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Abstract— This paper presents a cascaded observer scheme
for state estimation of the lateral vehicle dynamics. A velocity
dependent linear time varying model where the road curvature
acts as an unknown input is considered. The proposed observer
structure is based on anH∞ filter in combination with a higher
order sliding mode compensator and yields exact finite time
state estimation. The observer design is carried out step by step
and simulation results show the applicability of the proposed
approach.

I. INTRODUCTION

Since a few decades, advanced driver assistant systems
(ADAS) have been evolving very fast and are a popular
topic in theoretic and applied research [1]. ADAS and active
safety systems need accurate information on the vehicle’s
state and its environment. Thus several recent contributions
deal with the problem of state estimation of the lateral vehicle
dynamics, see e.g. [2, 3, 4]. As pointed out in [5], the road
curvature is one of the main disturbances acting on the
vehicle’s lateral position, e.g., in a lane change maneuver.
However, for control purposes it is important to correctly
estimate the vehicle’s state, which is the motivation for the
present contribution.
For strongly observable LTI systems, [6] proposed to use
a classical Luenberger observer which yields a bounded
estimation error in the presence of a bounded unknown input.
A step-by-step differentiation algorithm using a sliding mode
differentiator was then applied to the observer’s innovation to
reconstruct the estimation error in finite time yielding exact
state estimates. This concept was extended to a higher order
sliding mode (HOSM) algorithm in [7] and [8] generalized
this work to linear time varying systems by using a deter-
ministic least squares filter as stabilizer for the error system
which then is reconstructed in finite time.
This paper proposes a cascaded observer structure to solve
the problem of state estimation for the time varying vehicle
lateral dynamics despite of the unknown road curvature.
The observer is based upon an H∞ filter to achieve a
bounded estimation error. A HOSM differentiator is then
used together with structural properties of the system to
correct the perturbed estimates obtained by the H∞ filter.
This leads to a theoretically exact reconstruction of the true
states in finite time.
The contribution is structured as follows. The problem state-
ment is outlined in section II. In section III, preliminaries
which are needed in the subsequent observer design are
recalled. In section IV, a cascaded H∞-HOSM observer is
derived for a general linear time varying (LTV) system with
unknown inputs. Section V represents an LTV model for the

vehicle lateral dynamics which is affected by the unknown
road curvature. In VI, the developed observer is applied for
robust state estimation. A conclusion is drawn in section VII.

II. PROBLEM STATEMENT
Consider a linear time varying (LTV) system

ẋ(t) = A(t)x(t) +B(t)u(t) +D(t)w(t),

y(t) = C(t)x(t), x(t0) = x0, t ≥ t0 ∈ R,
(1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

p is the
measurement vector, u(t) ∈ Rq is the known (control) input
vector and w(t) ∈ Rm is an unknown input vector. The
matrices A(t), B(t), C(t) and D(t) are known time-varying
matrices of suitable dimensions. The following statements
are assumed to hold throughout the paper:
(A1) The triple (A(t), D(t), C(t)) is a constant rank system

representation, see [9].
(A2) The output y(t) and all matrices in (1) are bounded and

continuously differentiable with bounded derivatives
up to the (ν−1)-th derivative, where ν is the (constant)
observability index of (A(t), D(t), C(t)).

(A3) The unknown input w(t) is bounded with bounded
derivatives up to w(ν−1)(t) and has a known Lipschitz
constant L such that

‖w(i)(t)‖ ≤ L, ∀ i = 0, . . . , ν − 1 (2)

holds.
(A4) The triple (A(t), D(t), C(t)) is strongly observable.
The goal of the present work is to design a state estimation
algorithm which converges to the true states in finite time
independent of the unknown input. This algorithm will then
be applied to the problem of state estimation for a LTV lateral
vehicle dynamics model with unknown road curvature.

III. PRELIMINARIES
In this section, observability and strong observability for

the class of so-called constant rank systems is recapitulated.
As the known input u(t) can always be canceled out in the
observer error dynamics, without loss of generality B(t) ≡ 0
and only the triple (A(t), D(t), C(t)) is considered subse-
quently. First, the definitions for observability and strong
observability are recalled:

Definition 1 (strong observability [10, 11]):
i) The pair (A(t), C(t)) is called observable, if
ẋ = A(t)x, C(t)x(t) ≡ 0 on some time interval al-
ways implies that x(t) ≡ 0 on this interval.

ii) The triple (A(t), D(t), C(t)) is called strongly observ-
able if ẋ = A(t)x+D(t)w(t), C(t)x(t) ≡ 0 on some



time interval always implies that x(t) ≡ 0 on this
interval for any input w(t).

The generalized controllability and observability matrices for
(A(t), D(t), C(t)) can be defined as

Qk(t) =
[
P0(t) P1(t) · · · Pk−1(t)

]
,

RTk (t) =
[
CT0 (t) CT1 (t) · · · CTk−1(t)

]
,

(3)

as shown in [9]. The elements Pi(t) and Ci(t), i = 0, . . . , k
are recursively defined according to

Pk+1(t) = A(t)Pk(t) + Ṗk(t), P0(t) = D(t),

Ck+1(t) = Ck(t)A(t) + Ċk(t), C0(t) = C(t).
(4)

The generalized controllability and observability matrices are
now used to define the class of constant rank systems.

Definition 2 (Constant rank system, [12]):
The system (A(t), D(t), C(t)) is a constant rank system
representation if and only if there exist positive integers µ,
ν, qc and q0 such that D(t) and C(t) are µ respectively ν
times continuously differentiable and A(t) is max(µ, ν)− 1
times continuously differentiable, such that

rankQµ(t) = rankQµ+1(t) = qc ≤ n, ∀t,
rankRν(t) = rankRν+1(t) = q0 ≤ n, ∀t.

(5)

The smallest integers µ and ν for which relation (5) holds are
termed controllability respectively observability index. Note
that in the LTV-case, these integers may be strictly greater
than n.
The concept of observability for LTV systems is extended
to strong observability in [10]. The necessary and sufficient
condition proposed there will be directly used to design the
robust observer in the present contribution. Therefore, the
following matrices depending on the observability index are
introduced
Dα,α−1(t) = C0(t)D(t)

Dα,1(t) = Cα−2(t)D(t) + Ḋα−1,1(t)

Dα,β(t) = Dα−1,β−1(t) + Ḋα−1,β(t)

for 2 ≤ α ≤ ν,
for 3 ≤ α ≤ ν,
for 3 ≤ β < α ≤ ν,

(6)
with Ci as the corresponding entries of the generalized
observability matrix (3), see [10, 8]. The condition for strong
observability is summarized in the next theorem.

Theorem 1 (Strong observability, [10]): The constant
rank system (A(t), D(t), C(t)) is strongly observable on
any interval if and only if it is observable and

rankS(t) = rankS∗(t) (7)

holds for

S(t) =
[
Rν(t) Jν(t)

]
, S∗(t) =

[
In 0

Rν(t) Jν(t)

]
(8)

with

Jν(t) =


0 0 · · · 0
D2,1 0 · · · 0
D3,1 D3,2 · · · 0

...
...

. . .
...

Dν,1 Dν,2 · · · Dν,ν−1

, (9)

and ν as the observability index.

Proof: The strong observability condition holds on any
interval because of the constant rank assumption. The rest
of the proof is presented in [10].
The strong observability condition can be directly used to
reconstruct the states by using the system output and its
derivatives which is summarized in the next proposition.

Proposition 1 (State reconstruction, [10]): Under
assumption (A2), define a matrix K(t) ∈ R

pν×pν

such that
KerK(t) = Im Jν(t) ∀t (10)

and furthermore let

H(t) = RTν (t)K
T (t)K(t)Rν(t). (11)

Then, H(t) is invertible and

x(t) = H−1(t)RTν (t)K
T (t)K(t)ŷ(t) (12)

holds, with

ŷ(t) =
[
yT (t) ẏT (t) · · · y(ν−1)T (t)

]T
. (13)

This implies that if the system is strongly observable,
the states can be reconstructed by using the output and its
derivatives, which is a generalization of the LTI case [13].

IV. ROBUST OBSERVER DESIGN
In this section, an observer for system (1) which yields

exact state reconstruction in finite time is derived. The
presented concept is based on the ideas of [6, 8, 13] and
is described in detail subsequently.

A. Cascaded Observer Design

The idea of the cascaded observer structure is depicted in
Fig. 1. The H∞ stabilizer should provide a bounded esti-
mation error despite the unknown input. Using the bounded
observer innovation and its derivatives which are generated
by a HOSM differentiator, the error system can be recon-
structed in finite time because of the strong observability
property. Thus, the estimates generated by the H∞ filter
can be corrected and all the system states are reconstructed
in finite time. Both parts of the cascaded observer are now
explained in detail.

B. H∞ Stabilizer

In the present approach, the least-squares filter in [8] is
replaced by an H∞ filter as a stabilizer of the estimation
error [14, 15]. Thus, results for the time varying finite
horizon H∞ filter for a general LTV system (1) are recalled.
An H∞ filter which gives an estimate x̃(t) for the state
x(t) of (1) is designed following [15] by utilizing the next
proposition.

Proposition 2 (H∞ filter, [15]): Assume that w(t) ∈
L2, the initial condition x0 of (1) is unknown, the worst
case performance bound is defined according to

J := sup
‖w‖2 6=0

‖e‖22
‖w‖22 + xT0 Rx0

, (14)

where e(t) = x(t)− x̃(t) is the estimation error, R = RT is
a positive definite matrix. Then



Fig. 1. Cascaded observer structure

1) there exists a filter

˙̃x(t) = A(t)x̃(t) + P (t)CT (t) [y(t)− C(t)x̃(t)] . (15)

such that

J < γ2, γ > 0 (16)

holds for the performance bound (14) on a time interval
t ∈ [0, t1] with t1 ∈ R <∞ if and only if there exists
a uniformly bounded positive semidefinite solution
P (t) to the Riccati differential equation

Ṗ (t) =A(t)P (t) + P (t)AT (t)−

P (t)

(
CT (t)C(t)− 1

γ2
I

)
P (t) +D(t)D(t)T

(17)
with P (0) = P0 = R−1.

2) the unforced error system

ė(t) =
[
A(t)− P (t)CT (t)C(t)

]
e(t) (18)

is exponentially stable if w(t) ≡ 0.
Proof: See [15].

However, according to assumption (A2), the unknown input
is not necessarily in L2. Thus, the convergence properties of
the error system under assumption (A2) are explicitly stated
in the following proposition.

Proposition 3: If the unknown input is bounded according
to assumption (A2), then the estimation error e(t) of the
perturbed error system

ė(t) =
[
A(t)− P (t)CT (t)C(t)

]
e(t) +D(t)w(t) (19)

converges into a bounded neighborhood around the equilib-
rium e(t) = 0.

Proof: Consider the Lyapunov function candidate

V (e) = eTP−1e. (20)

Under the assumption that P is positive definite, V is also
positive definite. Its time derivative

V̇ = ėTP−1e− eTP−1ṖP−1e+ eTP−1ė

= eT
[(
A− PCTC

)T
P−1 − P−1ṖP−1+

P−1
(
A− PCTC

)]
e+ 2eTP−1Dw

= eT [−CTC − 1

γ2
I − P−1DDTP−1]e+

2eTP−1Dw

(21)

is negative definite for w(t) = 0 and thus due to the
boundedness of w(t) the estimation error e(t) converges
exponentially into a bounded neighborhood around the equi-
librium e(t) = 0.
Remark 1: If P is positive semidefinite, the proof can be
modified by using a perturbed Riccati equation, which has
a unique bounded positive definite solution for a sufficiently
small perturbation εI, ε > 0, see [14].
Remark 2: P0 is in some sense the confidence in the
knowledge of the initial state and thus can be regarded as
a tuning parameter in practical applications. A suboptimal
H∞ filter can be designed for system (1) by selecting γ and
checking the existence of (17). Searching for the minimal γ
for which (17) has a positive semidefinite solution iteratively
yields the suboptimal H∞ filter.

C. HOSM Corrector

To correct the state estimates, the robust differentiator by
Levant [16] is utilized in the observer. Thus, it is briefly
summarized here. Consider an unknown smooth signal f0(t)
where the r-th derivative f

(r)
0 (t) exists and has a known

Lipschitz constant i.e. |f (r+1)
0 (t)| < L. Then, the differen-

tiator [16] is defined in the recursive form

ż0 = v0 = −λrL1/(r−1)|z0 − f0(t)|r/(r+1)sign(z0 − f(t)) + z1,

ż1 = v1 = −λr−1L
1/r|z1 − v0|(r−1)/rsign(z1 − v0) + z2,

...
żr = −λ0Lsign(zr − vr−1),

(22)
with sufficiently large parameters λi. One possible choice of
parameters for a differentiator up to order 5 is λ0 = 1.1,
λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8, as proposed
in [16]. A tuning procedure to determine parameters for
arbitrary order differentiators is proposed in [17]. It is shown
in [16] that in the absence of noise the equations

|zi − f (i)0 (t)| = 0, i = 0, . . . , r (23)

holds after a finite transient time and thus this differentiator
can be used to exactly reconstruct the derivatives of f0(t).
The differentiator is now used to reconstruct the observer
error e(t) of (19). The output error is defined as

ey(t) = y(t)− C(t)x̃(t), (24)

which is bounded with bounded derivatives, see [8].



Proposition 4: The estimation error e(t) can be recon-
structed by using the output error ey(t) = C(t)e(t) and its
derivatives such that

ẽ(t) = H−1e (t)RTν,e(t)K
T (t)K(t)êy(t), (25)

with êy =
[
eTy ėTy · · · e

(ν−1)T
y

]T
and He(t) designed

for the error system according to proposition 1 and Rν,e
as the observability matrix for the triple (Ã(t), D(t), C(t)).
Ã(t) = A(t)−P (t)CT (t)C(t) is the dynamic matrix of the
error system.

Proof: It is shown in [8] that if system (1) is strongly
observable, then the error system can be reconstructed
by applying the relation in proposition 1 to the triple
(Ã(t), D(t), C(t)).

Theorem 2 (Cascaded Observer): Let (A1)-(A4) hold.
Then it is possible to design a cascaded observer for sys-
tem (1) consisting of a H∞ stabilizer according to Propo-
sition 2 and a HOSM corrector according to proposition 4
with the state estimate

x̂(t) = x̃(t) + ẽ(t). (26)

This yields an exact state reconstruction such that

ec(t) = x(t)− x̂(t) ≡ 0 (27)

holds for all t ≥ tf where tf represents a finite time instant.
Proof: The proof is analogous to the proof of [8,

Theorem 5.1], except by using Proposition 3 to show that
the estimation error of the H∞ filter is bounded.

V. LTV MODEL OF VEHICLE LATERAL
DYNAMICS

The model of the vehicle lateral dynamics is derived
in [18]. It is an extension of the linearized bicycle model for
a time varying longitudinal velocity v(t) and can be written
in the form of system (1) with

x(t) =
[
yr ẏr ψ ψ̇

]T
,

A(t) =

0 1 0 0
0 a1/v(t) −a1 a2/v(t)
0 0 0 1
0 a3/v(t) −a3 a4/v(t)

 ,
B(t) =

[
0 b1 0 b2

]T
,

D(t) =
[
0 (a2 − v2(t)) 0 a4

]T
,

C =

[
1 0 0 0
0 0 1 0

]
.

(28)

The states of this model are the vehicle’s relative lateral po-
sition yr, velocity ẏr, relative yaw angle ψ and its derivative
ψ̇. The unknown input is w(t) = 1/ρ(t) where ρ(t) is the
road curvature and the known control input u(t) = δ(t) is
the steering angle. The measured outputs are the relative
lateral position and the relative yaw angle. The (constant)

parameters are

a1 =
−2(Csf + Csr )

m
,

a3 =
Csr lr − Csf lf

Iz
,

b1 =
2Csf
m

,

a2 =
(Csr lr − Csf lf )

m
,

a4 =
−2(Csf l

2
f + Csr l

2
r)

Iz
,

b2 =
2lfCsf
m

(29)
with Csf and Csr as the front respectively rear cornering
stiffness parameter. The vehicle mass is denoted by m and
Iz is the corresponding yaw inertia. Moreover, lf and lr
are the distances from the front respectively rear axle to the
center of gravity. The normal load distribution on each tire
is assumed to be static. This assumption is valid for a slow
varying velocity; a more complex model where the effect
of acceleration dependent tire forces is considered can be
found in [19]. However, the approach presented here can be
extended to the model of [19].

VI. OBSERVER DESIGN FOR LATERAL VEHICLE
DYNAMICS

In this section, the robust observer design is carried out for
the vehicle lateral dynamics model presented in section V.
The model parameters are taken from [20] and are m =
1564 kg, Csf = Csr = 14× 104 Nm/rad, lf = 1.268m,
lr = 1.620m and Iz = 2230 kgm2. For the simulation it is
assumed, that the velocity is time varying with

v(t) = 25 + sin(t) m/s, (30)

and the steering angle is δ(t) = 0. The unknown road
curvature is also time varying according to

w(t) =
1

ρ(t)
= 0.5 sin(1.2t) m (31)

which is quite large compared to real operating conditions
(see e.g. [5]). However, the goal is to show that the state
estimates converge to the true values independent of the
unknown input.

A. Observer Design

It is straightforward to see that the observability index is
ν = 2 as the observability matrix yields

rank(R2) = rank
[
C
CA

]
= rank

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = n. (32)

Thus, as C(t)D(t) = 0, the matrix Jν(t) is the zero matrix
and it can directly be stated that the system is strongly
observable. First, the H∞ filter is designed to stabilize
the error system. Therefor, the Riccati equation (17)
corresponding to (28) is solved numerically for different
values of γ trying to iteratively find the smallest γ for
which a positive semidefinite solution exists. In the present
example, P0 as the identity matrix and γ = 25 yields
a positive definite solution of the Riccati equation over
the simulation duration. Thus, one can implement the
suboptimal H∞ filter as a stabilizer of the error dynamics



according to (15). To design the reconstruction from
proposition 4, it is clear that ImJν = {0} and thus K(t)
can be chosen as the identity matrix. The time varying
matrices Rν,e(t) and He(t) are determined during runtime
by utilizing the solution P (t) of the Riccati equation
from the H∞ stabilizer. The first derivative of the output
error ey(t) is then estimated by using algorithm (22). The
parameters are taken from section IV-C and the Lipschitz
constant was determined in simulation and set to L = 1.
As roads are constructed out of road segments with linear
curvature (so-called clothoids), theoretically, only the first
derivative of the unknown input is Lipschitz bounded and
thus, a differentiator with order r = 1 is applied to this
problem. If also higher order derivatives than ν − 1 are
Lipschitz bounded, a higher order differentiator could be
utilized to increase the accuracy as pointed out in [16].

B. Simulation Results
For simulation, the least squares filter [21, 8] is compared

to the presented H∞ approach. The parameters of the H∞
filter are γ = 25 and P0 as the identity matrix. For the
least squares filter, P0 also was chosen as identity matrix and
Q was tuned such that the peak in norm of the estimation
error ‖ec(t)‖ =

√
eTc (t)ec(t) during the initial transient

is approximately the same for both filters, which yields
Q = 1000 I . In Fig. 2 the norm of the estimation error
for both filters with and without the HOSM compensator is
depicted. It can be seen that without the HOSM compensator,
both, the least squares (LS) and the H∞ filter have a
bounded estimation error. However, the bound of the least
squares filter is about twice as large for this specific example.
Including the HOSM corrector, the estimation errors for both
concepts converge to zero in a finite time. The error of the
cascaded H∞-HOSM observer converges slightly faster. In
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Fig. 2. Norm of the estimation error for the reduced error system.

Fig. 3, the logarithmic norm of the estimation error of the
cascaded H∞-HOSM estimator is shown for different orders
of the robust differentiator (22). Only the first derivative is
used in the compensator which yields better accuracy of
the state reconstruction for higher order differentiators. This
coincides with the expected behavior [16].

VII. CONCLUSION AND OUTLOOK
This paper presented a linear time-varying cascaded ob-

server for the state estimation of the lateral vehicle dynamics.

0 1 2 3 4 5 6 7 8 9 10

−12
−10
−8
−6
−4
−2
0

Time /s

lo
g
‖e

c
(t
)‖

r = 1

r = 2

r = 3

r = 4

r = 5

Fig. 3. Logarithmic estimation error for the cascaded H∞/HOSM observer
for different orders of the differentiator (only the first derivative is used in
the observer).

Compared to a previously proposed cascaded scheme [8]
based on a least squares filter, this contribution utilizes an
H∞ filter which shows faster convergence to the true states
in the simulation example. The presented method could be
extended to more complex and accurate vehicle models such
as, e.g., the one presented in [19]. Open research questions
are the sensitivity of this method to model uncertainties and
measurement noise.
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