2019 Retzhof, 201917

 Comparison LOLIMOT 
model vs. measurement



Controller
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 𝐽𝑘 =  
𝑖=1

𝑛𝑝 𝐫𝑘+𝑖 −  𝐲𝑘+𝑖

𝑇
𝐐 (𝐫𝑘+𝑖 −  𝐲𝑘+𝑖) +  𝑖=0

𝑛𝑐−1
𝐮𝑘+𝑖

𝑇 𝐑 𝐮𝑘+𝑖 +  𝑖=0
𝑛𝑐−1

𝐮Δ,𝑘+𝑖
𝑇 𝐑Δ 𝐮Δ,𝑘+𝑖

 min
𝐮𝑘,…,𝐮𝑘+𝑛𝑐−1

𝐽𝑘, subject to

𝐮𝑚𝑖𝑛 ≤ 𝐮𝑘 ≤ 𝐮𝑚𝑎𝑥,

 𝐱𝑘+1 = 𝐀𝑘𝐱𝑘 + 𝐁𝑢,𝑘𝐮𝑘 + 𝐁𝑑,𝑘𝑑1,𝑘,

  𝐲𝑘 = 𝐂𝑘𝐱𝑘

Minimum (strand „pile up“) and

maximum (strand disruption) 

intake speed

Time varying state space

model, obtained from

LOLIMOT representation



Controller – prediction model
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Attempt 1: 

 compute state space model from LOLIMOT

 use time invariant state space model for prediction along 𝑛𝑝

model 1
 𝑦1

„delays“

𝑑
𝐮

LOLIMOT

𝐱𝑘+1 = 𝐀𝑘 𝐱𝑘 + 𝐁𝑘 𝐮𝑘 + 𝐛1𝑘 𝑢𝑑

𝑦𝑘 = 𝐜𝑘
𝐓 𝐱𝑘

𝐀𝑘 ≈

0 ⋯ ⋯
1 ⋱
0 ⋱ ⋱

0 −𝑎0,𝑘

⋮ −𝑎1,𝑘−1

⋮ ⋮
⋮ ⋱ ⋱
0 ⋯ 0

0 −𝑎𝑛−2,𝑘−𝑛+2

1 −𝑎𝑛−1,𝑘−𝑛+1

𝐛1𝑘 ≈

0
⋮
0

𝑤𝑛,𝑘−𝑛+1

𝐁𝑘 ≈

𝑏0,𝑘
𝑢1 ⋯ 𝑏0,𝑘

𝑢𝑚

⋮ ⋮
𝑏𝑛−1,𝑘−𝑛+1
𝑢1 ⋯ 𝑏𝑛−1,𝑘−𝑛+1

𝑢𝑚

𝐜𝑘 =

0
⋮
0
1

𝑎, 𝑏, 𝑤



Controller – prediction model

10.09.2019 Retzhof, 201920

Attempt 1: 

 Linear MPC formulation

Poor tracking performance in simulation and on real plant

Attempt 2:

Use time varying state space model along prediction horizon

Nonlinear optimization problem

 Improved performance



Controller – results reference tracking
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Particle size distribution - measurement

10.09.2019 Retzhof, 201922

Multiple images of single 
particles are captured

Algorithm to compute 
characteristic sizes of the 
captured particles

E.g., area equivalent 
diameter 𝐷𝑎



Particle size distribution - measurement
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Controller – results particle size distribution

10.09.2019 Retzhof, 201924

Comparison to open 
loop operation at 
constant 𝑢1 and 𝑢2
(“no control”)

Distribution can be 
narrowed by 
suggested control 
strategy



Conclusion
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Systematic controller synthesis

 Implementation of MPC to a pharmaceutical manufacturing process

More narrow particle size distribution compared to open loop 
operation

 Improved strand temperature and therefore less downtime due to 
necessary manual intervention (e.g., after strand break)

Challenges and possible next steps:

Strand measurement

Mass flow fluctuations of the feeders

Strand guidance on conveyor belt



Conclusion – strand measurement

10.09.2019 Retzhof, 201926

Possible reason for fluctuations at 

constant actuation: radial strand

movement + small measurement

spot



Conclusion – mass flow fluctuations
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Conclusion – strand guidance conveyor belt

10.09.2019 Retzhof, 201928



Thank you for your attention!
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II. Daniel Ritzberger: Data-driven modelling of Polymer Electrolyte
Membrane Fuel cells for Fault Detection
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Motivation

Development goals for light duty FC Vehicle
– Source: US Department of Energy 2016

In automotive applications:
Typically, polymer electrolyte membrane
fuel cells (PEMFCs) are considered

Necessary key improvements: 
1. Increase in durability
2. Reduction of cost

Fuel cell:
Electrochemical reactor that directly
converts chemical to electrical energy
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Electrochemical Diagnostic Methods

Electrochemical Impedance Spectroscopy:

Total Harmonic Distortion Analysis:

Based on analyzing voltage / current data subjected to a superimposed
excitation signal (typically to the current)

Linear 
System

Non-linear 
System

• Sinusoidal excitation
• Small amplitude FC current / voltage behaviour is linear

• Multi-Sinusoidal excitation
• Increased amplitude Non-linear output responses
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Choose suitable equivalent circuit:

Off-line parameter
optimization

Frequency domain:

Parameters:

Diagnostics

Acquire Measurements:

Electrochemical Impedance Spectroscopy (EIS)

• Significant experimental time required to obtain full impedance spectrum
• Not directly applicable for on-line diagnostics during

transient (automotive) operation

Achieve on-line estimation of the electrochemical impedance
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Total Harmonic Distortion Analysis (THDA)

Linear System:
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Total Harmonic Distortion Analysis (THDA)

Non-linear System:

• THDA is entirely phenomenological
• Only a subset of non-linear output responses considered
• Frequency selection problem

THDA: Continuously apply simultaneous sinusoidal excitations
and monitor THD over time

Develope a unifying framework that extends the
electrochemical impedance to non-linear effects
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Workflow of On-line Impedance Estimation

The impedance in the frequency domain

Analog circuit synthesis
Extract parameters

is equivalently described in the discrete
time domain as a recursive filter
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Current Excitation

For the time domain estimation:
• Generic broad-band excitation

• Model-based Design of Experiments

Cramer-Rao Bound:

Optimization:
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Parameter Estimation

Discrete filter model is linear in its unknown parameters:
Efficient estimation via Least Squares (LS)

Recursive LS algorithm for on-line estimation well known and could be used as
an estimator

LS Assumption:
Only measured output affected by noise

Since autoregressive (e.g. dynamic)
system: past outputs also in 
regressor matrix

LS assumption inherently violated
 biased estimates!
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Total Least Squares

Least squares vs. Total least squares (TLS):
Ordinary LS minimizes squared output error

With TLS, the regressor matrix is subject to reconstruction as well

A recursive algorithm based on the generalized
TLS estimation technique has been developed
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Comparison RLS vs RGTLS

RLS

Simulated output response of equivalent circuit:
Added Gaussian noise at the output
Signal-to-noise ratio at 50db (= 315:1) 

• Unbiased estimates of the discrete filter parameters

• Transformation back to equivalent circuit parameters

RGTLS
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Analogue Circuit Synthesis

Foster equivalent circuit synthesis (1930):

Discrete difference equation
Continuous time transfer function
(Impedance)

Partial fractional expansion of impedance:

Automatic synthesis of equivalent circuits
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Experimental Results

• Small scale PEM Fuel cell (5 cm² active surface)
• 100% relative humidity, 80°C Stack Temperature

• APRBS measurements as well as reference EIS (for
validation) at different operating points (0.2, 1.0, 
1.5, 2.0 Acm-2 )

• APRBS measurement during transient load step
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On-line Estimation of Impedance

Sampling Frequency: 10kHz
APRBS Bandwith: 50Hz

Reference EIS:
Experimental time 3 minutes

On-line impedance estimation:
Initial estimate after 1 second,
afterwards, recursive estimation

Ritzberger, D., Striednig, M., Simon, C., Hametner, C., & Jakubek, S. (2018).
Online estimation of the electrochemical impedance of polymer electrolyte membrane
fuel cells using broad-band current excitation. Journal of Power Sources,
405, 150-161.
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On-line Estimation of Impedance

• Recursive, on-line estimation scheme has been developed

• Unbiased Parameter estimates obtained via RGTLS

• Automatic synthesis of equivalent circuits from data

• Validated on single cell experimental data

Summary:

How to deal with
non-linear

output responses? 
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Volterra Series

Volterra series description of non-linear systems:

Desired: Extension of electrochemical impedance to non-linear systems
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Output Response of 2nd Order Volterra Series

Applying a bi-tonal input signal

to a second order Volterra series, leads
to the following output response:
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Obtaining the Volterra Series

Direct estimation in general unfeasable due to curse-of-dimensionality

Use equivalence to dynamic, auto-regressive models:

is extended by polynomial model structure

Transformation back to Volterra series via harmonic probing algorithm
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Comparison: Linear vs. Non-Linear Model

Non-linear data set at low current densities

Comparing best fitting linear model to NARX model
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Volterra Kernel in Frequency Domain

For THDA:
The change of amplitude and phase for different operating conditions can be
concisely analyzed by investigating the relative kernel

By applying the harmonic probing algorithm, the Volterra kernels in the
frequency domain are obtained from the NARX model
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Non-linear Extension of Impedance

Ritzberger, D., & Jakubek, S. (2017). Nonlinear data-driven identification of polymer
electrolyte membrane fuel cells for diagnostic purposes: A Volterra series approach.
Journal of Power Sources, 361, 144-152.

Ritzberger, D., et al., AVL List GmbH. Method for diagnostics of a technical
system. WO2018083147A1. Granted: 2018 May 11

Summary:

• The Volterra series has been introduced as a suitable extension to the
electrochemical impedance

• Obtained from data via non-linear, autoregressive models (NARX)

• First order Volterra kernel equivalent to electrochemical impedance

• Higher order kernels describe harmonic and intermodulated output response
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Thank you for your attention!
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Tω(s) := ω1(s)
ω∗1 (s) =
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Design

Stability
L(z) :=

controller plant
actuator

T̃airgap = kV Tshaft

ν

m
ag

ni
tu

de
in

dB

notch filters

|Hπ(ejν)| = |H1(ejν)H2(ejν)|

result |L̃(ejν)| = |L(ejν)Hπ(ejν)|

r = 0.9975

r2 = 0.9995

r3 = 0.975

0dB

Tshaft

Tload

T̃shaft

adaptive filter

plant

T̃airgap = kV T̃shaft

controller
actuator

Notch Filter H(z) = K 1−2 cos(ν0)z−1+z−2

1−2r cos(ν0)z−1+r2z−2 , adaptive parametrisation.
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Design

Adaptive Filter Tshaft

Tload

T̃shaft

adaptive filter

plant

T̃airgap = kV T̃shaft

controller
actuator

Tan et al. 2011:

H(z) := T̃shaft(z)
Tshaft(z) = 1− 2 cos(ν0)z−1 + z−2

1− 2r cos(ν0)z−1 + r2z−2 =: y(z)
u(z) .

Minimize J (n) = 1
2 y2(n):

ν0(n + 1) = ν0(n)− µ d
dν0
J (n).
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Design

Adaptive Filter Tshaft

Tload

T̃shaft

adaptive filter

plant

T̃airgap = kV T̃shaft

controller
actuator

Tan et al. 2011:

ν0(n + 1) = ν0(n)− µ d
dν0
J (n).

Simulation Study
kV = 9.7, t ≥ 1: Tload(t) = 65− 400 sin(2π225t) + 300 sin(2π450t) Nm.

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems
Retzhof 2019
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Design

Splitting of Adaptation Process

Tload

TshaftT̃shaft

on

off

find ν0

ν0,1

ν0,2

ν0,n

frequency
estimation

activation
logic

adaptive filter

plant

T̃airgap = kV T̃shaft

controller
actuator
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Design
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Tload

TshaftT̃shaft
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off

find ν0
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frequency
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activation
logic

adaptive filter

plant
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Design

Splitting of Adaptation Process
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

frequency
magnitude at, beside, before oscillation.

x(n) = ηx ej2πfx Td n,Xk =
N−1∑
n=0

x(n)e−j 2πkn
N :

fxNTd = kx

|Xx|

k

|X
k
|
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Retzhof 2019
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Design

Splitting of Adaptation Process
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

frequency
magnitude at, beside, before oscillation.

x(n) = ηx ej2πfx Td n,Xk =
N−1∑
n=0

x(n)e−j 2πkn
N :

|Xx|

k

|X
k|
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Design

Splitting of Adaptation Process
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

real-time capability?!
frequency resolution: ∆f = 1

NTd

fxNTd = kx

|Xx|

k

|X
k
|

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems
Retzhof 2019



19

Design

Splitting of Adaptation Process
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

real-time capability?!
frequency resolution: ∆f = 1

NTd
⇒ Interpolated DFT.

fxNTd = kx

|Xx|

k

|X
k
|
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Design

DFT Interpolation
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

frequency resolution: ∆f = 1
NTd

.
leakage effect:

Xk =
N−1∑

n=0
ηx ej2πfx Td ne−j 2πkn

N

= ηx ejπ N−1
N ∆k sin(π∆k)

sin( πN ∆k) ,

where ∆k = fx NTd − k.

fxNTd = kx kmax

∆kmax

|Xkmax |

|Xkmax+1 |

|Xkmax−1|

|Xx|

|Xm|

k

|X
k
|
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Design

DFT Interpolation
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

frequency resolution: ∆f = 1
NTd

.
leakage effect:

fx = kx
NTd

= k + ∆k
NTd

q := |Xkmax+1 | − |Xkmax−1 |
|Xkmax |

≈ 2∆kmax |∆kmax |
1−∆k2

max

∆kmax ≈
√ q

2sgn(q) + q · sgn(q)

fxNTd = kx kmax

∆kmax

|Xkmax |

|Xkmax+1 |

|Xkmax−1|

|Xx|

|Xm|

k

|X
k
|
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Design

DFT Interpolation
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

Blackman-windowed signals, x̃(n) = x(n)w(n),
w(n) = 0.42− 0.5 cos( 2πn

N ) + 0.08 cos( 4πn
N ):

fx = kx
NTd

= k + ∆k
NTd

q := |Xkmax+1 | − |Xkmax−1 |
|Xkmax |

∆kmax ≈
3
4q

|X̃ (∆k)| ≈ |X̃x |e ln( 0.25
0.42 )∆k2

fxNTd = kx
kmax

|X̃x|

∆kmax

|X̃kmax |

|X̃kmax+1 |

|X̃kmax−1| |X̃m|

k

|X
k
|
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Design

Activation Logic
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

Undesired oscillation ⇒ filter activation desired:

Desired oscillation ⇒ filter activation undesired:

u = C(r,x, Tshaft, t)

u = C(r,x, Tshaft, t)

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems
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Design

Activation Logic, Pre-Checks:
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

Magnitude threshold: ηx = 2
0.42N |X̃x |

!
> Tmin

Isolated contribution: |X (∆kmax )|
|X (∆kmax±1)|

!= e ln( 0.25
0.42 )(∆k2

max−∆k2
max±1)

Frequency bound: |X̃kmax |
!
> max(|X̃1|, . . . , |X̃p|, |X̃Ng−q|, . . . , |X̃Ng |)

Steady-state:
Ns−1∑

i=0
|fx
(

n − iN
)
− fx

(
n − (i + 1)N

)
| !
< ε

Klemens Kranawetter, CD Laboratory for Model Based Control of Complex Test Bed Systems
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Design

Activation Logic, Filter-Placement:
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

Dynamical system with states
[
f1, f2, . . . , fNf , η1, η2, . . . , ηNf

]
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Dynamical system with states
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Design

Activation Logic, Filter-Placement:
TshaftT̃shaft

on

off

find ν0

ν0,1
ν0,2

ν0,n

Dynamical system with states
[
f1, f2, . . . , fNf , η1, η2, . . . , ηNf

]

Identify minimum w.r.t. η ⇒ exchange with new candidate:

im = min
i∈[1,...,Nf ]

{η1, η2, . . . , ηNf }

ηi (n + 1) =





ηx (n) = 2
0.42N |X̃x |, if ηx > ηim (n) ∧ i = im{

max
(
αηi (n), ζTmin

)
, if ηi (n) > 0

0, else
else.

fi (n + 1) =
{

fx (n), if ηx > ηim (n) ∧ i = im
fi (n), else.

[
f1(0), . . . , fNf (0), η1(0), . . . , ηNf (0)

]
=
[
ξ103, . . . , ξ103, 0, . . . , 0

]

read data

start

(
Xg, f,η, fx(n − 1)

)

find fx, ηx
(|X̃max|, kmax) = max(|Xg|)

∆kmax = 3
4

|X̃max+1|−|X̃max−1|
|X̃max|

fx = (kmax + ∆kmax) 1
NTd

ηx = 2
|X̃max|
0.42N

e
− ln( 0.25

0.42
)∆k2max

ηif
= max

(
αηif

,

sgn(ηif
)ζTmin

)

reduce
η

[ηmin, imin] = min(η)

f(imin) ← fx

η(imin) ← ηx

ηx
?
≥ min(η)

ηx
?
> Tmin

fx
?
> fmin

d
dt
fx

?
= 0

| X(∆kmax)
X(∆kmax±1)

| ?
= ψ(∆kmax)

Conditions
1-4

set notch frequencies

No

No

Yes

Yes

C
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Test Bed Results
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IV. Thomas Nigitz: Synchronization of the gas production and
utilization rates of a solid-to-gas process and a downstream
gas-to-X process



Synchronization of the gas production and 
utilization rates of a solid-to-gas process 
and a downstream gas-to-X process 

Thomas Nigitz, Markus Gölles, Christian Aichernig, 
Hermann Hofbauer, Martin Horn 
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Motivation –  
Valorization of inhomogeneous solids 

Slide 2 

■ Goal: Valorization of inhomogeneous solids like 

■ Biomass 

■ Waste 

 

■ Conversion of solids to gas  

creates homogeneous properties, 

making further processing easier 

 

■ Finally, the gas can be processed  

to valuable products 

 



Motivation – Conversion of solid to gas 

■ Analysis of the process chain 

■ Gas-to-X process demands constant gas properties 

■ Solid-to-gas process produces fluctuating amount of gas 

 Gas production and demand needs to be synchronized 

 

■ Synchronization 

■ Solid-to-gas process produces a surplus of gas, 
at least meeting the demand of gas-to-X process 

■ The remaining gas is burned in a gas-to-heat process 

 

 

 

Slide 3 



Motivation – Benchmark control strategy 

■ Constant pressure of the gas indicates proper synchronization 

 

■ Pressure is controlled by a valve  
 Automatic adjustment of the amount of burned gas 

 

■ Amount of solid is adjusted by a screw 
 Manual adjustment of the mean amount of produced gas 

 

 Large amount of gas is burned and manual adjustments are necessary 

 

 

 

 
Slide 4 

 Aim of this work:  Development of a novel control strategy  

   for synchronization 



Motivation – Requirements and limitations  
of the novel control strategy 

■ Requirements 

■ Reduced raw material costs 
 Reduced consumption of solids for the same amount of products X 

■ Reduced personnel costs 
 Eliminate need for manual adjustments at the screw 

■ Achieve control quality of benchmark control strategy 

 

■ Limitations 

■ Implementation at a PLC with standard software blocks 
 Limitation to PID-controllers extended by static functions 

■ No interruption of steady-state plant operation  
 Controller design without experiments 
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Content 

 

■ Motivation 

 

■ Model for controller design 

 

■ Controller design 

 

■ Experimental validation 

 

■ Conclusion 

Slide 6 



Model for controller design –  
Gas network as base 

Slide 7 

■ Next steps: Model the influence of the manipulating variables 

■ Influence of the electric frequency of the screw  

on the mass flow of produced gas 

■ Influence of the position of the valve  

on the flow conductance of the gas-to-heat process  



Model for controller design – Influence of the 
electric frequency of the screw 

Slide 8 

■ Model for the solid-to-gas process 

■ First-order system 

■ State variable: Mass of solids 

inside the process 

■ Gain: Determined from operating data 

■ Time constant: Determined from 

physical and chemical considerations 

 

■ Model for the screw 

■ Constant: Determined from screw data 



 

 

 

 

 

 

 

 

 

 

 

 

Model for controller design –  
Influence of the position of the valve 

Slide 9 

■ Model for the flow conductance of the gas-to-heat process   

■ Non-linear function including the valve characteristics 

■ Constants: Tuned to fit measurement data 

 

 

 

 

 

 

 

 

■ Existing compensation of valve characteristics 



 

 

 

 

 

 

Model for controller design –  
Linearization at the operating point 1/3 

Slide 10 

■ Notation 

■ Deviation variables 

■ Laplace-transform 

 

■ Linearization of the gas network 

 

 

 

 

 

■ Influence of electric frequency of screw in Laplace-domain 



Model for controller design –  
Linearization at the operating point 2/3 

Slide 11 

■ Notation 

■ Deviation variables 

■ Laplace-transform 

 

■ Influence of the position of the valve 

 

 

 

 

■ Including the existing compensation of valve characteristics 



Model for controller design –  
Linearization at the operating point 3/3 

Slide 12 

■ Notation 

■ Deviation variables 

■ Laplace-transform 

 

■ Final linear model in Laplace-domain 

 

 

 

 

 

 



Model for controller design – Summary 

Slide 13 

 
Controller 

 



Content 

 

■ Motivation 

 

■ Model for controller design 

 

■ Controller design 

 

■ Experimental validation 

 

■ Conclusion 

Slide 14 



 

 

 

 

 

 

Controller design – Basic idea 

■ If mass flow of burned gas contains only high-frequent components  
 Mean value of burned gas can be lowered 

 

■ Analysis of the model for controller design 

■ Screw acts via first-order system on the pressure   Slow influence on the pressure 

■ Valve acts via static gain on the pressure    Fast influence on the pressure 

 

■ Separation of pressure control in frequency domain 

■ Screw compensates for low-frequent fluctuations 
 Mass flow of gas that needs to be burned contains only high-frequent components 

■ Valve compensates for high-frequent fluctuations 

Slide 15 



Controller design – Controller structure –  
Two parallel PID-controllers 

Slide 16 

 

 

 

 

 

 



Controller design – Controller parametrization – 
Overview 

Slide 17 

■ Control task 

■ Disturbance rejection around the operating point 

 

■ Definitions 

■ Open-loop transfer functions 

 

 

■ Sensitivity function 

 

 

 



Controller design – Controller parametrization – 
Parametrization using the sensitivity function 

Slide 18 

■ Sensitivity function  

should be close to  

sensitivity function of 

benchmark control strategy 

 

■ Preparation of three sets of 

control parameters 

■ “slow” 

■ “moderate” 

■ “fast” 



Controller design –  
Simulation study 

Slide 19 

■ Simulation procedure 

■ Simulation of a sudden decrease of 
produced gas 

 Negative step of the disturbance at 1min 

 

■ Control error 

■ Benchmark control strategy leads to 
best disturbance rejection 

■ “Moderate” set of control parameters 
is the most promising 

 

■ Manipulating variables during operation 
with the novel control strategy 

■ Screw feeds more solid  
to produce more gas 

■ Valve closes for a short time  
to burn less gas 

 

 



Content 

 

■ Motivation 

 

■ Model for controller design 

 

■ Controller design 

 

■ Experimental validation 

 

■ Conclusion 
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Experimental validation – Implementation  
 

Slide 21 

■ Implementation of the novel control strategy at 

■ Industrial plant 

■ Standard PLC 

 Experimental validation was performed  
in a representative environment 

 

■ Setting of the operating point of the controllers at the 
switching between benchmark and novel control strategy 

■ I-controller:  

– Initialization of the integrator to allow bumpless switching 

■ PD-controller:  

– Addition of a desired offset to the controller’s output 

– Offset is initialized to keep the last valve position and 
reaches its desired value asymptotically 

 



Experimental validation  
– Measurement data 1/2 

■ Test procedure: Plant operated by 

1. Benchmark control strategy 

2. Novel control strategy, with set of 
control parameters 

1. “slow” 

2. “moderate” 

3. “fast” 

3. Benchmark control strategy 

 

■ Control error 

■ Similar control error  
for both control strategies 

 

■ Manipulating variables during operation 
with the novel control strategy 

■ Screw is automatically adjusted 

■ Valve operates around offset 

Slide 22 



Experimental validation  
– Measurement data 2/2 

■ Mass flows during operation with 

the novel control strategy 

■ Mass flow of produced gas  

is reduced 

■ Mass flow of gas further processed 

to product X is in the same range 

 Same amount of product for a 

reduced amount of solid 

 

■ Evaluation of the sets of control 

parameters 

■ Set “moderate” results in smallest 

fluctuations at the mass flows  

of gases  

 Set “moderate” is recommended 

Slide 23 



Content 

 

■ Motivation 

 

■ Model for controller design 

 

■ Controller design 

 

■ Experimental validation 

 

■ Conclusion 

Slide 24 



Conclusion 

■ Requirements of the novel control strategy are fulfilled 

■ Reduced raw material costs 
 Reduced consumption of solids for the same amount of products X 

■ Reduced personnel costs 
 Eliminated need for manual adjustments of the screw 

■ Achieve control quality of benchmark control strategy 

 

■ Limitations of the novel control strategy are considered 

■ Implementation at a PLC with standard software blocks 
 Limitation to PID-controllers extended by static functions 

■ No interruption of steady-state plant operation  
 Controller design without experiments 

 

Slide 25 

Thomas Nigitz 
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Optimization



RICHTEROPTIMIZATION.COM

21st Styrian Workshop on Automatic Control 
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Stefan Richter 
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Company Mission 
Systematically solve control and decision problems 
from diverse industries with tools from optimization to 
gain best performing and most efficient solutions.

Services & Products 
‣ Engineering services 
‣ Software for embedded optimization 
‣ Stand-alone optimization tools

Industries 
Industrial automation / machinery (Industry 4.0) 

Energy assets & markets 

Robotics 

Medical technology 

Transport

Person & Company

 3



What is optimization?



Optimization in a nutshell

globally optimal decision

locally optimal decision

OBJECTIVE

FEASIBLE SET

 5

Every (decision making) problem is an optimization problem!

min f (x)

bXiX x 2 X
<latexit sha1_base64="LsZlI07SaEEEAcAUbDyAvzVrw3E="></latexit>

  
(force, actions, designs, …)

min f (x)

bXiX x 2 X
<latexit sha1_base64="LsZlI07SaEEEAcAUbDyAvzVrw3E=">AAAEM3icbVPbbtQwEHW7XEq4tfDIi0W1vYhoteluu+wDUilI5QGJUnqTmlXlOJOsVccOtlPtKspH8DGIV/gMxBviFYlPwMmmVXdhpEiTc86Mx56ZIOVMm3b7+9x848bNW7cX7jh3791/8HBx6dGRlpmicEgll+okIBo4E3BomOFwkiogScDhODh/VfLHF6A0k+LAjFMYJCQWLGKUGAudLT5b8RMmcLQ2Wvd9Z8U3MDK5bpkWLvAI+5byE2KGQZCfFGeLy+1WuzL8r+PVzjKqbe9saf6PH0qaJSAM5UTrU6+dmkFOlGGUQ+H4mYaU0HMSw6l1BUlAD/LqVgVuWiTEkVT2EwZX6PWInCRaj5PAKssS9SxXgv/laBIoFg/N1Pl5pUuBTqOjTDAqQ5hBuRkZRWbASd2O44cQ2XZUv7ntRAZFvr+7U+Sdrut1+q7X2yxmRLECELVqq+d6m223358VSUVEfJlro+vZZJ7bnVUpCK8kW25nq1Q4TV+DSQgT5VPm71IQ+AMRunCaeMLYu5fU2msWM6Pdt3Y8hLtrqzpfvy63ia61zJ5LMm5cqSMWZwq0qynh8MIb5NLG6DIEN5v4JTeghE15AXzsWMDmwGYIWKblFOLVOlEZsIqZ0AZIiGV0RaxiI7GClBM6CSyVWINi0WQ4pODj1nRxB7aKkgNhWzrFZCZ6PsiZSLOKrAYtynh5RrkiOGQKqOFj6xCqmJ1VTIdEEWpvoW2qffiYWcne5aiBS+zjJym371PtSL8yPHF63drpe1c7crTR8jqtjffd5e2delsW0BP0FK0hD/XQNnqD9tAhougT+oK+om+Nz40fjZ+NXxPp/Fwd8xhNWeP3X8r2ZIA=</latexit>

(energy, time, €, …)min f (x)

bXiX x 2 X
<latexit sha1_base64="LsZlI07SaEEEAcAUbDyAvzVrw3E="></latexit>



Example #1: Trajectory optimization
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Driving energy Trip time

min

Z T

0
max{0, F (t)} v(t)dt

��� T

bXiX ma(t) = F (t)� ↵0 � ↵1v(t)� ↵2v(t)2 � wp(x(t))

r(t) =
da

dt

a(t) =
dv

dt

v(t) =
dx

dt
F (t) 2 F(v(t), x(t)) 8t 2 [0, T ]
rmin  r(t)  rmax 8t 2 [0, T ]
amin  a(t)  amax 8t 2 [0, T ]
0  v(t)  vmax(x(t)) 8t 2 [0, T ]

a(0) = 0, a(T ) = 0

v(0) = 0, v(T ) = 0

x(0) = 0, x(T ) = xT

DESCRIPTION OF  
FEASIBLE SET

OBJECTIVE
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Example #1: Trajectory optimization

F
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SETUP 1: Minimum-energy driving (trip time T given)

Example #1: Trajectory optimization

‣ T = 33 s 
‣ E = 22.6 J
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Example #1: Trajectory optimization

SETUP 2: Time-optimal driving

‣ T = 29.7 s 
‣ E = 32.2 J
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Key benefit of optimization: 
Systematic development



II. Automatically 
generate solution
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Two-step problem solving

CONSTRAINTS

I. Specify solutionminimize … 

subject to …

OBJECTIVE



Current and future development approaches

A classical development approach involves 
‣ Trial and error 
‣ Prototypes 
‣ Many iterations 
‣ Look-up tables 
‣ Heuristics, e.g. gain scheduling, anti-windup, … 
‣ Worst case sizing 
‣ Rules of thumb

A future development approach needs 
‣ Systematic procedures based on objective criteria 

(“model-based approach”) 
‣ Best performing / most efficient solutions 
‣ Transparent tuning and adaptability 
‣ Simple maintainability and knowledge transfer

FUNCTION-ORIENTED 
DEVELOPMENT

PERFORMANCE- AND 
EFFICIENCY-ORIENTED 
DEVELOPMENT

Optimization is the key tool for a performance- and efficiency-oriented development
 13



Not convinced yet?  
More examples to come



BOTTLENECK 
Movement of heavy mechanical load 
(60 kg horizontal, 115 kg vertical)

Packaging machine for pharmaceuticals

Example #3: Maximize packaging performance

 15



DRIVE TRAIN 

+5% 
OUTPUT

TRAJECTORY 

+15% 
OUTPUT

CONTROL 

−20% 
VIBRATIONS

40 → 48 boxes / minute
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Example #3: Maximize packaging performance



(SIMPLIFIED) GOAL 
Dynamically assign rope forces such that 
a reference force at the patient is realized 
AND minimal rope forces are ensured

Example #4: Safe movements with a rehabilitation robot

 17
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Fig. 4. Free-Body Diagrams with coordinate and variable definitions; 3D view and projection into y − z-plane. The object or human subject is connected to
the node N . The force F n acts on the subject, while the reaction force −F n acts on the robot.

IV. EVALUATION PROTOCOL

A. Identification of Apparent Dynamics

In a first experiment, we aimed to identify apparent robot
dynamics by exciting the node in all three directions. For
each direction individually, we modeled the robot as a linear
mass-damper system, whose uncompensated dynamics can be
captured by a simple linear model:

∆F̂i = mn̈i + dṅi , with i ∈ {x, y, z}. (14)

The parameters m and d are the model’s mass and damping
factor, and ∆F̂i is the predicted difference between reference
and actual force (as this is only the difference, gravitational
components do not occur in the equation).

In order to identify the two parameters, harmonic move-
ments at different frequencies were manually applied to the
node, separately for each direction. During these experiments,
the robot tracked a reference force in vertical direction of
200N, to maintain cable tension.

For the individual data sets for each direction, we found
m and d by minimizing the linear-quadratic cost function

J = |(Fref,i − Fn,i) − ∆F̂i|2 , i ∈ {x, y, z}. (15)

Values for velocity and acceleration of the node were calcu-
lated via offline differentiation of the low-pass-filtered node
position (non-causal 4th-order Butterworth with cutoff fre-
quency 10Hz).

As the elastic elements measure the force that acts on the
node, not directly on the user, the identified mass has to be
augmented by the mass of the beam and harness structure,
which is approximately 5 kg. This mass is mainly caused by
the emergency release system.

To validate the model, we recorded an additional data set
where all directions were excited simultaneously, to assess
cross-talk effects. To compare this data with the model pre-
dictions, we calculated the coefficient of determination R2.

B. Force Control Performance during Walking

In a second experiment, we aimed to quantify force control
performance in realistic conditions. Five subjects (2m/3f, aged
25-30y, weight 50-85kg) with no known movement disorders
participated. Subjects were asked to walk back and forth while
attached to the robot and receiving constant body weight
support for a duration of 30 s.

The controller described in Sec. III-B was used to track a
constant reference force in vertical direction, and zero forces
in horizontal directions, as long as the subject remained within
virtual workspace limits. At the workspace extremities, an
additional spring-like force was applied to limit the workspace
before reaching the actual mechanical limits. Subjects were
allowed to use the haptic information from these “virtual
walls”, especially in x direction, to know when to stop and
turn around. The experiment was done with two different BWS
values in z-direction: 10 kg and 25 kg. As the beam and harness
have an additional mass of 5 kg, the reference force in z-
direction was increased by an equivalent amount.

Off-line, the acquired force data was smoothed with a
4th-order phaseless Butterworth low-pass filter with a cut-off
frequency of 50Hz. Force tracking performance was evaluated
with the root mean square (RMS) error between the reference
and the actual force:

RMSi =

√√√√ 1

N

N∑

k=1

[Fn,i(k) − Fref,i]2 , i ∈ {x, y, z}. (16)

where N is the number of registered samples.

To assess the impact of these forces on human gait, we also
recorded the displacement of the node in the three directions,
which approximately reflects the movement of the subject’s
center of mass. From this data, we also calculated the node
speed in walking direction, by numerical differentiation with
a 10Hz, non-causal 4th-order Butterworth low-pass filter.

Graphic from: Vallery, Heike, et al. "Multidirectional transparent support for overground gait training." IEEE Rehabilitation Robotics, 2013.
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Example #4: Safe movements with a rehabilitation robot

Challenges 
‣ All problem data is parametric 
‣ Detection and handling of infeasibility 
‣ Fast & robust algorithm (1 kHz sampling)

➠

PERFORMANCE COMPARISON

1.4 ms  
IBM CPLEX

2.9 µs  
TAILORED

480x



GOAL 
Small inverter output current ripples 
both at steady state and at transients

1 Introduction 3

M

=

~~=
~~

~~~

Grid
Step-down
transformer

(Active)
rectifier

Dc-
link Inverter

Electrical
machine

Mechanical
load

Figure 1.1: Variable speed drive system

either a diode rectifier or an active front end. An inverter transforms these dc quantities back to ac at a
variable frequency, which is proportional to the rotational speed of the mechanical load. The dc-link
acts as energy storage element and decouples the rectifier from the inverter.

By adjusting the phase and amplitude of the rectifier voltages, the power flow between the grid and
the dc-link can be manipulated. Similarly, on the machine side, by adjusting the phase and amplitude
of the inverter voltages, the machine currents and thus the electromagnetic torque and magnetization of
the machine are controlled.

MV VSDs use line-to-line rms voltages between 690 V and 20 kV, with typical voltages in the range of
2.4 kV to 6.9 kV. Power ratings are usually in excess of one MVA. Due to the high currents and voltages,
high power semiconductor switches are used in the rectifier and inverter to commutate and control the
currents. The semiconductor switches are operated such that the resulting currents approximate, albeit
in a coarse manner, sinusoidal waveforms at steady-state operation.

As a well-known example for an MV VSD system, Fig. 1.2(a) depicts the ACS6000 and a typical MV
induction machine. The ACS6000 is based on the three-level neutral point clamped (NPC) topology
with water-cooled integrated gate commutated thyristors (IGCTs). It is rated at an output voltage
between 2.3 and 3.3 kV. In the single-drive configuration shown in Fig. 1.2(a), the ACS6000 provides
5 to 12 MVA. Up to 36 MVA are available in the multi-drive configuration.

1.1.2 Market Trends

Sales of industrial high power electronics is experiencing high annual growth rates. For MV drives,
for example, the growth rate is consistently above 10% per year with worldwide revenues of 3.7 billion
USD in 2014 [Cha12]. The high growth is driven by four major trends.

Electrification Combustion engines are increasingly being augmented or replaced by electrical drives
with the aims of increasing the efficiency, reducing emissions, reducing fuel consumption, and removing
the clutch and gear box to simplify the mechanical drive train. Examples of this include diesel-electric
propulsion systems for trains, large mining trucks, tug boats and large ships. In the oil and gas
industry, gas turbines in compressor trains have traditionally required a starter motor,which—if designed
accordingly—may also act as a helper motor, thus augmenting the gas turbine [KWK08]. Furthermore,
drives are about to fully replace gas turbines in large liquefied natural gas (LNG) compressor trains.
In the low voltage range, (hybrid) electric automotive vehicles constitute a major and rapidly growing
trend.

Renewable power generation and energy storage Wind turbines have traditionally relied on low-
voltage doubly fed induction machines. Modern wind turbines for the offshore market often exceed
3 MW and have adopted full back-to-back power conversion stages. For higher power ratings, MV
generators are used [CFB+06]. Pumped hydro storage systems are typically based on MV doubly-fed

Variable Frequency Drive (VFD) for Electric Motor

Rectifier Inverter

Example #5: Smoother inverter currents

 19

Joint work with T. Geyer (ABB Corporate Research, Switzerland)

GRID MOTOR



Solution 
‣ Compute time 7.5 µs (9 vars) - 17 µs (15 vars) @ 40 MHz FPGA 

‣ < 100 bytes of memory (no lookup tables) 
‣ Only 2 DSP multipliers needed

Model Predictive Pulse Pattern Control (MP3C)

minimize   magnetic flux error (ta1, ta2, ta3, tb1, tb2, tb3, tc1, tc2, tc3) 

subject to   
CONSTRAINTS

OBJECTIVE

0 ≤ ta1 ≤ ta2 ≤ ta3, 0 ≤ tb1 ≤ tb2 ≤ tb3, 0 ≤ tc1 ≤ tc2 ≤ tc3

 21

T. Geyer, N. Oikonomou, G. Papafotiou and F.D. Kieferndorf: Model predictive pulse pattern control.  
IEEE Trans. on Industry Applications, 48(2): 663-676, (2012)
S. Richter, T. Geyer, M. Morari: Resource-Efficient Gradient Methods for Model Predictive Pulse Pattern Control 
on an FPGA. IEEE Trans. Contr. Sys. Techn. 25(3): 828-841 (2017)

Example #5: Smoother inverter currents

PERFORMANCE COMPARISON

4.9 ms  
CPLEX@2.6 GHz

7.5 µs  
TAILORED@40 MHz

➠
42’500x



How to create fast & robust & slim 
optimization algorithms?



Illustrating case: Practical linear MPC formulation

Joint work with D. K. M. Kufoalor, L. Imsland and T. A. Johansen 

Structure Exploitation of Practical MPC Formulations for Speeding
up First-Order Methods

D. K. M. Kufoalor1, S. Richter2, L. Imsland1, and T. A. Johansen1

1 Dept. of Eng. Cybernetics, NTNU, Trondheim Norway
2 Richter Optimization, Zürich Switzerland
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S. Richter: Structure Exploitation of Practical MPC Formulations for Fast and Efficient First-Order Methods. 
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MOTIVATION: Oil production on seabed — MPC of separation unit (oil/water/gas)

Oil storage

Compact separation unit Gas compression unit

 23



Illustrating case: Practical linear MPC formulation

 24

1 Problem Setup

We consider the following Model Predictive Control (MPC) formulation that is motivated
from the compact subsea separation process in [9]:

min
�u,y,z

1

2
�uTR�u +

1

2
y
T
Qy + lT y +

nyX

j=1

pj(yj) +

nzX

j=1

qj(zj) (1)

s.t. y = ⇥y�u + yf
z = ⇥z�u + zf

�uj 2 �U(uj,�1), j 2 {1, 2, . . . , nu}

The vector of input changes �u is defined as the stacking of individual changes in each
of the nu input channels over the control horizon Nu, i.e. �u = (�u1,�u2, . . . ,�unu)
where �uj = (�uj,0,�uj,1, . . .�uj,Nu�1). Similarly, we define those ny measurements that
are penalized by both quadratic/linear terms and a sum of (nonsmooth) convex functions
pj as y = (y1, y2, . . . , yny ) where yj = (yj,1, yj,2, . . . , yj,Ny ). The nz measurements that
are penalized only by (nonsmooth) convex functions qj are denoted as z = (z1, z2, . . . , znz )
where zj = (zj,1, zj,2, . . . , zj,Nz ). The symbols Ny and Nz represent the respective prediction
horizons1.

We assume the penalty matrix R to be block-diagonal with blocks Rj = rj · I, rj > 0,
j 2 {1, 2, . . . , nu}, i.e. we assume that all input changes in a particular input channel j are
weighted equally, which is a common assumption in MPC. Also, we assume the penalty
matrix Q to be a positive diagonal matrix, which is a typical choice in practical applications
to ease tuning of the controller.

The functions pj and qj are convex, nonsmooth exact penalty functions for the outputs.
As an example,

pj(yj) =
¯
⇢j ·

NyX

k=1

max
�
0,
¯
yj,k � yj,k

 
+ ⇢̄j ·

NyX

k=1

max
�
0, yj,k � ȳj,k

 
, (2a)

qj(zj) =
¯
⌘j ·max

�
0,
¯
zj,1 � zj,1,

¯
zj,2 � zj,2, . . . ,

¯
zj,Nz � zj,Nz

 
. (2b)

In (2a), output deviations from the lower bound
¯
yj are penalized with the positive factor

¯
⇢j whereas deviations from the upper bound ȳj are penalized with the factor ⇢̄j . In case of
measurements zj , we have exemplified function qj for the case where only deviations from
a lower bound

¯
zj , associated with a weight

¯
⌘j , should be penalized (see (2b)). It is known

that if the penalty weights
¯
⇢j , ⇢̄j and

¯
⌘j are chosen large enough and the control authority

allows the outputs to be kept within the (upper and) lower output bounds, the solution
to the MPC problem with exact penalty functions (1) is identical to the one of an MPC
problem with ‘hard’ output constraints. However, if the control authority is insufficient,
the exact penalty MPC formulation remains feasible and at the same time allows to specify
a different weighting of output constraint violations via the penalty weights

¯
⇢j , ⇢̄j and

¯
⌘j .

1If the MPC formulation uses move blocking and output evaluation points, then Nu is the number of actual
control moves over the future horizon and Ny (Nz) is the number of output evaluation points.

2

MPC setup

‣ Affine system model (from state space model, step response model, …) 
‣ R, Q positive, diagonal matrices 
‣ Measurements y weighted quadratically/linearly (e.g. tracking) 
‣ Measurements y and z subject to penalty functions pj and qj, e.g.  

‣ Input u subject to input rate constraints

1 Problem Setup

We consider the following Model Predictive Control (MPC) formulation that is motivated
from the compact subsea separation process in [9]:

min
�u,y,z

1

2
�uTR�u +

1

2
y
T
Qy + lT y +

nyX

j=1

pj(yj) +

nzX

j=1

qj(zj) (1)

s.t. y = ⇥y�u + yf
z = ⇥z�u + zf

�uj 2 �U(uj,�1), j 2 {1, 2, . . . , nu}

The vector of input changes �u is defined as the stacking of individual changes in each
of the nu input channels over the control horizon Nu, i.e. �u = (�u1,�u2, . . . ,�unu)
where �uj = (�uj,0,�uj,1, . . .�uj,Nu�1). Similarly, we define those ny measurements that
are penalized by both quadratic/linear terms and a sum of (nonsmooth) convex functions
pj as y = (y1, y2, . . . , yny ) where yj = (yj,1, yj,2, . . . , yj,Ny ). The nz measurements that
are penalized only by (nonsmooth) convex functions qj are denoted as z = (z1, z2, . . . , znz )
where zj = (zj,1, zj,2, . . . , zj,Nz ). The symbols Ny and Nz represent the respective prediction
horizons1.

We assume the penalty matrix R to be block-diagonal with blocks Rj = rj · I, rj > 0,
j 2 {1, 2, . . . , nu}, i.e. we assume that all input changes in a particular input channel j are
weighted equally, which is a common assumption in MPC. Also, we assume the penalty
matrix Q to be a positive diagonal matrix, which is a typical choice in practical applications
to ease tuning of the controller.

The functions pj and qj are convex, nonsmooth exact penalty functions for the outputs.
As an example,

pj(yj) =
¯
⇢j ·

NyX

k=1

max
�
0,
¯
yj,k � yj,k

 
+ ⇢̄j ·

NyX

k=1

max
�
0, yj,k � ȳj,k

 
, (2a)

qj(zj) =
¯
⌘j ·max

�
0,
¯
zj,1 � zj,1,

¯
zj,2 � zj,2, . . . ,

¯
zj,Nz � zj,Nz

 
. (2b)

In (2a), output deviations from the lower bound
¯
yj are penalized with the positive factor

¯
⇢j whereas deviations from the upper bound ȳj are penalized with the factor ⇢̄j . In case of
measurements zj , we have exemplified function qj for the case where only deviations from
a lower bound

¯
zj , associated with a weight

¯
⌘j , should be penalized (see (2b)). It is known

that if the penalty weights
¯
⇢j , ⇢̄j and

¯
⌘j are chosen large enough and the control authority

allows the outputs to be kept within the (upper and) lower output bounds, the solution
to the MPC problem with exact penalty functions (1) is identical to the one of an MPC
problem with ‘hard’ output constraints. However, if the control authority is insufficient,
the exact penalty MPC formulation remains feasible and at the same time allows to specify
a different weighting of output constraint violations via the penalty weights

¯
⇢j , ⇢̄j and

¯
⌘j .

1If the MPC formulation uses move blocking and output evaluation points, then Nu is the number of actual
control moves over the future horizon and Ny (Nz) is the number of output evaluation points.

2

The input-output relationship of the LTI system is encoded in terms of affine equality
constraints that relate input changes to outputs. The model parameters can either be
derived from a state space description of the dynamics or be obtained from experimental
data, for instance, step response tests (which is typical to industrial MPC formulations).
In any case, the model relates the free response yf (zf ), i.e. the effect of previously applied
inputs on the future output, and the forced response ⇥y�u (⇥z�u) to the predicted
measurements y (z).

The MPC setup in (1) also contains a set constraint on the input changes for each input
channel. The set is defined as

�U(u�1) ,
�
�v 2 RNu |�vi = vi � vi�1, |�vi |  �ui ,

¯
u  vi  ū, i 2 {0, . . . , Nu � 1},

v�1 = u�1
 
, (3)

and is parametrized by the scalar u�1, which is the input that was applied at the previous
sampling instant to the corresponding input channel. Other (static) parameters in the set
definition are the bounds on the input rate �ui as well as bound constraints

¯
u and ū on

the actual control inputs2. Note that by allowing for �ui = 1, i 2 {0, . . . , Nu � 1}, only
the bound constraints on the inputs remain.

In summary, the MPC problem in (1) is a multi-parametric convex program with parame-
ters yf 2 Rny ·Ny , zf 2 Rnz ·Nz and uj,�1 2 R, j 2 {1, 2, . . . , nu}. In case of changing output
references, vector l in the linear objective term also becomes a parameter.

2 Projection on Input Bound and Rate Constraints

First-order methods are iterative solution methods that generate a converging sequence of
iterates based on zero- and first-order information of the objective function and, in case of
constraints, projection operations onto the feasible set. In case of our problem setup in (1),
the feasible set is given as the intersection of an affine set and the sets of input bound and
rate constraints �U(uj,�1), j 2 {1, 2, . . . , nu}. Projecting straight on the intersection is
as hard as solving the original problem, so, all of the commonly applied first-order variants
work in an appropriate dual domain, e.g., by relaxing the linear equality constraints. This
technique is termed Lagrange relaxation in the literature [10].

In this section, we study the projection on the set of input bound and rate constraints. To
the best of the author’s knowledge, an explicit formula or finite algorithm for the projection
on this set is unknown - even in the absence of bound constraints. Therefore it is common
practice to augment the decision vector in the MPC setup (1) by the actual inputs, i.e. to
include the auxiliary variables vi in the definition of this set (cf. (3))3. This procedure
doubles the number of variables related to the input and also leads to an increased number
of dual variables if a dual solution approach is applied. Apart from keeping the number
of decision variables small to save computational resources, a smaller number of relaxed

2Since we also consider MPC formulations with input move blocking, we allow for variable bounds �u i on
the input rates.

3In the control community it is common practice to augment the state vector with the control input.
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Choose right solution method

 25

Typically first-order-type methods (classic/fast gradient or operator splitting methods) 
‣ Can make use of `structure’ in the problem (`tailoring’) 
‣ Numerically robust (can be made division free): No solutions to linear systems 
‣ Worst case convergence speeds known 
‣ Fast convergence to low/medium accuracy solutions 
‣ Slim memory footprint 
‣ Good for warmstarting from previous solution (MPC!)

Fast gradient method 
(Nesterov ’83, ’88, ‘05)

Classic gradient method 
(Cauchy, 1847)

EXAMPLE: min{f (z) | z 2 Q}
<latexit sha1_base64="wAAuj20nFqOEk9fomuOrFXT2IUA="></latexit>



Pitfalls to solve

 26

However, (fast) gradient method requires 
‣ Continuously differentiable objective f(z) (+ Lipschitz-continuous gradient) 
‣ Cheap evaluation of projection on feasible setmin{f (z) | z 2 Q}

<latexit sha1_base64="wAAuj20nFqOEk9fomuOrFXT2IUA="></latexit>

Recall MPC setup:

1 Problem Setup

We consider the following Model Predictive Control (MPC) formulation that is motivated
from the compact subsea separation process in [9]:

min
�u,y,z

1

2
�uTR�u +

1

2
y
T
Qy + lT y +

nyX

j=1

pj(yj) +

nzX

j=1

qj(zj) (1)

s.t. y = ⇥y�u + yf
z = ⇥z�u + zf

�uj 2 �U(uj,�1), j 2 {1, 2, . . . , nu}

The vector of input changes �u is defined as the stacking of individual changes in each
of the nu input channels over the control horizon Nu, i.e. �u = (�u1,�u2, . . . ,�unu)
where �uj = (�uj,0,�uj,1, . . .�uj,Nu�1). Similarly, we define those ny measurements that
are penalized by both quadratic/linear terms and a sum of (nonsmooth) convex functions
pj as y = (y1, y2, . . . , yny ) where yj = (yj,1, yj,2, . . . , yj,Ny ). The nz measurements that
are penalized only by (nonsmooth) convex functions qj are denoted as z = (z1, z2, . . . , znz )
where zj = (zj,1, zj,2, . . . , zj,Nz ). The symbols Ny and Nz represent the respective prediction
horizons1.

We assume the penalty matrix R to be block-diagonal with blocks Rj = rj · I, rj > 0,
j 2 {1, 2, . . . , nu}, i.e. we assume that all input changes in a particular input channel j are
weighted equally, which is a common assumption in MPC. Also, we assume the penalty
matrix Q to be a positive diagonal matrix, which is a typical choice in practical applications
to ease tuning of the controller.

The functions pj and qj are convex, nonsmooth exact penalty functions for the outputs.
As an example,

pj(yj) =
¯
⇢j ·

NyX

k=1

max
�
0,
¯
yj,k � yj,k

 
+ ⇢̄j ·

NyX

k=1

max
�
0, yj,k � ȳj,k

 
, (2a)

qj(zj) =
¯
⌘j ·max

�
0,
¯
zj,1 � zj,1,

¯
zj,2 � zj,2, . . . ,

¯
zj,Nz � zj,Nz

 
. (2b)

In (2a), output deviations from the lower bound
¯
yj are penalized with the positive factor

¯
⇢j whereas deviations from the upper bound ȳj are penalized with the factor ⇢̄j . In case of
measurements zj , we have exemplified function qj for the case where only deviations from
a lower bound

¯
zj , associated with a weight

¯
⌘j , should be penalized (see (2b)). It is known

that if the penalty weights
¯
⇢j , ⇢̄j and

¯
⌘j are chosen large enough and the control authority

allows the outputs to be kept within the (upper and) lower output bounds, the solution
to the MPC problem with exact penalty functions (1) is identical to the one of an MPC
problem with ‘hard’ output constraints. However, if the control authority is insufficient,
the exact penalty MPC formulation remains feasible and at the same time allows to specify
a different weighting of output constraint violations via the penalty weights

¯
⇢j , ⇢̄j and

¯
⌘j .

1If the MPC formulation uses move blocking and output evaluation points, then Nu is the number of actual
control moves over the future horizon and Ny (Nz) is the number of output evaluation points.
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not continuously differentiable

no closed-form projector known

projection on intersection 
very expensive

Contributions in referred articles: 
‣ Provably fast projector on  
‣ Proper reformulation of problem so that objective becomes continuously 

differentiable and projection on feasible set is doable
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of the nu input channels over the control horizon Nu, i.e. �u = (�u1,�u2, . . . ,�unu)
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are penalized by both quadratic/linear terms and a sum of (nonsmooth) convex functions
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are penalized only by (nonsmooth) convex functions qj are denoted as z = (z1, z2, . . . , znz )
where zj = (zj,1, zj,2, . . . , zj,Nz ). The symbols Ny and Nz represent the respective prediction
horizons1.

We assume the penalty matrix R to be block-diagonal with blocks Rj = rj · I, rj > 0,
j 2 {1, 2, . . . , nu}, i.e. we assume that all input changes in a particular input channel j are
weighted equally, which is a common assumption in MPC. Also, we assume the penalty
matrix Q to be a positive diagonal matrix, which is a typical choice in practical applications
to ease tuning of the controller.

The functions pj and qj are convex, nonsmooth exact penalty functions for the outputs.
As an example,

pj(yj) =
¯
⇢j ·

NyX

k=1

max
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0,
¯
yj,k � yj,k

 
+ ⇢̄j ·
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¯
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¯
zj,2 � zj,2, . . . ,

¯
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. (2b)

In (2a), output deviations from the lower bound
¯
yj are penalized with the positive factor

¯
⇢j whereas deviations from the upper bound ȳj are penalized with the factor ⇢̄j . In case of
measurements zj , we have exemplified function qj for the case where only deviations from
a lower bound

¯
zj , associated with a weight

¯
⌘j , should be penalized (see (2b)). It is known

that if the penalty weights
¯
⇢j , ⇢̄j and

¯
⌘j are chosen large enough and the control authority

allows the outputs to be kept within the (upper and) lower output bounds, the solution
to the MPC problem with exact penalty functions (1) is identical to the one of an MPC
problem with ‘hard’ output constraints. However, if the control authority is insufficient,
the exact penalty MPC formulation remains feasible and at the same time allows to specify
a different weighting of output constraint violations via the penalty weights

¯
⇢j , ⇢̄j and

¯
⌘j .

1If the MPC formulation uses move blocking and output evaluation points, then Nu is the number of actual
control moves over the future horizon and Ny (Nz) is the number of output evaluation points.
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Results
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HIL test setup 
‣ 58 variables: 3 inputs / horizon 6, 4 constrained outputs (2 tracked) / horizon 10 
‣ ABB AC500 PLC 

‣ MPC603e microprocessor @ 400 MHz 
‣ Dedicated HW FPU 
‣ 4 MB RAM 
‣ 4 MB integrated memory 

‣ Plain C code implementation, no tailored linear algebra

Computational performance
Iterations 

(average / max)
Computation time [ms] 

(average / max)
Coldstart 4 / 4 1.5 / 2.1

Warmstart 2 / 2 1.1 / 1.4

PLC program size: 0.18 MB (incl. precomputed data)
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MICROGRIDs & Modern Power Systems
• The worldwide use of renewable energies has increased 

significantly in recent years. Most renewable energy 
sources (RES) are relatively small-sized in terms of 
generation power and therefore often connected to the 
power system at the medium and low voltage levels 
typically interfaced to the network via AC inverters

4



MICROGRIDs & Modern Power Systems
• To facilitate the integration of a sizeable number of renewable distributed 

generation (DG) units, the concept of has become increasingly popular. 

• They represent locally controllable parts of a larger electrical network, 
consisting of several generation units, storage devices and loads. Typically, 
microgrids can be operated both in grid-connected and islanded mode.

5



MICROGRIDs & Modern Power Systems
• MICROGRIDs (MGs) constitute the bridge between:

Main Power Grid & Distributed Generators (DGs)

• DGs produce DC or AC VARIABLE Power:
– No inherent synchronization mechanism

– Need for complex control governing rules

6

• Desired features:

a) Easy integration/removal of DGs, 
storage systems and loads

b) Support of «Islanded-Operation» 

c) Robustness against uncertainties, 
perturbations and load variations



Hierarchical Control of MICROGRIDs

7

MICROGRID

PRIMARY CONTROL

SECONDARY CONTROL

TERTIARY  (OPERATIONAL) CONTROL

MAIN POWER GRID

F
E

E
D

B
A

C
K

  
 S

IG
N

A
L

S

• MG control has been 
standardized into a 3 Layer 
Control Architecture

• Main control issues:

– Stability and Power sharing

– Frequency and voltage
Restoration

– Dispatching of power flows
from/to the Main Power Grid
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Secondary Control (SC)

9

Primary Control

Power layer of an islanded MG The Primary Control loops introduce

deviations from the desired
DG’s output voltages and 
frequencies

Secondary Control aims to:
a. Compensate for these deviations

b. Guarantee the power sharing ratios

SC accomplishes the above tasks by properly 
redesigning the Primary Control reference signals



Centralized VS Distributed Control
MG CENTRALIZED CONTROL

• Latency and delays due to 

all-to-one communication

• Costly central computing and 
communication units

• Prone to single-point failures.

• Hardly scalable, no Plug&Play

10

Target: Make “Scalable” ,     
“Flexible” and “Robust”
MICROGRIDs operations

Multi-Agent Robust Control Paradigm



Some Existing Distributed 
Approaches

[a] Distributed-Averaging-PI-based scheme:
J. W. Simpson-Porco, Q. Shafiee, F. D¨orfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo,
“Secondary frequency and voltage control of islanded microgrids via distributed averaging,”
IEEE Trans. Ind. Electron., 62(11), 7025–7038, 2015.

[b] Feedback Linearization-based Distributed Tracking
F. Guo, C. Wen, J. Mao, and Y.-D. Song, “Distributed secondary voltage and frequency restora-
tion control of droop-controlled inverter-based microgrids,” IEEE Trans. Ind. Electron., 62(7),
4355–4364, 2015.

[c] Quadratic droop control
J. W. Simpson-Porco, F. Dorfler, and F. Bullo, “Voltage stabilization in microgrids via quadratic

droop control,” IEEE Trans. Autom. Control, 62(3), 1239–1253, 2017.
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MICROGRID MODEL
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MICROGRID MODEL

Frequency dynamics

Power droop control

Active and reactive power 
(measured)

Voltage primary PI control
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MICROGRID MODEL

Current primary PI control

LC filter and output connector
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MICROGRID MODEL
13th order model (for each generator)

Assumptions
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MICROGRID MODEL
13th order model (for each generator)

Assumptions
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Delay-free measurements and 
communication

18

Details and proofs can be found in 

A. Pilloni, A Pisano, E Usai
“Robust Finite Time Frequency and Voltage Restoration of Inverter-based 
Microgrids via Sliding Mode Cooperative Control”
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 
65(1), 907-917, January 2018



Frequency Restoration Problem
Due to the following relation between the DG’s 
frequencies and the active droop characteristic

the system’s specifications for the frequencies become

19

The frequency synchronization problem is thus converted
into a  consensus problem on frequencies and control
actions



Frequency Restoration Problem

20

“Consensus” is the terminology used in multi-agent
systems theory to denote the fact that the “agents” (in this
case, the DGs) “agree” on some quantity of interest (in this
case, the frequency values i and the control actions ni)

In consensus algorithms, each agent has a local controller 
which can only access informations from the local agent
and from the so-called “neighbours”.

Additionally, only a subset of the agents (called “leaders”) 
knows the frequency reference (“leader-follower”, or 
“tracking” consensus)



21

In the MG setup considered in our tests:

DG1 is the leader. Its only neighbour is DG2. 
Neighbours of DG2 are: DG1 and DG3.
Neighbours of DG3 are: DG2 and DG4.
The only neighbour of DG4 is DG3



Proposed Frequency Restoration Controller

22

A discontinuous reformulation of the “P - consensus” 
controller

Closed-loop frequency dynamics

Minimal control effort to 
reject the disturbances



23

Sketch of the proof

Proposed Frequency Restoration Controller

Along the above sliding manifold, both the control objectives of 
frequency synchronization and active power sharing are fulfilled
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Proposed Voltage Restoration Controller

A distributed reformulation of the twisting controller

Minimal control gains to 
reject the disturbances

The proof involves two distinct Lyapunov functions, and 
homogeneity concepts. Finite time achievement of the voltage 
restoration goal is proven.



Simulative Results

– MG with 4 generators and four
local loads

– Realistic Noisy Measurement
with SNR=90dB

– Load changes and faults
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Simulative Results

DG’s frequency 
waveforms.



Simulative Results
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Secondary frequency restoration control actions ωni(t), i = 1,2,3,4.
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Comparison between the expected, i.e., mi/mj, and the 
actual Power sharing ratio, i.e, Pi(t)/Pj(t).

Simulative Results
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RMS inverters’ output voltages vo,i(t) with i = 1,2,3,4.

Simulative Results
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Secondary voltage restoration control actions υni(t), i = 1,2,3,4.

Simulative Results
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Delayed measurements and 
communication
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Details and proofs can be found in 

M. Gholami, A. Pilloni, A Pisano, E Usai
“Robust consensus-based secondary frequency and voltage restoration of 
inverter-based islanded microgrids with delayed communications”
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 
Under review

M. Gholami, A. Pilloni, A Pisano, E Usai
“Robust consensus-based secondary voltage restoration of inverter-based 
islanded microgrids with delayed communications”
CDC 2018



Delayed measurements and 
communication
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Simplifed mathematical model



Delayed measurements and 
communication
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ASSUMPTION ON MEASUREMENT/COMMUNICATION DELAYS



Proposed Frequency Restoration Controller
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Linear consensus
algorithm with 
adaptive gains and 
dynamic  input 
extension

Integral sliding 
mode component

Monodirectional
adaptation laws



Proposed Frequency Restoration Controller
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Convergence of the frequency restoration controller is 
subject to the feasibility of the LMI system



38

Sketch of the proof

Proposed Frequency Restoration Controller

Along the sliding manifold s=0, which is invariant from the initial 
time instant on (integral sliding mode), the closed-loop frequency 
dynamics is

Error variables definition

Disagreement vector of the frequency restoration control actions
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Sketch of the proof

Proposed Frequency Restoration Controller
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Sketch of the proof – Lyapunov-Krasovskii functional

Proposed Frequency Restoration Controller
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By further defining the following state vectors

Proposed Frequency Restoration Controller

one manipulates the right-hand side of the LK functional as follows
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Proposed Voltage Restoration Controller

Linear consensus
algorithm with 
adaptive gains and 
dynamic  input 
extension

Integral sliding 
mode component

Mono-directional 
adaptation laws



Simulative Results

– MG with 4 generators and four local loads

– Load changes
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SIMULATIVE RESULTS
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SIMULATIVE RESULTS



46

SIMULATIVE RESULTS
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SIMULATIVE RESULTS
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SEAMLESS CONNECTION TO THE MAIN GRID-
PRELIMINARY RESULTS
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The idea:   changing the reference voltage and frequency 
values by an integral feedack depending on the voltage 
magnitude and phase errors between the main grid and the 
micro-grid



Novel frequency and voltage 
restoration laws

51

Phase error tends 
to zero

Magnitude error tends to zero



Conclusion and future developments
• Conclusions:

– Distributed sliding mode control techniques have been 
developed to attack the voltage and frequency restoration 
problems in the secondary control layer of a microgrid, also 
including the presence of measurement and communication 
delays. 

– Preliminary results on SC design by addressing the seamless 
connection to the grid were also given

– Simulations, carried out using realistic grid components models, 
show promising results.

52

• Future developments

– Active loads management                - Experimental validation

– Reactive power sharing
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Motivation and Contribution

Motivation

Super twisting algorithm (STA): homogeneous, thus, achieves finite
time convergence (FTC) for certain type of bounded disturbance

Only lower bounds on parameters provided so as to ensure FTC
[Seeber, Horn, 18], [Moreno, Osorio, 12]

If a disturbance trespasses the presumed bound occasionally only,
states may diverge from the equilibrium, but converge again in finite
time once the disturbance reenters the bound [Zhang, Reger, 18].

A homogeneous H∞-norm for STA of non-zero degree is studied in
[Zhang, Reger, 18] by carrying out a traditional linear H∞-norm
analysis with the linear-like transformed system of STA.

The norm is local, but the region of optimal parameter set is global.
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Motivation and Contribution

Contribution

We propose a homogeneous H∞-norm of zero degree, thus, global
and constant. Such norm cannot be directly applied to STA. We
resort to a generalized system, including linear systems and STA.

We provide a method for calculating this norm. After data collection,
we are able to verify the region derived by [Zhang, Reger, 18] by
calculating its corresponding homogeneous H∞-norm.

This way, we justify control parameter preferences for such systems.

We present the analytical closed norm in the above preference
region, and reproduce the worst input that achieves such norm.
This makes the norm a tight H∞-norm.

Interesting behavior of such non-linear system is also studied.
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HomogeneousH∞ norm of non-zero degree

System model of STA and transformed coordinate

The disturbed STA in closed loop reads [Moreno, Osorio, 08]

ẋ1(t) = −k1dx1(t)c 1
2 + x2(t) + c |x1(t)| 12φ1(t)

ẋ2(t) = −k2dx1(t)c0 + b φ2(t)

where dxcp is the sign preserving power d·cp = | · |psign(·). For most of
the time we have |φ1| < 1 and |φ2| < 1.

A sufficient stability result [Moreno, Osorio, 08] gives lower bounds for
the gains to ensure FTC:

k1 > 2c, k2 > k1
ck1 + 3b + 2(c/4 + b/k1)2

(k1 − 2c)
.

Let φ> =

[
φ1

φ2

]
and introduce a state transformation as ξ> =

[
dx1c

1
2

x2

]
.
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HomogeneousH∞ norm of non-zero degree

Linear like structure and H∞-norm

Then
ξ̇ = |x1|−1/2Aξ + Bφ,A =

[
−1

2k1
1
2

−k2 0

]
,B =

[ c
2 0
0 b

]
, x1 6= 0.

The H∞-norm can be interpreted as L2 gain from a transformed input to
a transformed output [Khalil, 03], [Hong, 01].

Allowing φ2 to trespass the bound finitely many times, s.t.

Φ =

{
φ1, φ2 ∈ L2

∣∣∣∣
k2 < |bφ2(t)|<M, t ∈ [t0, t1]

|bφ2(t)| ≤ b, t ∈ R\[t0, t1]

}
,

then we can use the traditional definition of H∞- norm

λ(k1, k2) = sup
φ∈Φ

‖Eξ‖2

‖φ‖2

where E = diag{√E1,
√

E2}, E1,E2 > 0, as means to put emphasis.
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HomogeneousH∞ norm of non-zero degree

Algebraic Riccati Inequality

Similar to [Başar, Bernhard, 95], choose V = ξ>Pξ with P> = P > 0
and define J = V̇ + ξ>E>E ξ − λ2φ>φ.

Then for ξ(0) = 0 we have V (0) = 0 and if J(t) ≤ 0 for t ∈ [0,T ]

∫ T

0
J dt =V (T )−V (0)+

∫ T

0
ξ>E>E ξdt − λ2

∫ T

0
φ>φdt ≤ 0.⇔ ‖Eξ‖2 ≤ λ‖φ‖2

J = 2 ξ>P ξ̇ + ξ>E>E ξ − λ2φ>φ

= |x1|−
1
2 ξ>
(
PA + A>P + |x1|

1
2 (E>E + λ−2PBB>P)

)
ξ − λ2|φ− λ−2B>Pξ|2.

Since −λ2|φ− λ−2B>Pξ|2 ≤ 0, satisfying the following algebraic Riccati
equation (ARE) with an estimate max |x1| < xb leads to J ≤ 0:

PA + A>P + x1/2
b λ−2PBB>P + x1/2

b E>E = 0.
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HomogeneousH∞ norm of non-zero degree

The H∞-norm parameter range

In [Zhang, Reger, 19] it is shown that the optimal k1 for a fixed k2 is

k?
1 ,

√
4k2 +

c2E1 − 4b2E2

c2E2k2
2 + 4b2E2k2 + b2E1

k2
2 ,

λ?(k?
1 , k2) ,

√
c2E2k2

2 + 4b2E2k2 + b2E1

k2
2

xb .

As in [Zhang, Reger, 18] the optimal k?1 is devoid of xb.

Further note that taking the limits of ratio E1/E2 leads to

k1 ,
√

4k2 − 4b2k2
c2k2+4b2 ≤ k?1 ≤

√
4k2 + c2

b2 k2
2 , k1.

The authors of [Zhang, Reger, 18] recommend for controller design to
choose k1 ≥ k1 and for observer design k1 = k1.
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HomogeneousH∞-norm of zero-degree
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HomogeneousH∞-norm of zero-degree

SOSMA and its homogeneous H∞-norm of zero-degree

The SOSMA in general form has the closed loop form [Sánchez, ect, 17]

ẋ1 = −k1dx1c
1

1−d + x2

ẋ2 = −k2dx1c
1+d
1−d + b φ

(1)

This system is of homogeneous degree d ∈ [−1, 0] with homogeneous
weight τx1 = 1− d , τx2 = 1 of τφ = 1 + d .

For d = 0 system (1) is the linear case, for d = −1 it is the STA.

Now use transformed state ξ =
(
dx1c

1
1−d , x2

)>, see [Moreno, Osorio, 08].
As in [Zhang, Reger, 18] define a homogeneous H∞-norm of degree 0,
which for any d ∈ (−1, 0] is

γ′(k1, k2, b) = sup
φ 6=0

‖Eξ‖2

‖dφc 1
1+d ‖2

.
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HomogeneousH∞-norm of zero-degree

Lemma

Lemma (Hestenes, 66)
Let ψ : Rn → R and ω : Rn → R+, ω(x) ≥ 0 ∀x ∈ Rn, be continuous
homogeneous functions with the same weight τ = (τ1, · · · , τn) and
degree m such that

{x ∈ Rn\{0} : ω(x) = 0} ⊆ {x ∈ Rn\{0} : ψ(x) < 0}.

Then there exists a real number γ? such that for all γ ≥ γ? and all
x ∈ Rn\{0}, and some c > 0, we have ψ(x)− γω(x) < −c‖x‖m

τ,p.

Defining Jγ = V̇γ + E1|x1|
2

1−d + E2|x2|2 − γ2|φ| 2
1+d we can prove with

ω(x1, x2, φ) , |φ| 2
1+d

ψ(x1, x2, φ) , V̇γ + E1|x1|
2

1−d + E2|x2|2
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HomogeneousH∞-norm of zero-degree

Transform into search

Theorem
If the unperturbed system (1) with d ∈ (−1, 0] is asymptotically stable
with (k1, k2), then it is input-to-state stable (ISS). We can find Vγ ∈ C1

which satisfies

Jγ
∣∣
φ≡0 = V̇γ

∣∣
φ≡0 + E1|x1|

2
1−d + E2|x2|2 < 0 ∀x ∈ R2\{0}. (2)

For such Vγ a finite γ? exists for any γ > γ? and Jγ < 0 holds.

The bound γ? can be obtained from a search of

γ2 = max
x1,x2,φ

ζ(Vγ ,E1,E2, x1, x2, φ)

ζ =
V̇γ + E1|x1|

2
1−d + E2|x2|2

|φ| 2
1+d

(3)

on the unit sphere wrt. x1, x2, φ. Then search for γ′ = minVγ γ
2(Vγ).
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HomogeneousH∞-norm of zero-degree

Simplified search

Corollary
Let B =

[
0 b

]> and denote f (x) =
[
f1(x) f2(x)

]> where

f1(x) = −k1dx1c
1

1−d + x2, f2(x) = −k2dx1c
1+d
1−d

such that (1) becomes ẋ = f (x) + Bφ.

Then with Vγ from the Theorem, the search in (3) simplifies to

γ2 =

∣∣∣∣max
x1,x2

η(Vγ ,E1,E2, x1, x2)

∣∣∣∣
1−d
1+d

η = C

∣∣∣∂Vγ
∂x B

∣∣∣
2

1−d

−Jγ
∣∣
φ≡0

with C =

∣∣∣∣
(1 + d)

2

∣∣∣∣
1+d
1−d

−
∣∣∣∣
(1 + d)

2

∣∣∣∣
2

1−d

(4)

on the curve of the unit circle wrt. x1, x2.
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HomogeneousH∞-norm of zero-degree

Lyapunov function

Similar to [Moreno, Sanchez, Cruz-Zavala, 19] we build a homogeneous
Lyapunov function of homogeneous degree 2− d , that is

Vγ = a1V = a1

(
1−d
2−d |x1|

2−d
1−d − a12x1x2 + a2

2−d |x2|2−d
)
.

with parameter k2 > 0 and k1 >
√

k2 (for STA). In order to ensure
positive definiteness of V we use Young’s inequality [Moreno, Osorio, 12]

(
1

a12

)1−d

≥ a12

a2
⇔ a2 ≥ a2−d

12 .

For negative definiteness of V̇ , we need k2a12 ≤ k1. Then condition (2)
becomes

Jγ |φ≡0 = a1

(
V̇ |φ≡0 + E1

a1
|x1|

2
1−d + E2

a1
|x2|2

)
< 0.
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HomogeneousH∞-norm of zero-degree

Search process

The search for any single γ′(k1, k2, b,E1,E2) is performed as follows:

1. First find an a1 ≥ 0 small enough, yet under which the range of
(a12, a2) satisfing (2) still exists. Use such a1 as the first a1.

2. Fix an a1 from Step 1 or Step 5. Search the region of (a12, a2)
satisfing (2) by carrying out a search on the unit circle x2

1 + x2
2 = 1.

3. Within the region of (a12, a2) from Step 2, carry out a maximum
search for ζ(a1, a12, a2) in (3) on the unit sphere x2

1 + x2
2 + φ2 = 1

or search for η(a1, a12, a2) in (4) on the unit circle x2
1 + x2

2 = 1.

4. Conduct more refined searches and record the smallest γ among
this search as γ(a1).

5. Compare between γ(a1) and choose the next a1 to return to Step 2
for next loop from Step 2 to Step 4 – done until γ(a1) converges.

6. The smallest γ(a1) will be recorded as γ′.
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HomogeneousH∞-norm of zero-degree

Convergence of γ(a1)

We show the convergence of γ2(a1) formed by the outermost iteration

14 16 18 20 22 24

8

8.5

9

a1

γ
2
(a

1
)

Figure: d = −0.50, k1 = 1
3 (2k?

1 + k
?

1), k2 = b = 3, E1 = 0, E2 = 1.
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HomogeneousH∞-norm of zero-degree

Region and optimal a12, a2

Plot of the range for a12, a2 and the optimal pair in red cross by the
refined search as described in Step 2, 3, and 4:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

a2

a 1
2

Figure: d = −0.50, k1 = 1
3 (2k?

1 + k
?

1), k2 = b = 3, E1 = 0, E2 = 1.
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HomogeneousH∞-norm of zero-degree

Value of γ

We plot γ2(a1, a12, a2) for each point of the last figure.

To show convexity of γ2(a1, a12, a2) wrt. a12, a2, we set a max. to 500.

0
0.5

1

0

0.5

0

200

400

a2a12

γ
2
(a

1
,a

12
,a

2
)

Figure: d = −0.50, k1 = 1
3 (2k?

1 + k
?

1), k2 = b = 3, E1 = 0, E2 = 1.
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Analysis and Simulation
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Analysis and Simulation

Linear case

For d = 0 the Lyapunov function has the homogeneous degree
p = 2− d = 2, which amounts to the quadratic form V = ξ>P ξ.

Then Riccati equations and Hamiltonian matrices may help verify our
numerical approach using the homogeneous search. We may use that

P(1, 1) =
a1

2
, P(1, 2) = −a1a12

2
, P(2, 2) =

a1a2

2
.

In simulations, not shown here, the two agree with each other.
The optimal k1 for fixed k2 and any E1,E2 are

k†1(k2) =

√
2k2 −

k2
2 E2

2k2E2 + E1
, γ†(k†1 , k2) =

b
k2

√
(2k2E2 + E1) ,

k†1 ,
√

3
2

k2, k
†
1 ,

√
2k2.
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Analysis and Simulation

Linear case γ(k1)

We plot γ(k1) in the linear case d = 0 for k2 = b = 3.

1.5 2 2.5 3 3.5
0.8

1

1.2

1.4

k1

x1

2 3 4

2

3

4

k1

x2

γ
′

When k1 < k1, it is harmful to keep x1 small, while a bigger k1 ≥ k1 is
not improving |x1| significantly.

Note that at k1 = k1 a minimum of the L2-gain to x2 is achieved.
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Analysis and Simulation

Linear case γ(k2)

Now consider γ(k2) in the linear case d = 0 for k1 = 4, b = 3.

5 10 15 20

0.2

0.4

0.6

0.8

1

k2

x1

5 10 15 20

1

2

3

k2

x2

γ
′

Whenever k1 is fixed first, then raising k2 will reduce the gain.
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Analysis and Simulation

Linear case Bode plot
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k†1

2
√

k2√
k2

100 101
−20

−10

0

10

20

x 2

Figure: Bode plot for linear case, d = 0, k2 = b = 3.
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Analysis and Simulation

Table for d = −0.5, k2 = b, to state ξ1

To k1 a1 a12 a2 γ2

ξ1 0.8k?1 3.6242 0.2781 0.1640 1.6502
ξ1 0.9k?1 3.0672 0.3049 0.1712 1.2121
ξ1 k?1 2.6150 0.3332 0.1837 1.0353
ξ1

1
4 (3k?1 + k

?
1 ) 2.4857 0.3450 0.1898 1.0086

ξ1
1
3 (2k?1 + k

?
1 ) 2.4447 0.3491 0.1920 1.0038

ξ1
1
2 (k?1 + k

?
1 ) 2.3670 0.3571 0.1964 1.0000

ξ1
1
3 (k?1 + 2k

?
1 ) 2.4098 0.3489 0.1859 1.0000

ξ1
1
4 (k?1 + 3k

?
1 ) 3.4675 0.3449 0.1477 1.0000

ξ1 k
?
1 3.2298 0.3334 0.1436 1.0000

ξ1 1.1k
?
1 2.5034 0.3030 0.1394 1.0000

ξ1 1.2k
?
1 1.4941 0.2778 0.1713 1.0000

ξ1 10k
?
1 0.1177 0.0337 0.0692 1.0000

Table: Simulation results for d = −0.5, k2 = b = 3.

k?1 ,
√

3
2 (1− d)k2, k

?
1 ,

√
2(1− d)k2 similar to [Zhang, Reger, 18]
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Analysis and Simulation

Table for d = −0.5, k2 = b, to state ξ2

To k1 a1 a12 a2 γ2

ξ2 0.8k?1 20.7440 0.3194 0.1640 10.1215
ξ2 0.9k?1 19.0724 0.3528 0.1736 8.2788
ξ2 k?1 18.3070 0.3881 0.1879 7.8163
ξ2

1
4 (3k?1 + k

?
1 ) 17.8256 0.4031 0.1953 7.9012

ξ2
1
3 (2k?1 + k

?
1 ) 17.7650 0.4080 0.1979 7.9595

ξ2
1
2 (k?1 + k

?
1 ) 17.4967 0.4184 0.2036 8.1223

ξ2
1
3 (k?1 + 2k

?
1 ) 17.3311 0.4288 0.2094 8.3478

ξ2
1
4 (k?1 + 3k

?
1 ) 17.2163 0.4342 0.2128 8.4847

ξ2 k
?
1 17.8597 0.4466 0.2147 9.0000

ξ2 1.1k
?
1 26.2157 0.3793 0.1557 10.8900

ξ2 10k
?
1 77.4825 0.0590 0.0947 899.6336

Table: Simulation results for d = −0.5, k2 = b = 3.
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Analysis and Simulation

Table for d = −0.9, k2 = b, to state ξ1

To k1 a1 a12 a2 γ2

ξ1 0.8k?1 29.2440 0.2393 0.0650 194.925
ξ1 0.9k?1 24.7026 0.2593 0.0648 9.0321
ξ1 k?1 21.1062 0.2819 0.0673 1.7372
ξ1

1
4 (3k?1 + k

?
1 ) 18.9762 0.2914 0.0690 1.2458

ξ1
1
3 (2k?1 + k

?
1 ) 19.3528 0.2947 0.0696 1.1532

ξ1
1
2 (k?1 + k

?
1 ) 18.7921 0.3016 0.0710 1.0395

ξ1
1
3 (k?1 + 2k

?
1 ) 18.2543 0.3086 0.0726 1.0003

ξ1
1
4 (k?1 + 3k

?
1 ) 18.1248 0.3064 0.0713 1.0000

ξ1 k
?
1 16.7298 0.2962 0.0688 1.0000

ξ1 1.1k
?
1 21.7285 0.2693 0.0476 1.0000

ξ1 10k
?
1 1.3828 0.0296 0.0060 1.0000

Table: Simulation results for d = −0.9, k2 = b = 3.
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Analysis and Simulation

Table for d = −0.9, k2 = b, to state ξ2

To k1 a1 a12 a2 γ2

ξ2 0.8k?1 241.7791 0.2426 0.0647 1491.2
ξ2 0.9k?1 216.4065 0.2633 0.0647 77.4146
ξ2 k?1 201.3166 0.2865 0.0672 16.5137
ξ2

1
4 (3k?1 + k

?
1 ) 191.8945 0.2964 0.0690 12.2779

ξ2
1
3 (2k?1 + k

?
1 ) 189.8602 0.2998 0.0696 11.5111

ξ2
1
2 (k?1 + k

?
1 ) 190.7349 0.3067 0.0710 10.6335

ξ2
1
3 (k?1 + 2k

?
1 ) 188.4056 0.3139 0.0726 10.4764

ξ2
1
4 (k?1 + 3k

?
1 ) 189.2390 0.3170 0.0731 10.6491

ξ2 k
?
1 225.5373 0.3050 0.0636 11.4000

ξ2 1.1k
?
1 289.0625 0.2762 0.0491 13.7940

ξ2 10k
?
1 1375.0 0.0311 0.0069 1140.0

Table: Simulation results for d = −0.9, k2 = b = 3.
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Analysis and Simulation

Table for d = −0.99, k2 = b, to state ξ1

To k1 a1 a12 a2 γ′2

ξ1 0.8k?1 367.6528 0.2234 0.0476 1.6535× 1037

ξ1 0.9k?1 351.5625 0.2398 0.0461 6.4817× 1016

ξ1 k?1 266.9678 0.2586 0.0467 3.4859× 105

ξ1
1
4 (3k?1 + k

?
1 ) 284.3696 0.2666 0.0474 894.6875

ξ1
1
3 (2k?1 + k

?
1 ) 226.8147 0.2694 0.0477 186.9980

ξ1
1
2 (k?1 + k

?
1 ) 228.1454 0.2752 0.0484 15.4647

ξ1
1
3 (k?1 + 2k

?
1 ) 206.5975 0.2812 0.0493 2.9063

ξ1
1
4 (k?1 + 3k

?
1 ) 212.6851 0.2842 0.0497 1.6847

ξ1 k
?
1 227.9690 0.2894 0.0493 1.0000

ξ1 1.1k
?
1 241.7137 0.2631 0.0378 1.0000

ξ1 10k
?
1 13.0735 0.0289 0.0045 1.0000

Table: Simulation results for d = −0.99, k2 = b = 3.
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Analysis and Simulation

Table for d = −0.99, k2 = b, to state ξ2

To k1 a1 a12 a2 γ′2

ξ2 0.8k?1 2929.412 0.2237 0.0476 1.3503× 1038

ξ2 0.9k?1 2800.9 0.2401 0.0461 5.9904× 1017

ξ2 k?1 2696.375 0.2589 0.0467 3.6363× 106

ξ2
1
4 (3k?1 + k

?
1 ) 2847.656 0.2670 0.0474 9477.517

ξ2
1
3 (2k?1 + k

?
1 ) 2739.331 0.2698 0.0477 2025.8

ξ2
1
2 (k?1 + k

?
1 ) 2603.147 0.2756 0.0484 172.1261

ξ2
1
3 (k?1 + 2k

?
1 ) 2571.023 0.2815 0.0493 32.8112

ξ2
1
4 (k?1 + 3k

?
1 ) 2507.431 0.2846 0.0497 19.2136

ξ2 k
?
1 2730.862 0.2901 0.0493 11.9400

ξ2 1.1k
?
1 3841.735 0.2636 0.0361 14.4474

ξ2 10k
?
1 25564.98 0.0290 0.0027 1194.0

Table: Simulation results for d = −0.99, k2 = b = 3.
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Analysis and Simulation

Table for d = −0.99, k2 = 1.01b, to state ξ1

To k1 a1 a12 a2 γ′2

ξ1 0.8k?1 351.5625 0.2223 0.0469 2.2829× 1036

ξ1 0.9k?1 332.3364 0.2386 0.0454 8.8258× 1015

ξ1 k?1 267.6265 0.2573 0.0460 4.7689× 104

ξ1
1
4 (3k?1 + k

?
1 ) 251.4499 0.2653 0.0467 120.6760

ξ1
1
3 (2k?1 + k

?
1 ) 232.8552 0.2681 0.0470 25.4515

ξ1
1
2 (k?1 + k

?
1 ) 220.9900 0.2738 0.0477 2.1378

ξ1
1
3 (k?1 + 2k

?
1 ) 212.0911 0.2794 0.0486 0.3969

ξ1
1
4 (k?1 + 3k

?
1 ) 212.1474 0.2828 0.0490 0.2305

ξ1 k
?
1 241.8813 0.2880 0.0498 0.1367

ξ1 1.1k
?
1 241.6992 0.2618 0.0372 0.1367

ξ1 10k
?
1 11.2610 0.0288 0.0050 0.1367

Table: Simulation results for d = −0.99, k2 = 1.01b = 3.03.
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Table for d = −0.99, k2 = 1.01b, to state ξ2

To k1 a1 a12 a2 γ′2

ξ2 0.8k?1 3002.930 0.2226 0.0469 1.8665× 1037

ξ2 0.9k?1 2942.578 0.2389 0.0454 8.1233× 1016

ξ2 k?1 2543.900 0.2577 0.0460 4.9994× 105

ξ2
1
4 (3k?1 + k

?
1 ) 2483.235 0.2657 0.0467 1315.306

ξ2
1
3 (2k?1 + k

?
1 ) 3062.924 0.2684 0.0470 279.9135

ξ2
1
2 (k?1 + k

?
1 ) 2395.833 0.2741 0.0477 24.0043

ξ2
1
3 (k?1 + 2k

?
1 ) 2828.125 0.2801 0.0485 4.5349

ξ2
1
4 (k?1 + 3k

?
1 ) 2536.647 0.2832 0.0490 2.6579

ξ2 k
?
1 275.5264 0.2887 0.0485 1.6484

ξ2 1.1k
?
1 2669.271 0.2625 0.0433 1.9945

ξ2 10k
?
1 14651.16 0.0289 0.0047 164.8369

Table: Simulation results for d = −0.99, k2 = 1.01b = 3.03.
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Gain γ wrt. state ξ

−1 −0.5 0 0.5 1
−1

0

1
0
5

10

ξ2

ξ1

γ
2

Figure: Simulation results for γ2(ξ1, ξ2) with optimal a1, a12, a2, d = −0.5,
E1 = 0,E2 = 1, k2 = b = 3, k1 = 1

3 (2k?
1 + k

?

1).
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Constant input

If we input a constant φ, then at the equilibrium (x̄1, x̄2) we have

0 = −k1dx̄1c
1

1−d + x̄2

0 = −k2dx̄1c
1+d
1−d + b φ

which yields

x̄1 =

(
b
k2
φ

) 1−d
1+d

, x̄2 = k1

(
b
k2
φ

) 1
1+d

.

Thus the L2-gain from dφc 1
1+d to ξ̄1 is

γ2
ξ1

=

(
b
k2
φ
) 2

1+d

(φ)
2

1+d

=

(
b
k2

) 2
1+d

, γ2
ξ2

= k2
1

(
b
k2
φ
) 2

1+d

(φ)
2

1+d

= k2
1

(
b
k2

) 2
1+d

.
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Worst input

We may build a worst input as

φ(t) = W (D sign (sin(ωt)) + (1− D) sin(ωt))

where W is the magnitude of φ and ω is the frequency in rad/s of the
sine component.

D will proportionate the ratio between the step function and sine function.

d k1 W D f γ2
ξ1

γ2
ξ2

−0.75 10k
?
1 0.5 0.45 0.01 0.9975 1047.3

−0.90 10k
?
1 0.7 0.65 0.01 0.9974 1137.1

−0.99 10k
?
1 0.98 0.96 0.002 0.9989 1192.6

−0.999 10k
?
1 0.999 0.999 0.0001 0.9364 1123.1

Table: L2-gain for k2 = b = 3, T = 10−4s.
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Worst input: simulation
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Figure showing disturbance rejection

We plot γ2(φ) = maxx2
1 +x2

2 =1−φ2 ζ with optimal a1, a12, a2 collected by
Matlab or C.

0 0.2 0.4 0.6 0.8 1
0

5

10

φ

γ
2
(a

1
,a

12
,a

2
,φ

) 0.8k?

k?

k?

Figure: γ2(φ) on the unit sphere, sliced with φ, for values d = −0.5,
k2 = b = 3, E1 = 0, E2 = 1.
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Conclusions

Outline

1 Motivation and Contribution

2 Homogeneous H∞ norm of non-zero degree

3 Homogeneous H∞-norm of zero-degree

4 Analysis and Simulation

5 Conclusions
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Conclusions

Conclusions

We study the SOSMA in general form with a homogeneous H∞-norm
with zero homogeneous degree, thus, constant and global.

H∞-norm optimal parameter range, derived in [Zhang, Reger, 18],
is verified by calculating its corresponding global and constant γ.

We provide the closed form of such γ for the recommended region.

For fixed k2 and controller design, we recommend k1 ≥ k
?
1.

We notice that even though with larger k1 the worst γ remains
constant, yet the worst φ need to be much slower to reach such
gain. So practically, larger k1 renders x1 smaller.

For observer design, we notice optimality for k1 shifting from k1 to
k
?
1 from linear case to STA, in accordance with [Zhang, Reger, 18].

Thus, we recommend using k1 = k
?
1 in this case.
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Motivation Modeling Feedforward Design Output Feedback Design Results and Conclusion

Motivation

air storage

air
supply

computer

valves

wires

tubes

pneumatic
actuator

tubes

air
supply

valves

pneumatic
actuatorwires

computer

for constructive and fiscal reasons: significant spatial distance between
pneumatic actuators and corresponding compressed air supply

test bench at Technical University of Munich
emulates set-up, with tank instead of pneumatic actuator

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 1
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Problem Statement

starting point

I control input: valve voltage → mass flow
through valve (into tube)

I measurement: pressure downstream of valve

I goal: track fast pressure changes in tank

I challenge: time delay induced by significant tube length

outline of the talk

1. modelling of test bench

2. design of a flatness-based feedforward controller

3. design of a backstepping-based state feedback controller

4. design of a backstepping-based state observer

5. experimental validation of the output feedback tracking controller

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 2
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An Overview

pressurized
air supply

valve

tube of 5 m

tank

three main components:
valve, tube, tank
(modelling follows [Kern, 2017])

0 Lz

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 3
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The Tube

differential balance of mass, momentum and energy
assuming
I diffusion-free 1D flow
I negligible effects due to gravity
I constant geometry
I calorically perfect gas
I friction and heat transfer by correlation (fcomp, α)

⇓

3rd order hyperbolic PDE (extended Euler equations)

∂tρ− ∂z(ρv) = 0

∂t(ρv)− ∂z(ρv2 + p) = −fcomp
ρv |v|
2D

∂t(ρe)− ∂z(v(ρe+ p)) = α
πD

A
(T0 − T )− fcomp

ρv2 |v|
2D

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 4

z z + ∆z

ṁz+∆z

A
ṁz
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The Tank

integral balance of mass and energy
assuming
I perfectly mixed air in tank
⇒ spatially concentrated model

I constant geometry

⇓

2nd order ODE =̂ boundary system at z = 0

d

dt
ρvol(t) =

A

Vvol
(ρv)(0, t)

d

dt
pvol(t) = A

γ − 1

Vvol

[1
2

(ρv3)(0, t) +
γ

γ − 1
pvol(t)v(0, t)

+
1

ARvol

(
T0 −

pvol(t)

Rsρvol(t)

)]

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 5
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The Valve

proportional directional 5/3-way control valve
I assumption of negligible electrical and

mechanical dynamics
I identification of 2 grid maps

⇓

static relations =̂ boundary system at z = L

ṁin(t) = fṁ

(
pin(t)
psup(t) , ν(t)

)

ρin(t) =
1

RsT0 +RsfT (pin(t), ṁin(t))
pin(t)

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 6

pin
psup

p0
Tin
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Plant Model

coupling of submodels for

I valve (static relations)

I tube (3rd order quasilinear PDE)

I tank (2nd order nonlinear ODE)

by boundary conditions (inflow, outflow):

(ρv)(0, t) ≥ 0 :

ρ(0, t) = ρin(t)

(ρv)(0, t) = 1
A
ṁin(t)

(ρv)(L, t) ≤ 0 :

ρ(L, t) = ρvol(t)

(ρe)(L, t) = 1
2
ρvol(t)v

2(L, t) + 1
γ−1

pvol(t)

(ρv)(0, t) < 0 :

(ρv)(0, t) = 1
A
ṁin(t)

(ρv)(L, t) > 0 :

(ρe)(L, t) = 1
2
(ρv2)(L, t) + 1

γ−1
pvol(t)

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 7
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Simplified Models: Isothermal Model

additional assumption

I almost instantaneous thermal equilibrium with surroundings

⇒ isothermal flow with T (z, t) = T0

⇒ energy equation is redundant / superfluous

isothermal model (2nd order quasilinear PDE, 1st order linear ODE)

∂tρ+ ∂z(ρv) = 0

∂t(ρv) + ∂z(ρv
2 + a2

isoρ) = −fcomp
ρv|v|
2D

(ρv)(0, t) = 1
Aṁin(t)

d
dtρvol(t) = A

Vvol
(ρv)(L, t)

ρ(L, t) = ρvol(t)

with isothermal speed of sound aiso =
√
γRsT0

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 8
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Simplified Models: Linear Model

additional assumption

I small pressure variations

⇒ laminar flow with Ma < 0.1

⇒ nonlinear acceleration term ρv2 is negligible

⇒ linear friction

linear model (2nd order quasilinear PDE, 1st order linear ODE)

∂tρ+ ∂z(ρv) = 0

∂t(ρv) + a2
iso∂zρ = −kfric

32η0

D2
1
ρ0
ρv

(ρv)(0, t) = 1
Aṁin(t)

d
dtρvol(t) = A

Vvol
(ρv)(L, t)

ρ(L, t) = ρvol(t)

with additional friction factor kfric

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 9
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Model Comparison 1/2

I measurements: tank pressure pvol(t) and pressure pin(t) downstream
of valve

I simulation of all three models based on (measured) input pin(t)

0 0.35 0.7 1.05 1.4

1

2

3

4

t in s

p
in

b
a
r

pvol(t), linear

pvol(t), isothermal

pvol(t), plant

pvol(t)

pin(t)
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Model Comparison 2/2

I friction in linear model too small

I manual adjustment of friction factor → kfric = 4

0 0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

5

t in s

p
in

b
a
r
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pvol(t)

p
kfric=1

vol (t)

p
kfric=4

vol (t)
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Goal and Basic Idea

objective
transition the system (and the tank pressure
in particular) between two steady states

method

I flatness-based feedforward control for quasilinear hyperbolic PDEs
that are coupled to boundary ODEs
([Knüppel, 2015], [Knüppel and Woittennek, 2015])
I plant model X
I isothermal model X
I linear model X

I reliant on classical notion of flatness for boundary ODE at z = 0
I plant model 7
I isothermal model X
I linear model X

⇒ application to isothermal model (as more accurate than linear model)

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 12
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Isothermal System

boundary ODE at z = L

d
dtρvol(t) = A

Vvol
(ρv)(L, t)

ρ(L, t) = ρvol(t)

I differentially flat with flat output y(t) = pvol(t) (tank pressure)
I parametrization of tube’s boundary values:

ρ(L, t) = 1
RsT0

y(t), (ρv)(L, t) = Vvol

ARsT0
ẏ(t)

method of characteristics
I for hyperbolic systems: solution propagates along characteristic

curves with finite velocities
I velocities correspond to entries of diagonal matrix in special

representation of isothermal model:

∂tx +

[
aiso(1−x1−x2) 0

0 −aiso(1+x1+x2)

]
∂zx = f(x)

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 13



Motivation Modeling Feedforward Design Output Feedback Design Results and Conclusion

Feedforward Controller

I choice of desired (polynomial) trajectory t 7→ pr
vol(t) for tank pressure

I forward and backward integration (numerically) along characteristic
curves from z = L to z = 0 ⇒ wr(z, t)

I feedforward controller U r(t) = A(ρv)r(0, t) from boundary at z = 0

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 14
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Experimental Results: Feedforward Controller

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 15
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Backstepping Form

backstepping form for linear model

I normalized tube length z ∈ [0, 1]

I input (mass flow ṁin(t) through valve) acts on boundary at z = 1

I state transformation (ODE state is scaled density / pressure, PDE
state is linear combination of (ρv)(z, t) and ρ(z, t))

∂tw(z, t) = Λ∂zw(z, t) + A(z)w(z, t)

w1(0, t) = q0w2(0, t) + cη(t)

w2(1, t) = q1w1(1, t) + du(t)

η̇(t) = aη(t) + bw2(0, t)

with q0 = 1, c = −1, q1 = −e−2ατ0 , d = e−ατ0
A , a = −aisoA

Vvol
, b = 2aisoA

Vvol
,

Λ =

[
− 1
τ0

0

0 1
τ0

]
, A(z) =

[
0 −αe2ατ0z

−αe−2ατ0z 0

]

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 16
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Goal and Basic Idea

ODE
η(t)

↔ PDE
w(z,t)

← u

goal: design a feedback of the states w(z, t) and η(t) in order to
stabilize the equilibrium

(
w(z, t), η(t)

)
= (0, 0)

backstepping approach

I originally only for ODEs, later adopted to PDEs
(e.g. [Krstic and Smyshlyaev, 2008])

I over the last year, focus on coupled PDE-ODE and ODE-PDE-ODE
systems (e.g. [Di Meglio et al., 2018, Deutscher et al., 2018])

I new and simplified approach based on strict feedback structure

η̇ = f1(η,w)

ẇ = f2(η,w, u)

(for pneumatic system: same results as in [Kern and Gehring, 2017])

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 17
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1st Step: Stabilization of ODE 1/2

goal: stabilization of ODE subsystem

η̇(t) = aη(t) + bw2(0, t)

I requires (a, b) to be stabilizable

I virtual feedback
w2(0, t) = −kηη(t)

such that (a− bkη) < 0

state transformation (error state)

w̃(z, t) = w(z, t) + n(z)η(t)

I motivated by error w̃2(0, t) = w2(0, t) + kηη(t) ⇒ eT2 n(0) = kη
I choose n(z) such that ODE is stabilized and η impacts the PDE

only at z = 1, i.e. the actuated boundary

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 18
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1st Step: Stabilization of ODE 2/2

transformed system

η̇(t) = (a− bkη)η(t) + bw̃2(0, t)

w̃1(0, t) = q0w̃2(0, t)

∂tw̃(z, t) = Λ∂zw̃(z, t) + A(z)w̃(z, t) + bn(z)w̃2(0)

w̃2(1, t) = q1w̃1(1, t) + (eT2 − q1e
T
1 )n(1)η(t) + du(t)

initial value problem

d
dzn(z) = Λ−1

(
(a− bkη)I −A(z)

)
n(z), z ∈ (0, 1]

n(0) =

[
q0kη − c
kη

]

I (explicit) solution is exponential function

I transformation is fixed, depending on design parameter kη

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 19
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2nd Step: Backstepping Transformation 1/2

goal: cascading of the two hyperbolic PDEs

w̃1(0, t) = q0w̃2(0, t)

∂tw̃(z, t) = Λ∂zw̃(z, t) + A(z)w̃(z, t) + bn(z)w̃2(0)

w̃2(1, t) = q1w̃1(1, t) + (eT2 − q1e
T
1 )n(1)η(t) + du(t)

classical backstepping transformation

w̄(z, t) = w̃(z, t) +
∫ z

0
K(z, ζ)w̃(ζ, t) dζ = Tc[w̃(t)](z)

I Volterra integral transform with kernel K(z, ζ) ∈ R2×2 to be
determined

I see [Krstic and Smyshlyaev, 2008] for the generalization of ODE
backstepping to PDES
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2nd Step: Backstepping Transformation 2/2

transformed system

η̇(t) = (a− bkη)η(t) + bw̄2(0, t)

w̄1(0, t) = q0w̄2(0, t)

∂tw̄(z, t) = Λ∂zw̄(z, t) + a0(z)w̄2(0, t)

w̄2(1, t) = q1w̄1(1, t) + . . .n(1)η(t) +
∫ 1

0
. . . w̄(z, t) dz + du(t)

with a0(z) = [a1(z), 0]T defined by solution K(z, ζ)

kernel equations with integral boundary condition

Λ∂zK(z, ζ) + ∂ζK(z, ζ)Λ = K(z, ζ)A(ζ), 0 < ζ < z < 1

K(z, 0)Λ(e2 + q0e1) = bn(z) +
∫ z

0
K(z, ζ)bn(ζ) dζ − a0(z)

ΛK(z, z)−K(z, z)Λ = A(z)

I solvability based on classical kernel equations [Hu et al., 2015] and
those in [Deutscher et al., 2018, Lemma 6]

I solution K(z, ζ) is piecewise continuous and found numerically
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3rd Step: Feedback

state feedback (such that w̄2(1, t) = 0)

u(t) = −1

d

(
q1w1(1, t) + eT2

∫ 1

0
K(1, z)w(z, t) dz + eT2 Tc[n](1)η(t)

)

stabilized system

η̇(t) = (a− bkη)η(t) + bw̄2(0, t)

w̄1(0, t) = q0w̄2(0, t)
[
∂tw̄1(z, t)

∂tw̄2(z, t)

]
=

[
− 1
τ0

0

0 1
τ0

] [
∂zw̄1(z, t)

∂zw̄2(z, t)

]
+

[
a1(z)

0

]
w̄2(0, t)

w̄2(1, t) = 0

I for t > 2/τ0: w̄(z, t) = 0 (finite-stable PDE)
I original state decays exponentially:

w(z, t) = −n(z)η(t) = −n(z)e(a−bkη)tη( 1
τ0

), t > 2
τ0

N. Gehring, R. Kern An infinite-dimensional output feedback tracking controller for a pneumatic system 22

w̄2(z, t)

η(t)

w̄1(z, t)

z0 1



Motivation Modeling Feedforward Design Output Feedback Design Results and Conclusion

Goal and Basic Idea

ODE
η(t)

↔ PDE
w(z,t)

→ y

goal: design an observer that provides estimates for the states w(z, t)
and η(t) based on the collocated measurement of the pressure pin(t)
downstream of the valve:

pin(t) = RsT0

aiso

(
1
Au(t)− 2e−ατ0w1(1, t)

)
→ ȳvalve(t) = w1(1, t)

backstepping approach
I dual to controller design
I new and simplified approach based on strict feedforward structure

η̇ = f1(η,w)

ẇ = f2(η,w)

y = w

(for pneumatic system: same results as in [Kern et al., 2018])
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Observer Ansatz

ansatz for the observer

˙̂η(t) = aη̂(t) + bŵ2(0, t) + `η(ȳvalve(t)− ŵ1(1, t))

ŵ1(0, t) = q0ŵ2(0, t) + cη̂(t) + `1(ȳvalve(t)− ŵ1(1, t))

∂tŵ(z, t) = Λ∂zŵ(z, t) + A(z)ŵ(z, t) + `(z)(ȳvalve(t)− ŵ1(1, t))

ŵ2(1, t) = q1ŵ1(1, t) + du(t) + `2(ȳvalve(t)− ŵ1(1, t))

I copy of linear model with injection of error ȳvalve(t)− ŵ1(1, t)
I measurement could be used at boundary: q1ŵ1(1, t)→ q1ȳvalve(t)
I observer gains `(z), `1, `2 and `η to be determined

error dynamics (with ew(z, t) = w(z, t)− ŵ(z, t), eη(t) = η(t)− η̂(t))

ėη(t) = aeη(t) + bew,2(0, t)− `ηew,1(1, t)

ew,1(0, t) = q0ew,2(0, t) + ceη(t)− `1ew,1(1, t)

∂tew(z, t) = Λ∂zew(z, t) + A(z)ew(z, t)− `(z)ew,1(1, t)

ew,2(1, t) = (q1 − `2)ew,1(1, t)
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1st Step: Stabilization of ODE 1/2

goal: stabilization of ODE subsystem

ėη(t) = aeη(t) + bew,2(0, t)− `ηew,1(1, t)

ew,1(0, t) = ceη(t) + q0ew,2(0, t)− `1ew,1(1, t)

I requires (a, c) to be reconstructable

state transformation

ẽη(t) = eη(t) +

∫ 1

0

mT (z)ew(z, t) dz

I dual to first transformation in feedback design:

w̃(z, t) = w(z, t) + n(z)η(t)

I choose mT (z) such that ODE is stabilized and destabilizing terms
are moved to boundary at z = 1, where they can be compensated by
the observer gains
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1st Step: Stabilization of ODE 2/2

transformed error dynamics

˙̃eη(t) = (a−mηc)ẽη(t)− ˜̀
ηew,1(1, t)

ew,1(0, t) = q0ew,2(0, t) + cẽη(t)−
∫ 1

0
cmT (z)ew(z, t) dz − `1ew,1(1, t)

∂tew(z, t) = Λ∂zew(z, t) + A(z)ew(z, t)− `(z)ew,1(1, t)

ew,2(1, t) = (q1 − `2)ew,1(1, t)

with auxiliary observer gain ˜̀
η (for simplification)

initial value problem

d
dzm

T (z) = mT (z)
(
A(z)− (a−mηc)I

)
Λ−1

mT (0) =
[
mη b−mηq0

]
Λ−1

I analogous to IVP for feedback design
⇒ explicit solution is exponential function

I transformation is fixed, depending on design parameter mη such
that a−mηc < 0
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2nd Step: Backstepping Transformation 1/2

goal: cascading of the two hyperbolic PDEs

ew,1(0, t) = q0ew,2(0, t) + cẽη(t)− `1ew,1(1, t)−
∫ 1

0
cmT (z)ew(z, t) dz

∂tew(z, t) = Λ∂zew(z, t) + A(z)ew(z, t)− `(z)ew,1(1, t)

ew,2(1, t) = (q1 − `2)ew,1(1, t)

classical backstepping transformation

ew(z, t) = ẽw(z, t)−
∫ 1

z
P I(z, ζ)ẽw(ζ, t) dζ = T −1

o,1 [ẽw(t)](z)

I Volterra integral transform with kernel P I(z, ζ) ∈ R2×2 to be
determined

I inverse transformation with integral over [z, 1] due to measurement
at z = 1
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2nd Step: Backstepping Transformation 2/2

transformed system

˙̃eη(t) = (a−mηc)ẽη(t)− ˜̀
η ẽw,1(1, t)

ẽw,1(0, t) = q0ẽw,2(0, t) + cẽη(t) +
∫ 1

0
gT0 (z)ẽw(z, t) dz − `1ẽw,1(1, t)

∂tẽw(z, t) = Λ∂zẽw(z, t)− ˜̀(z)ẽw,1(1, t)

ẽw,2(1, t) = (q1 − `2)ẽw,1(1, t)

with gT0 (z) =
[
0 g2(z)

]
defined by P I(z, ζ) and auxiliary gain ˜̀(z)

kernel equations with integral boundary condition

Λ∂zP I(z, ζ) + ∂ζP I(z, ζ)Λ = −A(z)P I(z, ζ), 0 < z < ζ < 1

(eT1 − q0e
T
2 )P I(0, ζ) = gT0 (ζ) + cmT(ζ)−

∫ ζ
0
cmT(σ)P I(σ, ζ) dσ

ΛP I(z, z)− P I(z, z)Λ = −A(z)

I can be traced back to kernel equations of feedback design
⇒ numerical solution
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3rd Step: Observer Gains

observer gains such that no ẽw,1(1, t) in error dynamics:

`(z) = P I(z, 1)Λe1, `1 = 0, `2 = q1

`η =
(
mT (1)−

∫ 1

0
mT (z)P I(z, 1) dz

)
Λe1

stabilized system

˙̃eη(t) = (a−mηc)ẽη(t)

ẽw,1(0, t) = q0ẽw,2(0, t) + cẽη(t) +

∫ 1

0

[
0 g2(z)

] [ẽw,1(z, t)

ẽw,2(z, t)

]
dz

[
∂tẽw,1(z, t)

∂tẽw,2(z, t)

]
=

[
− 1
τ0

0

0 1
τ0

] [
∂z ẽw,1(z, t)

∂z ẽw,2(z, t)

]

ẽw,2(1, t) = 0

I decoupling into separate subsystems by additional transformation
I original state decays exponentially for t > 2/τ0

(similar to control error)
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Implementation

observer-based compensator
I state observer (Lax-Wendroff with 21 grid points)

∂tŵ(z, t) = Λ∂zŵ(z, t) + A(z)ŵ(z, t) + `(z)(ȳvalve(t) − ŵ1(1, t))

ŵ1(0, t) = q0ŵ2(0, t) + cη̂(t)

ŵ2(1, t) = q1ȳvalve(t)

˙̂η(t) = aη̂(t) + bŵ2(0, t) + `η(ȳvalve(t) − ŵ1(1, t))

I controller U(t) = U r(t) + U c(t) as sum of feedforward part U r(t)
and feedback part U c(t) based on control errors:

U c(t) = −q1
d

(
ŵ1(1, t) − wr

1(1, t)
)
− k0

(
η̂(t) − ηr(t)

)

−
∫ 1

0
kT (z)

(
ŵ(z, t) −wr(z, t)

)
dz

offline calculations
I desired eigenvalues for ODEs chosen as −20 1/s ⇒ kη and mη

I solution of kernel equations and IVPs (with only 21 grid points)
⇒ controller gain kT (z), k0 and observer gains `(z), `η
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Experimental Set-Up

observer feedback feedforward

valve
model

computer

test bench

online offline

U rU c

U

wr, ηrŵ, η̂

Y

ν

psup

p0

pvol

pin

ṁin

Uν
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Experimental Results: State Estimation
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Experimental Results: Output Feedback Tracking
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Summary

main features
I complete design process from modeling to experimental validation
I systematic use of models of different complexity
I derivation of infinite-dimensional output feedback tracking controller

further remarks
I backstepping-based anti-collocated observer (based on measured

tank pressure) outperforms presented collocated observer
I good performance of controllers designed based on early-lumping
I also promising results for a tube of L = 20 m
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Test Bench Parameters

D inner tube diameter 5.7 · 10−3 m
A cross-section area of the tube 5.03 · 10−5 m2

L length of the tube 5 m
ρ0 ambient air density 1.21 kg/m3

p0 ambient air pressure 1.01 bar
T0 ambient air temperature 293.15 K
Rs specific gas constant of air 287.05 J/kg·K
η0 dynamic viscosity 1.82 · 10−5 Pa · s
ε height of roughness elements 1.5 · 10−6 m
γ ratio of specific heats 1.4
Vvol tank volume 6.46 · 10−4 m3

Rvol thermal resistance 4 · 10−3 K/W
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Outline

1. HENSOLDT’s passive radar system

2. Tracking and data fusion

3. Results with real-world data
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Multiband coverage � simultaneous processing of transmitters:

• 16x FM transmitters (88 – 108 MHz)

• Up to 5 single-frequency networks

• DAB (174 – 240 MHz)

• DVB-T (474 – 786 MHz)

Processing:

• Real-time signal processing

• Real-time tracking and

data fusion system

External output-interfaces:

• Professional user HMI 

• Standardized data format (ASTERIX)

Different setups:

• Fully mobile vehicle

• Portable

• Stationary

TWINVIS: HENSOLDT’s passive radar system
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3-stage tracking and data fusion / software-architecture

1

2

3

1.) R3-Tracking: Bistatic plots (range, range-rate) � R3-Tracks
2.) Data Fusion: Range/range-rate-tracks � 3D-Tracks
3.) Feedback-Loop: Cartesian tracking with bistatic plots
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Measurements after plot-extraction

Ellipsoid defined by R

Passive localization:

„Non-cooperative illuminators (transmitters)”

• Transmitter not a part of the system

• Transmitter dislocated from receiver / sensor (e.g. radio / TV stations)

• Measurements are TDOAs (time-differences of arrival)

• From there obtain “bistatic range”   R = r1 + r2 – L  (delay path)

r1
r2

L

R = r1 + r2 – L 

+ (coarse) azimuth

Das Bild kann zurzeit nicht angezeigt werden.

+ Doppler

+ “bistatic range-rate”
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Tracking in (bistatic) range/range-rate-space

• Non-maneuvering targets:

Non-linear movements in R3-space 

• Maneuvering targets: 

Partially extremely sharp maneuvers in R3-space
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Tracking in (bistatic) range/range-rate-space

R
a

n
g
e

Range-Rate

• Non-maneuvering targets:

Non-linear movements in R3-space 

• Maneuvering targets: 

Partially extremely sharp maneuvers in R3-space

• Measurements with uncertainties

• (Bistatic) range error may be > 1 km for FM

• Clutter (false alarms)

• Correlation/association, tracking in R3-space

➠ Pre-validation and filtering of the data
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3-stage tracking and data fusion / software-architecture

1

2

3

1.) R3-Tracking: Bistatic plots (range, range-rate) � R3-Tracks
2.) Data Fusion: Range/range-rate-tracks � 3D-Tracks
3.) Feedback-Loop: Cartesian tracking with bistatic plots
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Correlation of range/range-rate-tracks, fusion to obtain 3D-tracks

• R3-track defines ellipse (2D) resp. ellipsoid (3D)

• Two ellipses have up to four intersection points

(two at most if common focal point)

• Intersect with further R3-tracks 

• Association for intersection of at least 3 R3-tracks

➠ Result is a 3D-track

• R3-track is updated � update intersection results

• Remember: all inputs with uncertainties

� Introduce z-planes (altitude hypotheses) to initially intersect

� Perform filter updates on hypotheses

� Monitor component likelihood within this altitude mixture

� Apply mixture reduction

• Remember: targets are possibly maneuvering

➠ Use IMM for tracking

• For all possible combinations of illuminators

➠ High number of possibilities to combine,

very high numerical complexity

➠ Track-to-track-correlation, SD-assignment (MHT)

ideal

real
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FM vs. single-frequency networks (SFN)

FM:      transmission of unique signals

R
a
n
g
e
 [
k
m

]

y
 [
k
m

]

FM
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FM vs. single-frequency networks (SFN)

FM:      transmission of unique signals
SFN:    same signal from different transmitters

SFN

Ghost 

targets
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3-stage tracking and data fusion / software-architecture

1

2

3

1.) R3-Tracking: Bistatic plots (range, range-rate) � R3-Tracks
2.) Data Fusion: Range/range-rate-tracks � 3D-Tracks
3.) Feedback-Loop: Cartesian tracking with bistatic plots
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Generation of 3D-tracks from range/range-rate-tracks

• Correlation/association of 

bistatic plots to 3D-tracks

• Associated plots do not enter R3-

tracking

➠ R3-tracks die out

➠ Significant load-reduction in 

the fusion stage
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Some target situation pictures created with real-world data

Ulm

Munich

Zurich

Frankfurt

More than 200 km surveillance range with a single sensor

Small slow aircraft

Helicopter with cluster of 3 sensors

Fighter aircraft

One sensor w/o LOS
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Why all the hassle when there is ADS-B?
Automatic Dependent Surveillance – Broadcast

Good match between passive radar and ADS-B

ADS-B

Passive Radar
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Why all the hassle when there is ADS-B?
Automatic Dependent Surveillance – Broadcast

ADS-B

Passive Radar

Fair match between passive radar and ADS-B altitude
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Why all the hassle? Not every aircraft is sending ADS-B!
Automatic Dependent Surveillance – Broadcast

ADS-B

Passive Radar

Passive radar observes aircraft w/o ADS-B

What‘s this?

No ADS-B
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Why all the hassle? Do you trust ADS-B?
Automatic Dependent Surveillance – Broadcast (AKA Aircraft-Twitter)

ADS-B DLH1EL

Passive Radar

ADS-B here constantly is off by about 2.5 km in x/y!

� Can use passive radar to validate ADS-B
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Thank you very much!

Passive radar:

• Single sensor detection range up to 250 km, highly agile targets

• High update rate (ca. 0.5 seconds) => good velocity accuracy

• Silent surveillance, no electromagnetic emission

• Support and/or backup of active systems, gap-filling
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Mobile Hydraulic Machines

Industry Applications: Forestry, mining, agriculture

Robust for long periods of time

Best Ratio force/space for mobility and autonomy

Reliability, safety in emergency hold/stop

(forwarder)
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Mobile Hydraulic Machines

Automation Objectives

Improve Efficiency

Safety

Driver stress alleviation

Autonomous or Supervised execution of frequent motions

Control Task

Feasible trajectories: safety actuator constrains

Solve Redundant kinematics

Robust Trajectory Tracking

Low accuracy instrumentation
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Mobile Hydraulics Systems

Complex System dynamics

Highly non-linear dynamics

Dead Zone

Big number of Unknown parameters

External perturbations

Mobile Hydraulics

Lack of instrumentation

Low accuracy
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Mechanical Model

Euler-Lagrange + Friction + Perturbations

M(q)q̈ + C (q, q̇)q̇ + G (q) + F (q̇) = τ + Φ(t), q ∈ R4

M - Inertia

C - Coriolis

G - Gravity

F - Friction

τ - Control forces

Φ(t) - External forces
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Independent Joint Control Approach

Euler-Lagrange + Friction + Perturbations

M(q)q̈ + C (q, q̇)q̇ + G (q) + F (q̇) = τ + Φ(t), q ∈ R4

M - Inertia

C - Coriolis

G - Gravity

F - Friction

τ - Control forces

Φ(t) - External forces

i-th Joint Dynamics (x1i = qi , x2i = q̇i )

ẋ1i = x2i

ẋ2i = Ni (x1i )
(
τi + fli

)
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Hydraulic Actuators

i − th Hydraulic Force

fhi = pai Aai − pbi Abi ,

ṗai = β
Vai (xpi )

(−ẋpi Aai + qai ) ,

ṗbi = β
Vbi (xpi )

(ẋpi Abi − qbi ) ,

xsi > 0
Figure: Piston Components

[
qai

qbi

]
=





[
csaiSai (xsi )

√
ps − pai

cbtiSbi (xsi )
√
pbi − pt

]
if xsi ≥ 0

[
−catiSai (xsi )

√
pai − pt

−csbiSbi (xsi )
√
ps − pbi

]
if xsi < 0.

Dead Zone
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Third-order Model

Third-order Model of i − th link
(x3i = fhi )

ẋ1i =x2i

ẋ2i =N1i (x1)
(

τi︷ ︸︸ ︷
λi (x1i ) x3i +fli

)

ẋ3i =β
[
−λi (x1i ) x2i ϕ0i + ϕ1i Si (xsi )

]
.

ϕ0i =
A2

ai
Vai (xpi )

+
A2

bi
Vbi (xpi )

, ϕ1i = Aai
Vai (xpi )

φai + Aai
Vai (xpi )

φbi .

φai = csai
√
ps − pai

sign(xsi+1)
2 − cati

√
pai − pt

sign(xsi−1)
2 ,

φbi = cbti
√
pbi − pt

sign(xsi+1)
2 − csbi

√
ps − pbi

sign(xsi−1)
2 .
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Third-order Model

Third-order Model of i − th link
(x3i = fhi )

ẋ1i =x2i

ẋ2i =N1i (x1)
(
λi (x1i ) x3i + fli

)

ẋ3i =β
[
−λi (x1i ) x2i ϕ0i + ϕ1i Si (xsi )

]
.

ϕ0i =
A2

ai
Vai (xpi )

+
A2

bi
Vbi (xpi )

, ϕ1i = Aai
Vai (xpi )

φai + Aai
Vai (xpi )

φbi .

φai = csai
√
ps − pai

sign(xsi+1)
2 − cati

√
pai − pt

sign(xsi−1)
2 ,

φbi = cbti
√
pbi − pt

sign(xsi+1)
2 − csbi

√
ps − pbi

sign(xsi−1)
2 .
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CONTROL DESIGN: Neglecting Fast Dynamics

A1 - Valve and Spool dynamics

High-response servo valves

Dead Zone and Proportional Spool displacement to
input signal

ψi (ui ) = Si (xsi )

A2 - Hydraulic Force Dynamics

Very big bulk modulus (β ≈ 1.7× 109 Pa)

Small ”time-constant” ετ = 1
β

ετ ẋ3i = −λi (x1i ) x2i ϕ0i + ϕ1i ψi (ui ); ετ ≈ 0

Reduced Order Model

ẋ1i = ϕ1i
λi (x1i )ϕ0i

ψi (ui ).
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Reduced-Order Error Dynamics

Dead Zone Inverse

ui = ψ−1(νi ) =





νi + bri if νi > δi

0 if |νi | ≤ δi

νi − b`i if νi < −δi .

Tracking error

Desired trajectory x1di

Tracking error
ei = x1i − x1di

Error Dynamics

ėi =
ϕ1i

λi (x1i )ϕ0i
νi − ẋ1di .
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Classical Sliding Mode Control

First Order System

σ̇ = γ(t)u + ϕ(t)

Assumptions

0 < km ≤ γ(t) ≤ kM

|ϕ(t)| ≤ C

First Order SMC

u = −αsign (σ)

Gain design

α >
C

km

Def. sign function

sign (σ) =





1 if σ > 0

[−1, 1] if σ = 0

−1 if σ < 0

Def. sign function
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Second-Order Sliding Mode Control

First Order System

σ̇ = γ(t)u + ϕ(t)

Assumptions

| d
dt
ϕ(t)
γ(t) | ≤ L

Super-Twisting Algorithm

u = −k1|σ|
1
2 sign (σ) + z

ż = −k2sign (σ)

Gain Design

k1 > 1.5
√
L

k2 > 1.1L

Properties

”Non-linear PI” controller

Exact compensation of Matched perturbations

Finite-time convergence to zero

Continuous signal of control
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Drawbacks

Chattering Effect

High frequency oscilations of outputs due to discontinuous signal of
control in presence of non-idealities.
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Sliding Mode Controllers

Barrier First Order Sliding Mode Control (FOSMC)

First Order SMC kf > 0

νi (ei ) = −Klb(ei ) sign (ei ) + kf ẋ1di

Log Barrier Function
αfi > 0

Klb(ei ) = αfi ln
(

ε
ε−|ei |

)

Barrier Super-Twisting Algorithm (STA)

Super-Twisting kf > 0

νi (ei ) = −h1 Lb(ei ) |ei |
1
2 sign (ei ) + ηi + kf ẋ1di

η̇i = −h2 L2b(ei ) sign (ei ) .

h1 = 1.5 and h2 = 1.1.

Barrier Function
αsi > 0

Lb(ei ) = αsi
|ei |
ε−|ei |
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Barrier SMC Properties

0
0

K
lb

L
b

−ε ε ei

Log Barrier Function αfi > 0

Klb(ei ) = αfi ln
(

ε
ε−|ei |

)

Klb(0) = 0

lim
ei→|ε|

Klb(ei ) =∞

Barrier Function αsi > 0

Lb(ei ) = αsi
|ei |
ε−|ei |

Lb(0) = 0

lim
ei→|ε|

Lb(ei ) =∞
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On-Line Trajectory Generation; Weighting Velocity Limits

0

0

q̇iMax

q̇iMin

qiMin qiMax

˙̄qiMax

˙̄qiMin

Example of functions wiMin and
wiMax .

Actuator Constrains i = 1, ..., 4

qiMin ≤ qi ≤ qiMax ,
q̇iMin ≤ q̇i ≤ q̇iMax ,

Weighting Functions

˙̄qiMin = wiMin(q̇iMin, qi ),
˙̄qiMax = wiMax (q̇iMax , qi ).

wiMin(·, qiMin) = 0

wiMax (·, qiMax ) = 0

Set of weighted velocities

Ω =
{
q̇2−4 ∈ R3| ˙̄qiMin ≤ q̇i ≤ ˙̄qiMax

}
.

Boundary q̇∗2−4 ∈ ∂(Ω).
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On-Line Trajectory Generation: Map Cylindric Coordinates

ṙ

r

q1= φ

ẋdẏd

żd

x

y

z

q2
q3

q4

Cylindric coordinates (r , φ, z) and
velocity vector inputs for the grapple.

Projections

q̇1d = 1
r (−ẋd sin q1 + ẏdcos(q1)) ,

md =

[
ṙd
żd

]
=

[
ẋd cosφ+ ẏd sinφ

żd

]

Reduced Jacobian Jr ∈ R2×3

[
ṙ
ż

]
= Jr



q̇2
q̇3
q̇4
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On-Line Trajectory Generation:

-5 -4 -3 -2 -1 0 1 2 3 4 5
-6

-4

-2

0

2

4

6

m∗
j

m∗
k bm∗

jk

am̂d

md

0

1

2

3

4

5

6

7

Projected velocity limits q̇2−4 to
the plane (r , z)

Attainable velocities

Φ =
{
m ∈ R2|m = Jr q̇2−4, q̇2−4 ∈ Ω

}
.

∂(Φ) : Convex hull

Linear combination

am̂d = m∗j + bm∗jk ,
where m∗jk = m∗k −m∗j

Desired velocites

q̇d2−4 = q∗j2−4 + bq̇∗jk2−5,
where q̇∗jk = q̇∗k − q̇∗j
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Results Barrier FOSMC
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Results Barrier FOSMC
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Results Barrier STA
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Results Barrier STA
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Conclusions

Barrier Sliding Mode Control:

Robust not oscillatory independent joint control

Error is ensured to belong to a vicinity of the origin
Weakening at the origin property alleviates oscillations of
high frequency

Ease of implementation in spite of high complexity and
high uncertainty in parameters

Invariant with respect to uncertainty and time-dependent
variations in parameters

Does not require system identification
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Thank you!

i.castillo@tugraz.at
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Preliminaries

Notation and Solution Concept

We use the notation (a, b ∈ R)

dacb = sign(a)|a|b,

with almost everywhere

d
da |a|

b = b dacb−1 , d
da dac

b = b|a|b−1.

We consider the Filippov solution [Filippov, 1988] for the system

ẋ = f(x, t), x(t0) = x0, x ∈ Rn, t ∈ [t0,∞) ,

with f probably discontinuous in x.
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Introduction

Motivational Questions

Is it possible to synthesize a sliding mode control law by the use of the
backstepping design process?

If yes, what is the advantage?
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Introduction

Preliminary Work

Combinations of backstepping and sliding mode control:
Sliding manifold design via backstepping (e. g. [Bartolini et al.,
1996], [Ferrara and Giacomini, 1998])

I backstepping until n− 1-step
I conventional sliding mode design afterwards

Combined backstepping sliding mode design process
(e. g. [Ríos-Bolívar et al., 1997], [Koshkouei and Zinober, 2000])

I augmention of the Lyapunov function in terms of the sliding variable
in the last step

New interpretation:
Sliding mode control as a result of backstepping.

I Based on extended non-smooth Lyapunov Theory for discontinuous
systems
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Main Concept

Conventional Backstepping [Krstić et al., 1995]

Consider the double integrator

ẋ1 = x2

ẋ2 = u.

We assume x2 = α(x1) and use as control Lyapunov function (CLF) for
the first subsystem

V1(x1) = 1
2x1

2

d
dtV1(x1) = x1α(x1) = W1(x1) < 0.

We claim

W1(x1) = −k1x12, k1 > 0

α(x1) = −k1x1.
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Main Concept

Conventional Backstepping [Krstić et al., 1995]

ẋ1 = α (x1) + (x2 − α(x1))

ẋ2 = u

Augmented CLF:

V = V1(x1) + V2(x2 − α(x1))

= 1
2x1

2 + 1
2 (x2 − α(x1))

2

d
dtV = x1α(x1)︸ ︷︷ ︸

=W1(x1)

+x1 (x2 − α(x1)) + (x2 − α(x1))
(
u− d

dtα(x1)
)

︸ ︷︷ ︸
=W2(x1,x2)

= W

Choose W2(x1, x2) = −k2 (x2 − α(x1))
2 with k2 > 0.

⇒ u = −k2 (x2 − α(x1)) + d
dtα(x1)− x1
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Main Concept

Backstepping Induced SMC

Conventional backstepping:

V = 1
2x1

2 + 1
2 (x2 − α(x1))

2

W = −k1x12 − k2 (x2 − α(x1))
2

u = −k2 (x2 − α(x1)) + d
dtα(x1)− x1

Backstepping induced sliding mode control:

V = |x1| + 1
2 (x2 − α(x1))

2

d
dtV = dx1c0 α(x1) + dx1c0 (x2 − α(x1)) + (x2 − α(x1))

(
u− d

dtα(x1)
)

W = −k1|x1| − k2|x2 − α(x1)|
u = −k2 dx2 − α(x1)c0 + d

dtα(x1)− dx1c0

= −k2 dx2 + k1x1c0 − k1x2 − dx1c0
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Main Concept

Conventional SMC Design

1 Definition of sliding manifold (sliding phase)⇒ 1 LF V1(x)

s = x2 + k1x1 =⇒
s≡0

x2 = −k1x1, ẋ1 = −k1x1
V1(x1) = 1

2x
2
1,

d
dtV1(x1) = −k1x21

2 Definition of discontinuous control law (reaching phase)⇒ 1 LF
Vs(s) (or other proof)

Vs(s) = 1
2s

2, d
dtVs(s) = s (u+ k1x2)

u = usm = −k2 dsc0 − k1x2 = −k2 dx2 + k1x1c0 − k1x2

Backstepping induced control law⇒ 1 LF for overall dynamics V (x)

u = ubs = −k2 dx2 + k1x1c0 − k1x2−dx1c0
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Main Concept

Main Idea and Motivation

Is it possible to synthesize a sliding mode control law by the use of the
backstepping design process?

Yes!

What is the advantage?

Approach yields 1 LF for the whole closed loop dynamics
⇒ Certainty-equivalence based adaptive controller design possible
Change of perspective for Higher Order Sliding Modes (HOSM)

I Classical approach:
Control law u(x)⇒ Search for LF V (x)

I Backstepping (like) approach:
LF V (x)⇒ Synthesize control law u(x)
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Robust Variable Gain Backstepping SMC

Robust Variable Gain SMC

Problem Statement

Σδ :

{
ẋ1 = x2 + δ1(t)ϕ(x1) x1(t), x2(t) ∈ R
ẋ2 = u+ δ2(t) u(t) ∈ R

with |δ1(t)| ≤ δ1, |δ2(t)| ≤ δ2, ϕ ∈ C1, and ϕ(0) = 0.

Let ϕ(x1) be known

Let δi(t) be unknown but uniformly bounded

Objective: Find a state feedback that asymptotically stabilizes the origin
of Σδ in the presence of the unknown disturbances.
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Robust Variable Gain Backstepping SMC

Robust Variable Gain SMC

Stabilize the first subsystem

ẋ1 = α(x1) + δ1(t)ϕ(x1)

with auxiliary control

α(x1) = −k11x1 − k12 dx1c0 |ϕ(x1)| k11 > 0, k12 > δ1

First (linear) term to achieve exponential stability

Second term to compensate disturbance

V1 =
k∗1
b
|x1|b, k∗1, b > 0

d
dtV1 = k∗1 dx1cb−1

(
−k11x1 − k12 dx1c0 |ϕ(x1)| + δ1(t)ϕ(x1)

)

= −k∗1k11|x1|b − k∗1|x1|b−1
(
k12|ϕ(x1)| − δ1(t) dx1c0 ϕ(x1)

)

≤ −k∗1k11|x1|b − k∗1|x1|b−1 (k12 − δ1
)
|ϕ(x1)| = W1(x1) < 0
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Robust Variable Gain Backstepping SMC

Robust Variable Gain SMC

Use the control Lyapunov function

V =
k∗1
b
|x1|b +

1

c
|x2 − α(x1)|c, c > 0

with the derivative
d
dtV = k∗1 dx1cb−1 (x2 + δ1(t)ϕ(x1)+α(x1)− α(x1))

+ dx2 − α(x1)cc−1
(
ẋ2 + ∂α(x1)

∂x1
ẋ1

)

≤W1(x1) + k∗1 dx1cb−1 dx2 − α(x1)c1

+ dx2 − α(x1)cc−1
(
u+ δ2(t)− ∂α(x1)

∂x1
(x2 + δ1(t)ϕ(x1))

)

Split u = u1 + u2 for better readability:

u1 for the known terms

u2 for the unknown terms

13/24



R T
Fachgebiet Regelungstechnik

Technische Universität Ilmenau
Backstepping Induced Variable Gain SMC

11th September 2019 – Lars Watermann

Robust Variable Gain Backstepping SMC

Robust Variable Gain SMC

d
dtV ≤W1(x1)

+ dx2 − α(x1)cc−1
(
u1 − ∂α(x1)

∂x1
x2 + k∗1 dx1cb−1 |x2 − α(x1)|2−c

)

︸ ︷︷ ︸
=W̃21=0

+ dx2 − α(x1)cc−1
(
u2 + δ2(t)− δ1(t)∂α(x1)∂x1

ϕ(x1)
)

︸ ︷︷ ︸
=W̃22(x,t)

W̃22 ≤ |x2 − α(x1)|c−1
(
dx2 − α(x1)c0 u2 + δ2 + δ1

∣∣∣∂α(x1)∂x1
ϕ(x1)

∣∣∣
)

= W2

Choose u1 such that W̃21 = 0 and

u2 = −
(
k2 + δ1

∣∣∣∂α(x1)∂x1
ϕ(x1)

∣∣∣
)
dx2 − α(x1)c0 , k2 > δ2.
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Robust Variable Gain Backstepping SMC

Robust Variable Gain SMC (Summary)

Consider the following class of uncertain systems

Σδ :

{
ẋ1 = x2 + δ1(t)ϕ(x1) x1(t), x2(t) ∈ R
ẋ2 = u+ δ2(t) u(t) ∈ R

with |δ1(t)| ≤ δ1, |δ2(t)| ≤ δ2, ϕ ∈ C1, and ϕ(0) = 0.

With the backstepping procedure using V =
k∗1
b |x1|

b + 1
c |x2 − α(x1)|c a

robustly stabilizing variable gain sliding mode control law is

u = −
(
k2 + δ1

∣∣∣∂α(x1)∂x1
ϕ(x1)

∣∣∣
)
dx2 − α(x1)c0 + ∂α(x1)

∂x1
x2

− k∗1 dx1cb−1 |x2 − α(x1)|2−c,
with α(x1) = −k11x1 − k12 dx1c0 |ϕ(x1)|
and ∂α(x1)

∂x1
= −k11 − k12 dx1c0 dϕ(x1)c0 ∂ϕ(x1)∂x1

.
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Robust Variable Gain Backstepping SMC

Comparison to Conventional SMC Design

1 Definition of sliding manifold (sliding phase)

s = x2 − α(x1), V1(x1) = 1
2x

2
1 (similar to backstepping design)

2 Definition of discontinuous control law (reaching phase)

Vs(s) = 1
2s

2, d
dtVs(s) = · · ·

⇒ u = usm = −
(
k2 + δ1

∣∣∣∂α(x1)∂x1
ϕ(x1)

∣∣∣
)
dx2 − α(x1)c0 + ∂α(x1)

∂x1
x2

But V = V1 + Vs is not a LF for the overall closed loop dynamics!
⇒ Certainty-equivalence based adaptive control design not possible.

Backstepping induced control law

u = ubs = usm−k∗1 dx1cb−1 |x2 − α(x1)|2−c

Here V = V1 + V2 is a LF for the overall closed loop dynamics.
⇒ Certainty-equivalence based adaptive control design possible.
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More General Design for the Double Integrator

More General Design for the Double Integrator

For the first subsystem we choose

V1(x1) =
k∗1
b |x1|

b, b > 0, k∗1 > 0,

W1(x1) = −k1k∗1|x1|β, β ∈ R, k1 > 0.

⇒ α(x1) = −k1 dx1cβ−b+1 and ∂α(x1)
∂x1

= − (β − b+ 1) k1|x1|β−b

For the extension of the CLF we choose (z2 = x2 − α(x1))

V2(z2) = 1
c |z2|

c, c > 0

W2(z2) = −k2|z2|γ , γ ∈ R, k2 > 0.

⇒ u = −k2 dz2cγ−c+1 − k∗1|z2|2−c dx1cb−1

− (β − b+ 1) k1|x1|β−b
(
z2 − k1 dx1cβ−b+1

)
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More General Design for the Double Integrator

More General Design for the Double Integrator

The general closed loop dynamics are

ẋ1 = −k1 dx1cβ−b+1 + z2

ż2 = −k2 dz2cγ−c+1 − k∗1|z2|2−c dx1cb−1

with a strict LF
V (x1, z2) =

k∗1
b |x1|

b + 1
c |z2|

c

under the conditions

β≥ b ≥ 1, 2 ≥ c > 0,

γ≥ c− 1, k1, k2, k
∗
1 > 0.

Discontinuous control law if γ = c− 1 or b = 1.
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More General Design for the Double Integrator

Examples

Example 1: b = 2, c = 2, β = 2, γ = 1 (close to 1-sliding)

ẋ1 = −k1x1 + z2

ż2 = −k2sign(z2)−k∗1x1

Example 2: b = 1, c = 2, β = 1, γ = 1, k2 < k∗1 (close to twisting)

ẋ1 = −k1x1 + z2

ż2 = −k2sign(z2)− k∗1sign(x1)

Example 3: b = 1, c = 2, β = 1, γ = 1, k2 > k∗1 (1-sliding)

ẋ1 = −k1x1 + z2

ż2 = −k2sign(z2)
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Simulation

Example 1: (b = c = β = 2, γ = 1) – States

0 2 4 6 8 10

-5

0

5

conventional smc

ẋ1 = −k1x1 + z2

ż2 = −k2sign(z2)

0 2 4 6 8 10

-5

0

5

backstepping smc

ẋ1 = −k1x1 + z2

ż2 = −k2sign(z2)−k∗1x1
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Simulation

Example 1: (b = c = β = 2, γ = 1) – LF

Lyapunov function (candidate):

V (t) =
k∗1
2 x1

2 + 1
2z2

2

Σsm :

{
ẋ1 = −k1x1 + z2

ż2 = −k2sign(z2)

Σbs :

{
ẋ1 = −k1x1 + z2

ż2 = −k2sign(z2)−k∗1x1 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2
Lyapunov functions (scaled)
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Conclusion and Further Work

Conclusion and Further Work

Is it possible to synthesize a sliding mode control law by the use of the
backstepping design process?

Yes! X
What is the advantage?

Approach yields 1 LF for the whole closed loop dynamics X
⇒ Certainty-equivalence based adaptive controller design
possible
Change of perspective for Higher Order Sliding Modes (HOSM)

I Classical approach:
Control law u(x)⇒ Search for LF V (x)

I Backstepping (like) approach:
LF V (x)⇒ Synthesize control law u(x)

. . .more advantages and disadvantages?
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Thank you for
your attention!
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The Linear Regression Model I

Regression Model: Nominal Case

y(t) = C (t)θ, (1)

where

Unknown constant parameters: θ ∈ Rn.

The regressor: C : R≥0 → Rm×n, piecewise continuous and
uniformly bounded ‖C (t)‖ ≤ c̄ .

Nominal output: y(t) ∈ Rm.

Remark

Eq. (1) represents a set of m time-varying linear equations. In the
general case, however, n > m, and then, C (t) is not instantaneously left
invertible.
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The Linear Regression Model II

Regression Model: Perturbed Case

yδ(t) = C (t)θ + δ(t), (2)

where

Measured output: yδ(t) ∈ Rm.

Noise/disturbance: δ(t) ∈ Rm, integrable signal and uniformly
bounded ‖δ(t)‖ ≤ δ̄.
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Parameter Identification

Identifiability Gramian

W(t1, t0) :=

∫ t1

t0

C>(σ)C (σ)dσ

Direct Inversion Approach

θ̂ =W−1(t1, t0)

∫ t1

t0

C>(σ)yδ(σ)dσ

= θ +W−1(t1, t0)

∫ t1

t0

C>(σ)δ(σ)dσ.

There is a unique solution on [t0, t1] iff W(t1, t0) is invertible.

The properties of W(t1, t0) depends on C (t) and [t0, t1].

Depending on the condition number of W(t1, t0), the noise might be
amplified.

To implement the method, one has to check the invertibility of
W(t1, t0).
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Excitation Level I

Definition: Regressor Excitation Level [Ioannou and Sun, 1995]

Consider the time interval [t0, t1]. Let α > 0 and assume that

∫ t1

t0

C>(σ)C (σ)dσ ≥ αI.

Then, it is said that C (t) has a excitation level α on the interval [t0, t1].

Persistence of Excitation [Ioannou and Sun, 1995]

If there exist positive constants β ≥ α > 0 and T > 0, all independent of
t, such that

βI ≥
∫ t

t−T
C>(σ)C (σ)dσ ≥ αI ∀ t ≥ t0 + T ,

it is said that C (t) is of persistence of excitation.

6/ 33



Excitation Level II

Characterization of the Excitation Level

Let k ∈ Z? and consider three sequences of non-negative numbers
{tk}∞0 , {βk}∞0 and {αk}∞0 with tk+1 > tk , βk ≥ αk ≥ 0,
limk→∞ tk =∞, and such that

βk In ≥
∫ tk

tk−1

C>(σ)C (σ)dσ ≥ αk I.

The three sequences characterize the excitation of the regressor.
A measure of the regressor energy can be given as

E(C (t)) = lim
n→∞

n∑

k=0

αk

1 + βk
.
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Linear Gradient Algorithm

Cost Function

J (θ̂) =
1

2

(
C>(t)θ̂(t)− yδ(t)

)>
Γ
(
C>(t)θ̂(t)− yδ(t)

)
,

∂

∂θ̂
J (θ̂) = Γ

(
C>(t)θ̂(t)− yδ(t)

)
.

Linear Gradient Algorithm

˙̂
θ(t) = −∂J

∂θ̂
= −Γ

(
C>(t)θ̂(t)− yδ(t)

)
, Γ > 0, (3)

˙̃θ(t) = −ΓC>(t)C (t)θ̃(t) + Γ δ(t). (4)

Classical Results [Narendra and Annaswamy, 1989]

Consider (4) with δ(t) = 0. If C (t) is of persistence of excitation,
θ̃ = 0 is a globally uniformly asymptotically stable equilibrium
solution.

If C (t) is of persistence of excitation, (4) is input-to-state stable
(ISS) with respect to δ(t).
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Linear Gradient Algorithm

Cost Function

J (θ̂) =
1

2

(
C>(t)θ̂(t)− yδ(t)

)>
Γ
(
C>(t)θ̂(t)− yδ(t)

)
,

∂

∂θ̂
J (θ̂) = Γ

(
C>(t)θ̂(t)− yδ(t)

)
.

Linear Gradient Algorithm

˙̂
θ(t) = −∂J

∂θ̂
= −Γ

(
C>(t)θ̂(t)− yδ(t)

)
, Γ > 0, (3)

˙̃θ(t) = −ΓC>(t)C (t)θ̃(t) + Γ δ(t). (4)

New Results

[Barabanov and Ortega, 2017] Consider (4) with δ(t) = 0. Assume
that E(C (t)) =∞, then, the equilibrium solution θ̃(t) = 0 is
globally asymptotically stable (no uniformly in t0).

[Efimov et al., 2018] Assume that E(C (t)) =∞, (4) is
non-uniformly integral input-to-state stable (iISS) with respect to
δ(t).
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Gramian-Based Non-Linear Algorithm I

Cost Function

J (θ̂) =
2∑

j=1

γj
pj + 1

∥∥N(t)θ̂(t)− ψδ(t)
∥∥pj+1

pj+1
, γj > 0, p1 ∈ [0, 1), p2 > 1,

Ṅ(t) = −N(t)Q N(t) + C>(t)C (t), N(t0) = 0, Q > 0,

ψ̇δ(t) = −N(t)Q ψδ(t) + C>(t)yδ(t), ψδ(t0) = 0,

∂

∂θ̂
J (θ̂) =

2∑

j=1

γjN(t)
⌈
N(t)θ̂ − ψδ(t)

⌋pj
.

Non-Linear Gradient Algorithm [Noack et al., 2016]

˙̂
θ(t) = −∂J

∂θ̂
= −

2∑

j=1

γjN(t)
⌈
N(t)θ̂ − ψδ(t)

⌋pj
.

x ∈ Rn, x = [x1, · · · , xn]>, p ≥ 0, dxcp = [|x1|psign(x1), · · · , |xn|psign(xn)]>.
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Gramian-Based Non-Linear Algorithm II

Define ψ(t) = N(t)θ, then

ψ̇(t) = Ṅ(t)θ =
(
−N(t)Q N(t) + C>(t)C (t)

)
θ

= −N(t)Q ψ(t) + C>(t)y(t).

Since N(t0)θ = 0, ψ(t0) = 0.

Notice that the difference between ψ(t) and ψδ(t) is that the first
depends on y(t) while the second on yδ(t) and ξ(t) = ψ(t)− ψδ(t)
satisfies

ξ̇(t) = −N(t)Q ξ(t)− C>(t)δ(t), ξ(t0) = 0.

Finally, notice that the difference N(t)θ̂(t)− ψδ(t) satisfies

N(t)θ̂(t)− ψδ(t) = N(t)θ̂(t)− ψ(t) +
(
ψ(t)− ψδ(t)

)

= N(t)θ̃(t) + ξ(t).
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Gramian-Based Non-Linear Algorithm III

Error Dynamics

˙̃θ(t) = −
2∑

j=1

γjN(t)
⌈
N(t)θ̃(t) + ξ(t)

⌋pj
. (5)

Proposition 1

[Noack et al., 2016] Consider δ(t) = 0 (ξ(t) = 0). If C (t) is of
persistence of excitation, then there exist η > 0 such that N(t) ≥ ηI
for all t ≥ t0 + T . Furthermore, the equilibrium point θ̃ = 0 is
fixed-time stable uniformly in the initial time t0. An estimate of the
convergence time, for any θ̃(t0), is given by

T +
2∑

j=1

1

γjηpj+1|pj − 1| .

[Rueda-Escobedo, 2018] If C (t) is of persistence of excitation, ξ(t)
is uniformly bounded and (5) is ISS with respect to ξ(t).
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Properties of N(t) I

Ṅ(t) = −N(t)Q N(t) + C>(t)C (t). (6)

Eq. (6) is a Riccati equation and for N(t0) ≥ 0, the solution N(t)
remains positive semi-definite for all t ≥ t0.

If C (t) is uniformly bounded and Q > 0, then there exist a constant
η̄ > 0 such that η̄ ≥ ‖N(t)‖ for all t ≥ t0.

Given the sequences {tk}∞0 , {αk}∞0 , {βk}∞0 associated to C (t), it is
possible to estimate the corresponding ones to N(t):

η̄(tk − tk−1)I ≥
∫ tk

tk−1

N(σ)dσ ≥ ηk I,

with

ηk =
αk−1λmin(Q) ln

(
1 + λmax(Q)(tk − tk−1)

)

λmax(Q)
(
λmin(Q) + n2βk−1λ2max(Q)(tk−1 − tk−2)

) .
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Properties of N(t) II

Ṅ(t) = −N(t)Q N(t) + C>(t)C (t).

Let N(tk) > 0. Then

∫ t

tk

λmin

(
N(σ)

)
dσ ≥ ln

(
1 + λmax(Q)(t − tk)

)

λmax(Q)
λmin

(
N(tk)

)
I.

Furthermore,

lim
t→∞

∫ t

tk

λmin

(
N(σ)

)
dσ =∞.
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Main Result I

Theorem

Consider the estimation algorithm:

˙̂θ(t) = −
2∑

j=1

γjN(t)
⌈
N(t)θ̂ − ψ(t)

⌋pj
,

with γj > 0, p1 ∈ [0, 1), p2 > 1, and where N(t) and ψ(t) are computed
as before.
Assume that there exist k1 < k2 <∞ such that

k1∑

k=0

ηk = α1 <∞ and

k2∑

k=k1

ηk = α2 <∞.

Then, θ̂(t)→ θ in fixed-time if the gains γ1 and γ2 are chosen such that

γ1 ≥
(tk2 − tk1)p1

αp1+1
2 (1− p1)

and γ2 ≥
(tk1 − t0)p2

αp2+1
1 (p2 − 1)

.
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Main Result II

Corollary 1

Consider the estimation algorithm:

˙̂
θ(t) = −

2∑

j=1

γjN(t)
⌈
N(t)θ̂ − ψ(t)

⌋pj
,

with γj > 0, p1 = 0, p2 > 1, and where N(t) and ψ(t) are computed as
before.
Assume that there exist k1 <∞ such that ηk1 > 0. Then, θ̂(t)→ θ in
fixed-time for any positive gains γ1 > 0 and γ2.

Remark

In both cases, the convergence is non-uniform in the initial time.

In Theorem 1, the convergence time is given by tk2 .

In Corollary 1, an estimate of the convergence time can be given in
terms of the gains and ηk1 . The convergence time, although finite, it
might be very large.
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Sketch of the Proof I

Consider the error equation (5) for δ(t) = 0:

˙̃θ(t) = −
2∑

j=1

γjN(t)
⌈
N(t)θ̃(t)

⌋pj
, (7)

and define the candidate Lyapunov function V (θ̃) = θ̃>θ̃.
The derivative of V (θ̃) along (7) satisfies

V̇ (t) = 2θ̃>(t) ˙̃θ(t) = −2
2∑

j=1

γj θ̃
>(t)N(t)

⌈
N(t)θ̃(t)

⌋pj
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Sketch of the Proof II

V̇ (t) = −2
2∑

j=1

γj θ̃
>(t)N(t)

⌈
N(t)θ̃(t)

⌋pj

= −2
2∑

j=1

γj
∥∥N(t)θ̃(t)

∥∥pj+1

pj+1

≤ −2γ1λ
p1+1
min (N(t))‖θ̃(t)‖p1+1

2 − 2γ2n
1−p2

2 λp2+1
min (N(t))‖θ̃(t)‖p2+1

2

≤ −γ̄1λp1+1
min (N(t))V

p1+1
2 − γ̄λp2+1

min (N(t))V
p2+1

2 .

Notice that p1+1
2 < 1 while p2+1

2 > 1.
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Sketch of the Proof III

The previous inequality can be split in two differential inequalities:

V̇ (t) ≤ −γ̄1λp1+1
min (N(t))V

p1+1
2 , (8)

V̇ (t) ≤ −γ̄2λp2+1
min (N(t))V

p2+1
2 . (9)

The solution to both differential inequalities can be summarized as

V (t) ≤
(
V 1−pj (t0)− (1− pj)γ̄j

∫ t

t0

λ
pj+1
min (N(σ))dσ

) 1
1−pj

.
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Sketch of the Proof IV

Without loss of generality, V (t0) can be assumed greater that 1. Then,
(9) can be used to estimate the size of the integral needed to make
V (t) ≤ 1, and (8) to estimate it in order to reach zero:

V (t1) ≤ 1
(

1
V p2−1(t0)

+ (p2 − 1)γ̄2
∫ t1
t0
λmin(N(σ))dσ

) 1
p2−1

≤ 1,

V (t2) ≤
(
V 1−p1(t1)− (1− p1)γ̄1

∫ t2

t1

λp1+1
min (N(σ))dσ

) 1
1−p1

≤ 0

This yields:

∫ t1

t0

λp2+1
min (N(σ))dσ ≥ 1

γ̄2(p2 − 1)
,

∫ t2

t1

λp1+1
min (N(σ))dσ ≥ 1

γ̄1(1− p1)
.
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Sketch of the Proof V

Using the Hölder’s Inequality, the integral of λ
pj+1
min (N(t)) can be estimate

as

∫ t2

t1

λ
pj+1
min

(
N(σ)

)
dσ ≥ 1

(t2 − t1)pj

(∫ t2

t1

λmin

(
N(σ)

)
dσ

)pj+1

From here, it is possible to estimate the gains that ensures the fixed-time
convergence.
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About the Noise

If δ(t) 6= 0, the term ξ(t) will appears in the dynamics of θ̃(t) and in
the derivative of V (t):

V̇ (t) = −2
2∑

j=1

γj

(
N(t)θ̃(t)

)>⌈
N(t)θ̃(t) + ξ(t)cpj .

Following an inequality in [Rueda-Escobedo et al., 2019], the
previous terms can be split as

V̇ (t) ≤ −
2∑

j=1

γ̄jλ
pj+1
min (N(t))V

pj+1

2 (t) +
2∑

j=1

κj‖ξ(t)‖pj+1.

However, given the powers in V (t), it is difficult to give a bound in
terms of the integral of ξ(t) in order to show iISS.
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Simulation Examples I

Regressor: C (t) = exp(−0.5t)[sin(3t), 1].

Algorithm parameters: p1 = 1/2, p2 = 3/2, γ1 = γ2 = 10, Q = I.

Norm of the initial conditions: 10, 102, 103, 104, 105.

5 10 15 20
t

2

4

6

8

10

12

θ
˜
1

Convergence of θ̃1(t).

5 10 15 20
t

-2

-1

1

θ̃2

Convergence of θ̃2(t).
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Simulation Examples II

0 5 10 15 20
t

10-5

0.01

10

104

θ
˜


Logarithmic plot of the error norm.
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Simulation Examples III
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Behavior of the eigenvalues of
N(t).
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∫λp(N(t))ⅆt

Behavior of the integral of
λpmin(N(t))

p = 1 in blue,
p = 3/2 + 1 in yellow.
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Simulation Examples IV

Regressor: C (t) = [exp(−0.5t) sin(3t), 1].

Estimator parameters: p1 = 1/2, p2 = 3/2, γ1 = γ2 = 10, Q = I.

Norm initial conditions: 10, 102, 103, 104, 105.

5 10 15 20
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2

3

4

5
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Convergence of θ̃1(t).
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Convergence of θ̃2(t).
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Simulation Examples V
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Logarithmic plot of the error norm.
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Simulation Examples VI
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Behavior of the eigenvalues of
N(t).
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Behavior of the integral of
λpmin(N(t))

p = 1 in blue,
p = 3/2 + 1 in yellow.
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Simulation Examples VII

Regressor: C (t) = [exp(−0.5t) sin(3t) + 1, 1].

Noise: δ(t) = 0.5 sin(100t)− 0.2

Estimator parameters: p1 = 1/2, p2 = 3/2, γ1 = γ2 = 100, Q = I.

Norm initial conditions: 10, 102, 103, 104, 105.

2 4 6 8 10
t

-2

2

4

6

8

10
θ
˜
1

Convergence of θ̃1(t).

2 4 6 8 10
t

-4

-2
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4

θ
˜
2

Convergence of θ̃2(t).
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Simulation Examples VIII

0 1 2 3 4 5
t

0.1

100

105

θ
˜


Logarithmic plot of the error norm.
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Conclusions and Future Work

The non-uniform fixed-time convergence of a modified version of the
algorithm presented in [Noack et al., 2016] is shown.

Precise conditions for the algorithm gains that ensure the
convergence are given. This conditions can be related to the
excitation level of the regressor.

In the lack of persistence of excitation, fixed-time convergent
algorithms may play a mayor role since they ensure global
convergence.

When there is lack of persistence of excitation, it is still under
investigation the effect of the noise in the estimation and how to
bound the error in terms of the integral of the noise.
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Outline:

• Introduction to metaheuristic optimization procedure

• The Differential Evolution

• Design examples and optimization with Differential Evolution
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Optimization:

The optimization procedure is a hart of many natural processes and engineering design.

To tackle the complex computational problem the scientists have been looking into

nature for the inspiration. Where back in the early ’50s of the last century emerge an

idea to use the Darwin principle of evolution for automated problem-solving.

Till the ’90s, the different developed algorithms were unified under common name

Evolution Computing.

In nowadays Evolution Computation embrace the filed of natural-inspired metaheuristic

optimization algorithms such as:

• Evolutionary algorithm ( Evolution strategies, Differential evolution, etc.),

• Swarm intelligence (Ant colony optimization, Particle swarm optimization, Bat

algorithm, etc.)

• Self-organizing systems (Harmony search, Artificial immune systems, Artificial life,

etc..)
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Differential evolution-DE:

• The DE was introduced by Storn and Price in 1996.

• The DE algorithm is a population-based algorithm like other genetic algorithms using

similar operators; mutation, crossover, and selection. The main difference relies on

the mutation operator, whereby mutation operator is based on the differences

between randomly selected pairs of candidate solutions in the current population.

• Today is a DE most robust Evolutionary algorithm and is able to solve a wide range

of the optimization problems.

• The advantage of DE is a simple structure, straightforward implementation and a

small set of the setting parameters.
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Why us Differential Evolution:

• Differential Evolution is a global optimization approach with good exploration and

exploitation capability. The DE is capable to find the true global minimum,

regardless of the initial parameter values.

• Due to the ‘nature’ of the algorithm (simultaneous use of many population vectors),

the DE has great capability to avoid local minima.

• In many practical problems, the objective functions are non-differentiable, non-

continues, non-linear, noisy or have many local minima. Such problems are difficult

to solve, or even analytical solution doesn't exist.

• DE do not require gradients or higher derivatives of the objective functions.

(Derivative-Free Algorithm).
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Structure of Differential evolution:

6/26

Control parameters of DE:

• NP- Population number

• F - weighting factor [0 1]

• CR – Crossover constant [0 1]

• NP-
Optimization vector:

• NP-

D – dimension of parameter vector

n -current vector in population

G-current population

• NP-

Objective function:

• NP-

( ) ( )

,

, : D

X

f X f



 →

Stop condition (minimization):

• NP-

, 1, , 2, , 3, , , ,, , ,.....,n G n G n G n G D n GX x x x x =  

( ) ( )

( )

, ,f X f X X

f X

 



    

 −
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Closed-loop system:

0

0

( )

( ) ( )
( ) V( )

1 ( ) ( )

( ) ( )
( ) V( )

( ) ( ) ( ) ( )

C s

K s P s
Y s s

K s P s

L s B s
Y s s

A s R s B s L s

=
+

=
+

Possible solutions of the polynomial equation C(s):

Closed-loop transfer function:

Characteristic polynomial:

( ) ( ) ( ) ( ) ( )C s A s R s B s L s= + ‘R(s) and L(s) are unknown polynomials’

• No exact solution : degR<degA-1

• Exact solution: degR=degA-1

• Indeterminate system (parametric solution) : degR>degA-1

1

con yP S C−= 

Solution of the polynomial equation C(s) is:

, Sy – Sylvester matrix , C – vector of characteristic polynomial coefficients

Pcon – coefficients of  polynomial L(s) and R(s)

Example 1: Low-order H∞ robust controller design
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For condition  (degR<degA-1) of the polynomial equation C(s), with introduced residual:

1nx

t y con

C

r C S P= − 

The optimal solution is introduced with metric,

Ct – Coefficient vector of target polynomial, 

Sy · Pcon – solution of the polynomial equation

2 2t y conr C S P= − 

( ) ( )
T

T

t y con t y conJ r r C S P Q C S P= = −  −  , Q – weight matrix, Q>0

Objective function for regional pole assignment is:

1min 2
con

T T

y y y
P

J S QS S QC= −

Stability criteria: 

Example 1: Regional pole assignment approach

Lipatov-Sokolov coefficients ratio for stability check:

( )1 1

,

1, , 1,

k k k

y con

SP SP SP

k n SP S P

+ − 
 

 =  
 
 

= − = 1

,

1

1.466

1
nx

  

 
 

 = 
 
  

degR+degA=degCt=n
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Robust stability criteria, for different uncertainty models :

Where 𝑊1,𝑊3 ∈ H∞ . The weights represent a model uncertainty or closed-loop

performance index.

Example 1: Robustness criteria and uncertainty 

models 

Multiplicative modelInverse model

1 1

1 1

A( s )R( s )
W S W

A( s )R( s ) B( s )L( s )

A( s )R( s )
W

C( s )







=
+

= 

3 3

3 1

B( s )L( s )
W T W

A( s )R( s ) B( s )L( s )

B( s )L( s )
W

C( s )







=
+

= 
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From the robustness property ∙ ∞ < 1 and H∞ calculation φ(jω), the spectral 

polynomial is equal to:

Spectral polynomials can be derived for each robust criteria separately:

2

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) 0

A j A j B j B j

A B

     

 

= − − −

= − 
, where γ =1 

( )2 2 2

1 1

2 2( 1) 2( 2) 4 2

2 2( 1) 2( 2) 4 2

, ( , ) ( , )

..... 0, ,

S r r a r b r

n n n

n n n

P C w P ARw P

z z z z z z n z

   

    − −

− −

= −

= + + + + + +   

( )2 2 2

3 3

2 2( 1) 2( 2) 4 2

2 2( 1) 2( 2) 4 2

, ( , ) ( , )

..... 0, ,

T r r a r b r

n n n

n n n

P C w P BLw P

t t t t t t n t

   

    − −

− −

= −

= + + + + + +   

𝑊1𝑆 ∞ < 1

𝑊3𝑇 ∞ < 1





Example 1: Spectral polynomial and positivity 

condition

2 2 ( ) ( )
( ) ( ) ( )

( ) ( )

B j B j
j I H j H j I

A j A j

 
    

 

−
 = − − = −

−

The H∞ norm is defined as:
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( )

( )2

1

2

2

2 2

min

,
max min ( , )

,

r

r

P

S r

P
T r

J

P
J p

P

 


 

 
 =
 
 

, pole assignment objective function

, robust stability objective function 

Example 1: Optimization procedure

In the optimization procedure with Differential Evolution the given objective functions 

are used:

Necessary condition for robustness stability:

( )2 , 0.T rP t   

Common objective function:

2 2

1 1 2 2 3 2 1 2 3(1, , ) (2, , ), , , 0, 1i

i

J k J k J p k J p k k k k = + +  =

Constrains:

,   ( )2 , 0.T rP  

( )2 , 0,S rP z   
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Multiplicative uncertainty weight

for condition 𝑊3𝑇 ∞ < 1 :

( ) ( )( ) ( ) ( )( )2 2 2 2

1 1 2 2

1
( , ) ,

0.1 0.1
P s

s s s s s


       
=

+  + +  +

𝜔𝑖 𝜆 = (1 + 𝑒𝜆𝑖) 𝜔𝑖0, 𝜆𝑖 < 1

𝜔10= 1 𝑟𝑎𝑑/𝑠, 
𝜔20= 10 𝑟𝑎𝑑/𝑠,
𝑒 = 4%, 𝜆𝑛𝑜𝑚 = 0.7

Nominal value:

5 4 3 2

3 4 3 2

2.1 10 0.05 8.2 1.4 16.4
( )

1.1 98.6 10.6 95.2

s s s s
W s

s s s s

−  + +  +  +
=

+  +  +  +

For design example the transfer function with flexible structure was used [Yang F. (2007)] :

Performance weight 𝑊1𝑆 ∞ < 1 :

1 4

0.53 0.043
( )

4.1 10

s
W s

s −

+
=

+ 
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Example 1: Controller design and application
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Preselected controllers:

1 0

1

1 0

( )
( ) ,

( )

l s lL s
K s

R s r s r

+
= =

+

2

2 1 0

2 2

2 1 0

( )
( ) .

( )

l s l s lL s
K s

R s r s r s r

+ +
= =

+ +

6 5 4 3 2

1( ) 8.5 29.4 52.8 52.24 27.02 5.72C s s s s s s s= +  +  +  +  +  +

7 6 5 4 3 2

2 ( ) 10.1 138 977.6 2958 3927 2997 2700C s s s s s s s s= +  +  +  +  +  +  +

Preselected target polynomials with condition 𝑑𝑒𝑔𝑅 + 𝑑𝑒𝑔𝐴 = 𝑑𝑒𝑔𝐶 are,

, first order controller K1

, second order controller K2

Results after optimization:

1

1.85 7.75
( ) ,

1.34

s
K s

s

−  +
=

+

2

2 2

21.5 0.036 26
( )

1.4 4.19 4.1

s s
K s

s s

+ +
=

+ +

Criteria Controller 
𝐾1 𝑠

Controller 
𝐾2 𝑠

𝑊𝟑𝑇 ∞ 0.507 0.17
𝑊𝟏𝑆 ∞ 0.82 0.74

Example 1: Controller design and application

-4 unknown parameters

[r0,….,l1]

-6 unknown parameters

[r0,….,l2]

Differential evolution parameters:

 

       

   

7 7 6 6

1 0 1 0 2 1 0 2 1 0

2 2 2 2 2 2 2 2 2

1 0 1 0 2 1 0 2 1 0

60, 0.7, 0.8, 0.4 0.3 0.3 ,Q ,Q

min , , , 0.1,0.1,0.1,0.1 , min , , , , , 0.1,0.1,0.1,0.1,0.1,0.1 ,

max , , , 10 ,2 10 ,10 ,3 10 , max , , , , , 10 ,10 ,2 10 ,10 ,10 ,

NP F CR k I I

l l r r l l l r r r

l l r r l l l r r r

= = = = = =

= =

 =   =  
23 10 .  
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Comparison was made with the controller KY(s) designed by the LMI technique:

2

2

57.1 48.6 14.7
( )

1.39 2.94
Y

LMI

s s
K s

s s

− +
=

+ +

2

2 2

21.5 0.036 26
( )

1.4 4.19 4.1
DE

s s
K s

s s

+ +
=

+ +
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Example 1: Results
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Example 2: A Heading-control of the measurement 

robotic platform

Measurement robotic platform is used to acquire different environmental data from

the cooling tower system. The efficiency of the acquiring process and the tower

efficacy analysis is closely related to the positioning-heading tracking capability of

the robot.

The Colling tower

The robotic platform on the slats 

floor

The yaw axis -(z axis, 

heading)

The feedback structure: Heading controller
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Example 2: Super-Twisted Controller Design

The dynamic around z-axis is presented as:

STA controller structure:

( )
1 2

2 1 2

,

, ,

x x

x f x x gu d

=

= + +

Introduce tracking error e1=xd-x1:

Sliding variable:

( ) ( )
1 2

2 1 2

,

, , , , , 0d d d

e e

e f e e gu d f x x x    

=

= − + − + + =  

x – state vector xT=[x1 x2],

f() – state function,

g –input gain

u-input

d-disturbance

2 1, 0e ce c = + 

Differential inclusion of sliding variable  

variable with STA:

( )

( )

1/2

1

2

,

.

STAu k sign v

v k sign

 



= +

=

( )

( )

1/2

1

2 .

k sign v

v k sign

   



= − + +

= −

( )
1/2

1 2 2, , , 0f e e ce     = + +  
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Example 2: Super-Twisted Controller Design

Proposed Lyapunov function [Moreno(2008)]:

Time derivative of 𝑉(𝜎) :

The system is globally stable if:

( ) ( )( )
( )

2
1/22

2 1

1 1
2 ,

2 2

.T

V v k k sign v

V P

   

  

= + + −

=

2

2 1 1

1

41
,

2 2

k k k
P

k

 + −
=  

− 
( )

1/2
,T sign v   =

 

( )
1/2 1/2

,TV Q q      
− −

= − +

3 2

1 1

1 2

2

1 1

2 2
,

2 2

k k
k k

Q
k k

 
+ − 

 =
 

− 
 

2

1 1

22
2 2

k k
q k

  
= + −  
   

( )

1

2

1

2

1

2 ,

.
8 2

k

k
k

k










−

( )
1/2

,sign   

( ) ( ) ,TV Q  = − − 

3 2 2

1 1 1

1 2 2 1
1/2

2

1 1

1

2
2 2 2

.

2 2

k k k
k k k k

Q
k k

k

 





−

  
+ − + − +  

  −  =
 
 − +
 

With assumption:
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Example 2: Optimization and Objective function

The optimization objective is a proper selection of parameters c, k1 and k2 to ensure

stability and preselected dynamic of the system. Regard to the implementation

constrains the proper sampling time need to be specified. The sampling time directly

influence on the chattering phenomena at the controller output.

Preselected closed-loop dynamic with 

reference model:

Chattering phenomena:
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Example 2: Objective function and simulation

From the proposed Reference model the given target output vector is derived 𝑦𝑟𝑒𝑓[]

with preselected acquisition time 𝑇𝑎𝑐𝑞 and simulation time 𝑇𝑠𝑖𝑚_𝑡𝑖𝑚𝑒 .

( )refH s 
  0 1 2 1

_

, , ,..., ,

/ ,

ref k

sim time acq

y y y y y

k T T k

−=

= 

STA simulation:
Objective function:

( ) ( )
1 1

2 2

1 2

0

2

1

1
,

1

,

1

sim

k k

i i i

i i k n

i

i

refJ g y y g u
n

n n k

g g

− −

= = −

=

= − +
−

 

= =

 



1y
2y

0y

3y

1ky −

_sim timeT

acqT

Optimization criteria:
 

1 2
1 2

, ,
min , , ,

. .

k k c
J par k k c

s t par constrains

=
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Example 2: Controller design and DE settings

Feedback system time performance objectives:

Overshot < 2%

Settling time <15s

Sampling time [0.01 – 0.05]s

Selected reference dynamic model:

1 2

2 2

,

0.885 0.25 ,

e e

e e u 

=

= − − +

Open loop system:

STA coefficients constraints :

( )

1min

2

1min

2 min 1min

1min

min

2 ,

5 4
,

2 2

0.

k

k
k k

k

c



 





+


−



( )
0.4

0.4
refH s

s
=

+

DE parameters :

( )
1/2

1 2 2, , , 25f e e ce     = + +  =

   

   

 

1 2 1min 2 min

1 2 1min 2 min

40,

0.7,

0.9

min , , , ,

max , , 3 ,3 ,10

0.7 0.3

NP

F

CR

k k c k k c

k k c k k c

g

=

=

=

=

=

=

Simulation parameters:

_ 25 ,

0.1 ,

1 , ( )

20 , ( )

800( ' ' )

sim time

acq

sim

STA

T s

T s

T ms Forward Euler Method

T ms STAcontroller Sampling Time

n RMS last n samples of thecontroller output

=

=

= −

=

= −
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Example 2: Results

Selected reference dynamic model:

DE results:

  4

1 2, , 95.2, 2.7 10 ,  0.402k k c  =  
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Example 3: Modified Super-Twisted Controller 

Design-MSTA

The modified MSTA combines linear and nonlinear terms. Linear terms of the

algorithm can deal with stronger linear growing perturbation, which are far away

from the origin. The nonlinear terms are superior with the stronger perturbations,

which are near to the origin, and are weaker with perturbation, which away from the

origin.

MSTA controller structure:

Sliding variable:

2 1, 0e ce c = + 

Differential inclusion of sliding variable  

variable with STA:

( )

( )

1/2

1 3

2 4

,

.

STAu k sign k v

v k sign k

  

 

= + +

= +

( )

( )

1/2

1 3

2 4 .

k sign k v

v k sign k

    

 

= − − + +

= − −

1/2

1 1, , 0       + 
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Example 3: Modified Super-Twisted Controller 

Design-MSTA

Given Lyapunov function [Moreno(2008)]:

Time derivative of 𝑉(𝜎) :

( ) ( )( )
( )

2
1/22 2

2 4 1 3

1 1
2 ,

2 2
T

V k k v k sign k v

V

     

  

= + + + + −

= 

( )
1/2 1/2

1 2 1 2 ,T TV           
− −

= −  −  + +

2

2 1 1 3 1

2

1 3 4 3 3

1 3

4

2 ,

2

k k k k k

k k k k k

k k

 + −
 

 = + − 
 − − 

( )
1/2

,T sign v    =
 

2

2 1 1

21

1 4 3 3

1 3

2 0

0 2 5 3 ,
2

3 1

k k k
k

k k k

k k

 + −
 

 = + − 
 − − 

2

2 1

2

2 3 4 3 3

3

2 0 0

0 ,

0 1

k k

k k k k

k

 +
 

 = + − 
 − 

( )21 2

1 3 4 2

2

1 1

2 2

3
2 ,

2

2 0 .
2 2

k k
k k k

k k
k

   

 

 
= + − 
 

  
= + −  
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Example 3: Modified Super-Twisted Controller 

Design-MSTA

The first set of stability condition:

( )

1

2

1

2 1

1

2 ,

1

8 ,
2

k

k

k k
k



 





+


−

2

3 1 1

2

2

1 1 3 1 3 3 1 1

4 1 2

1 1 1 1

2 2

1 1 1 1 1 2

3 9
,

8 4

1 1 3 5 3
2

2 2 2 2 2
.

1 1 1
2 2

2 2 2

1 1 1
2

4 2 2

k

k k k k k k p

k k

p k k k

p k k k k k

 

  

  



 +

      
+ − + +             


    

− + − −         

    
= + − +    

    

( ) ( )

( )

( )

1

3 1

2

2

3 1 1 3 3 1

2

3 3 1 3 1

2

3 3 1 1

4 3

3 1

2 ,

2 ,

1 3 1
2

2 2 4
,

2 2 2

1
3

2
.

2

k

k

k k k k k k

k
k k k

k k

k k
k





   

 

 







   
+ − −   

   
 +

− −

 
+ + 

 


−

The second set of stability condition:

The system is stable if all conditions are fulfilled!
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Example 3: Controller design and DE settings

Selected reference dynamic model:

1 2

2 2

,

0.885 0.25 ,

e e

e e u 

=

= − − +

For the design example, the same system and control requirements as in 

example 2 are used.

STA coefficients constraints :

( ) ( )

( ) ( )

( ) ( )

3

4

1min

2 min 1 1min 2 1min 3min

3min 1 1 2

4 min 1 1min 2 min 3min 1 2 3min

min

2 2

3

4

2 ,

, , , ,

,

, , , , , ,

0.

set set

set set

set set

k

k f k f k k

k f f

k f k k k f k

c



 

 

  



   

   

   



DE parameters :

1/2

1 1, 25, 5.       + = =

   

   

 

1 2 3 4 1min 2 min 3min 4 min

1 2 3 4 1min 2 min 3min 4 min

50,

0.7,

0.9,

min , , , , , , , , ,

max , , , , 3 ,3 ,3 ,3 ,10 ,

0.7 0.3 .

NP

F

CR

k k k k c k k k k c

k k k k c k k k k c

g

=

=

=

=

=

=

Simulation parameters:

( )
0.4

0.4
refH s

s
=

+

_ 25 ,

0.1 ,

1 , ( )

20 , ( )

800( ' ' )

sim time

acq

sim

STA

T s

T s

T ms Forward Euler Method

T ms STAcontroller Sampling Time

n RMS last n samples of thecontroller output

=

=

= −

=

= −
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Example 3: Results

DE results:

  4

1 2 3 4, , , , 48.2, 1.1 10 ,7.52, 204.5 ,0.37k k k k c  =  

Selected reference dynamic model:
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Thank you for your attention!
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