
1

Input Matrix Factorizations for Constrained Control Allocation
Martin Kirchengast, Martin Steinberger, Member, IEEE, and Martin Horn, Member, IEEE

Abstract—Control allocation is part of a hierarchical control architec-
ture and distributes the desired control effort of a controller among a set
of redundant actuators as it is used, for example, to meet high reliability
requirements. Before applying control allocation, a factorization of a
linear plant’s input matrix must be carried out. This work investigates the
influence of this factorization on two common algorithms for constrained
control allocation: Direct Allocation and Redistributed Pseudoinverse.
It is shown why the factorization does not affect the first method,
whereas it influences the latter one as soon as the number of actuator
saturations exceeds a certain threshold. On this basis a modification of
Redistributed Pseudoinverse is proposed, which allows the prioritization
of virtual control vector components. If actuator saturations prevent an
exact solution, the errors of those components with high priority are
preferentially forced to zero. Finally simulations demonstrate the main
results.

I. INTRODUCTION

There are several reasons for equipping systems with more ac-
tuators than necessary for ensuring controllability: fault tolerance,
maintenance, control reconfiguration, and high requirements in accu-
racy and dynamic response [1]. Due to input redundancy in general
infinitely many combinations of actuator actions result in the same
effect on the plant. In case of strong input redundancy different input
vectors result in the same dynamic behavior, whereas weak input
redundancy means that various inputs yield the same steady state
output [2]. An option to handle both of these types of plants1 is
the usage of control allocation (CA). Here a so-called high-level
controller deals with a modified plant model with virtual inputs and
the CA algorithm distributes them among the actuators ([1], [3]).
This control architecture can be found for example in aerospace
applications ([4], [5], and [6]), in marine vessel control ([7], [8]),
and in automotive applications ([9], [10]). Also, in the fault-tolerance
framework CA techniques are employed, e.g., in [11] and [12].

The first step to apply CA is transforming the model into a
form that facilitates the separation of the regulation from the control
allocation task ([1], [3]). For a strongly input-redundant plant model
that is linear with respect to its inputs, an input matrix factorization
has to be conducted, which is not unique for each plant. In [13]
transformation matrices are introduced for describing the relation
between factorizations and their influence on the most widely used
CA-method, Generalized Inverse, is examined. Although factorization
itself has no impact on CA via generalized inverses, it enables their
efficient computation having regard to actuator constraints (see [13]).

Up to now, the influence of input matrix factorization on CA
methods has not been examined to the author’s knowledge. It is not
obvious if the factorization influences the allocation results. The main
contributions of the present work are:
(a) It is shown that Direct Allocation (DA) remains unaffected.
(b) The factorization impact on Redistributed Pseudoinverse (RPINV)
is reduced to the number of active actuator constraints. It is proved
that in general the rank-reduction of the pseudoinverse entails devi-
ating allocation results for different factorizations.
(c) Above a certain number of active actuator constraints the desired

M. Kirchengast, M. Steinberger, and M. Horn are with the Institute of
Automation and Control, Graz University of Technology, 8010 Graz, Austria,
e-mail: martin.kirchengast@tugraz.at.

1However, the methods discussed in this work are intended for strongly
input-redundant plants.

control effort is generally not reached by RPINV. In order to address
this issue an enhanced version of that algorithm is proposed. Therein
one can specify allocation error components which should preferably
vanish. This objective is met by a change of factorization during
execution.

Consider the linear plant model

ẋ = Ax+Buu, (1)

with A ∈ Rn×n being the system matrix, the state vector x ∈ Rn,
Bu ∈ Rn×m is the input matrix, and u ∈ Rm being the input vector.
Assume that Bu does not have full column rank, i.e.

k = rk(Bu) < m, (2)

which indicates the input redundancy. The rank-nullity theo-
rem [14] yields the dimension of the right nullspace of Bu:
dim [Nr(Bu)] = m− k. Thus particular directions of control space
Rm are mapped to zero or, in other words, infinitely many input
vectors affect the dynamics of (1) in the same way. As a result
of (2) the input matrix can be factorized into virtual input matrix
Bv ∈ Rn×k and control effectivity matrix B ∈ Rk×m, i.e.

Bu = BvB (3)

and the ranks of all matrices are rk(Bv) = rk(B) = k. The
factorization (3) of Bu induces the alternative plant model

ẋ = Ax+Bvv (4a)

v = Bu (4b)

where v ∈ Rk is called virtual control vector and according to
(2), it has less elements than u. After designing a controller for
redundancy-free (4a) one has to choose a suitable CA algorithm,
which distributes the controller’s output v among the available
actuators u [3]. Typically actuators are constrained, i.e. only a subset

Ω =
{
u ∈ Rm

∣∣ui,min ≤ ui ≤ ui,max ∀i = 1, . . . ,m
}

(5)

of the m-dimensional (m-D) control space is admissible. Conse-
quently, a subset of k-D virtual control space is defined as

Φ = BΩ :=
{
v ∈ Rk

∣∣∃u ∈ Ω : v = Bu
}

(6)

and called attainable moment set (AMS, see [4] and [5]). Whereas
the mapping from Ω to Φ is unique, this is not true in the opposite
direction due to Ω’s higher dimension, i.e. for a given v ∈ Φ there
are infinitely many u ∈ Rm (not only in Ω) that fulfill (4b). The
main task of constrained CA is to solve the underdetermined system
of equations (4b) while avoiding that u /∈ Ω although v ∈ Φ [13].

II. INPUT MATRIX FACTORIZATION

There are infinitely many choices of Bv and B that fulfill (3) for
each input matrix Bu. For n = k the standard approach is selecting
Bv = Ik and B = Bu where Ik ∈ Rk×k is the identity matrix. In
case of n > k it is not always so obvious how to accomplish (3).
Singular value decomposition (SVD) and QR factorization, to name
but a few, are possible options. Transformation matrices are the basis
of the analysis of the factorization’s impact on the CA methods. It
is shown in [13] that for any pair of input matrix factorizations

Bu = Bv1B1 = Bv2B2 (7)

2

an invertible transformation matrix

T =
(
BT

v1Bv1

)−1

BT
v1Bv2 (8)

with T ∈ Rk×k exists, such that

Bv1T = Bv2 (9)

and
T−1B1 = B2. (10)

High-level control has to ensure that the states of system (1) follow
the desired trajectory no matter which factorization method has
been chosen. It is shown in [13] that for different input matrix
factorizations identical state vectors x1(t) ≡ x2(t) are achieved if

v2(t) = T−1v1(t) ∀t. (11)

Each input matrix factorization has its own attainable moment set

Φi =
{
vi ∈ Rk

∣∣∃u ∈ Ω : vi = Biu
}

∀i ∈ {1, 2}, (12)

whereas the admissible control space Ω stays the same. These facts
are exploited in the subsequent sections.

III. DIRECT ALLOCATION

Direct allocation (DA) uses geometric principles to compute u
from a given virtual control vector v. Its main advantage is its ability
to determine a u ∈ Ω for every v ∈ Φ, i.e. it facilitates the usage of
the entire AMS. Figures 1 and 2 give a visual interpretation of the DA
problem in case of m = 3 and k = 2. The following requirements
have to be met [5]:

• A half-line starting in the origin of Φ intersects its boundary
∂(Φ) in a single point, see Figure 2.

• Every point on ∂(Φ) uniquely maps to one point on ∂(Ω) (the
boundary of Ω) in each case, i.e.

v∗ ∈ ∂ (Φ) ⇒ ∃!u∗ ∈ ∂ (Ω) : v∗ = Bu∗. (13)

At first DA computes the intersection of vector v with the boundary
∂(Φ). This solution v∗ is always located on a (k-1)-D object and is
the image of one point u∗ on ∂(Ω). Now v∗ is scaled by a factor
0 < a ∈ R to match v. In order to get u the same scaling can be
applied to u∗ because of the linearity of the problem

v = av∗ = aBu∗ = B(au∗). (14)

If a > 1, the desired virtual control lies outside of Φ. In this case
the boundary-intersecting solution u∗ is chosen, which preserves the
desired virtual control direction ([4], [5])

u = αu∗ with α =

{
a if 0 < a ≤ 1
1 else

. (15)

Theorem 1: For any pair of input matrix factorizations (7) direct
allocation yields the same input vectors u1 ≡ u2 if the virtual control
vectors v1 and v2 fulfill (11).

Proof: Each factorization has its own boundary of the related
attainable moment set

∂(Φi) = {vi ∈ Φi|(bvi /∈ Φi) ∀ (b > 1)} ∀i ∈ {1, 2} (16)

with b ∈ R. For one factorization the boundary-intersections v∗
1 and

u∗
1 fulfill

v1 = a1v
∗
1 = a1B1u

∗
1. (17)

Using (11) the virtual control vector v2 can be expressed as

v2 = T−1v1 = a1T
−1v∗

1 = a1 T
−1B1︸ ︷︷ ︸
B2

u∗
1 (18)

u 3

u
2

3

admissible real control space:

6
5

2

u
1

1

8

4

20
-30

-20

-10

0

0

-30

10

20

30

40

-20 -10 0 -2010

7

20

boundary of
vertices of
u

DA

boundary intersection line
boundary intersection
null space

Fig. 1. DA computes the solution uDA (green ’o’, inside the box) for the
desired virtual control vdes (see Figure 2) by scaling down the boundary
intersection (blue ’+’). Moving along the (m-k)-D nullspace direction (black
dashed line) does not change the resulting virtual control.

-200 -150 -100 -50 0 50 100 150 200v
1

-100

-50

0

50

100

v 2

AMS:

2

1

3

4

5

6

7

8

boundary of
vertices of
boundary intersection line
boundary intersection
v

des

Fig. 2. 2-D virtual control space related to Figure 1: The numbered black
’x’ represent the vertices of Ω. Some of them are not part of ∂(Φ). For
vdes = [50 -25]T DA computes the intersection with ∂(Φ) and only checks
those (k-1)-D objects of ∂(Ω) for intersection which also belong to ∂(Φ).

in case of another factorization of the input matrix. Due to the
dimension reduction which takes place by the mapping from Ω to
Φ2 not all elements on ∂(Ω) lie on ∂(Φ2) but rather in the interior
of Φ2. However, only if B2u

∗
1 = T−1v∗

1 ∈ ∂(Φ2) DA will compute
the same real control vector for both factorizations. Let v∗

1 be located
on ∂(Φ1), i.e.

v∗
1 ∈ ∂(Φ1) ⇒ ∀ b > 1 : bv∗

1 /∈ Φ1. (19)

Assuming that T−1v∗
1 is in the interior of Φ2 means that T−1v∗

1 ∈
Φ2 and T−1v∗

1 /∈ ∂(Φ2), which is equivalent to

∃ b > 1 : bT−1v∗
1 ∈ Φ2. (20)

Utilizing (12) to rewrite (20) yields

∃ b > 1, ∃(bu) ∈ Ω : bT−1v∗
1 = bB2u. (21)

Now one can see from (10) that (21) is equivalent to
∃ b > 1, ∃(bu) ∈ Ω : bv∗

1 = bB1u, which means that v∗
1 lies in the

interior of Φ1, i.e. ∃ b > 1 : bv∗
1 ∈ Φ1 and this is contradictory to

(19). Therefore T−1v∗
1 is indeed on ∂ (Φ2) and so it follows from

(13) that DA will yield the same u for all factorizations.

IV. RECAP ON GENERALIZED INVERSES

As generalized inverses provide the foundation for RPINV this
section summarizes some of their properties. For every matrix
B ∈ Rk×m there exist generalized inverses (also known as pseu-
doinverses) P ∈ Rm×k satisfying at least one of the four so-called
Penrose-equations [15]. Since B is assumed to have full row rank
such a matrix P is a right-inverse of B, i.e. BP = Ik [15]. A
solution to the control allocation problem is

u = Pv, (22)

3

whereby those elements of u which exceed Ω are set to their extremal
values ([4] and [5]). Assuming two input matrix factorizations (7)
and a generalized inverse P1 for factorization 1 are known, the
corresponding generalized inverse for factorization 2 is given by [13]

P2 = P1T (23)

with transformation matrix T according to (8). It is evident that if
the virtual control vectors v1 and v2 satisfy (11) and the generalized
inverses fulfill (23) then (22) yields identical input vectors u1 ≡ u2

for both factorizations [13]. Thus CA via generalized inverses is not
affected by input matrix factorization.

The unconstrained control allocation problem (4b) has infinitely
many solutions and a reasonable choice is to pick that with the lowest
energy consumption (least-norm solution [16], [17]). Using a constant
positive definite weighting matrix W ≻ 0 and a constant offset vector
c ∈ Rm, an optimization problem can be formulated ([1], [18])

min
u

(u+ c)T W (u+ c) , (24)

which is subject to equality constraint (4b). The closed-form solution
is derived with the method of Lagrange multipliers and reads as

u = −c+B# (v +Bc) (25a)

B# = W−1BT
(
BW−1BT

)−1

. (25b)

B# ∈ Rm×k is called weighted pseudoinverse and if W = Im then
B# = B‡ is the Moore-Penrose pseudoinverse (MPP) [16].

V. REDISTRIBUTED PSEUDOINVERSE

Redistributed Pseudoinverse (RPINV) is an iterative process that
takes the actuator constraints into account. During the first step
the unconstrained solution according to the conventional weighted
pseudoinverse (25b) is calculated. If no controls exceed their limits,
no further steps are required. Otherwise, the actuators that violate
the constraints are fixed at their extremal values (saturated) and a
reduced pseudoinverse is computed for the remaining free controls.
This procedure is repeated until no new constraint violations occur
or all actuators are at their limits ([1], [18]). Let B0 be the control
effectivity matrix, uN the result of the N-th iteration, and u0 = 0.
Constraint violations are recorded in an offset vector

cN = [cN1 ... cNm]T (26a)

cNi =


−umax,i if uN−1

i ≥ umax,i

−umin,i if uN−1
i ≤ umin,i

0 else
with i = 1, ...,m (26b)

the ascendingly ordered set of free actuator indices reads as

JN = {l ∈ N+|cNl = 0} = {l1, ..., lj} (27)

and j = |JN | denotes its number. Using the i-th unit vector ei ∈ Rm

one can define the column-selection matrix

R =
[
el1 ... elj

]
. (28)

By means of (28) the modified control effectivity matrix with columns
related to saturated controls set to zero is given by

BN = B0RRT . (29)

The result of the N-th iteration of RPINV reads as

uN = −cN +B#
(
v +B0c

N
)

. (30)

Remark 1: The resulting virtual control after the application of
RPINV and neglecting potentially exceeded constraints is denoted as
vact. Considering v = B0u

N and (30) one obtains

vact = −B0c
N +B0B

#vdes +B0B
#B0c

N (31)

where vdes is the desired value coming from the controller.
One realizes from (31) that vdes can be reached in prin-
ciple if B0B

= Ik. Inserting (29) into (25b) yields
B# = W−1RRTBT

0

(
B0RRTW−1RRTBT

0

)−1
. In order to

accomplish BB# = B0B
= Ik the computation is altered into

B# = RRTW−1RRTBT
0

(
B0RRTW−1RRTBT

0

)−1

. (32)

A. Factorization influence

Whether the factorization affects RPINV is related with a possible
decrease of the input matrix’s rank.

Assumption 1: Every k × k submatrix of B0 is full rank.
Assumption 2: The number of free controls satisfies j ≥ k.
Theorem 2: Under Assumptions 1 and 2 RPINV yields the same

input vectors u1 ≡ u2 for any pair of input matrix factorizations (7)
if the virtual control vectors v1 and v2 fulfill (11).

Proof: During the first iteration (unconstrained solution) c1 is
zero for both factorizations. Considering (10), (29), and (32) the
weighted pseudoinverse for factorization 2 reads as

B#
2 =RRTW−1BN,T

1 T−T
[
T−1BN

1 W−1BN,T
1 T−T

]−1

=RRTW−1BN,T
1

(
BN

1 W−1BN,T
1

)−1

T = B#
1 T

(33)

and so u1
1 ≡ u1

2 follows from (11). Assume that j ≥ k actuators
remain free in iteration N ≥ 1. Because of uN−1

1 = uN−1
2 this leads

to the same changes in cN and BN
i for both factorizations i ∈ {1, 2}

and k = rk(BN
i) = min(k, j) still holds. Hence BN

i W−1BN,T
i is

still invertible and (33) can be applied again to show that uN
1 = uN

2 .

Remark 2: Assumption 1 guarantees that rk(BN) = k as long as
it contains k nonzero columns. If this assumption is not fulfilled,
zeroing columns can lead to a rank-reduction of BN although
Assumption 2 holds. Whether Theorem 2 holds depends in this case
not only on the number of saturated actuators but also on which of
them saturate.

In order to analyze the case of j < k assume that W = Im which
causes B# to become the MPP2, i.e. B# = B‡ = BT (BBT)−1.
Due to numerical reasons this calculation is not carried out directly,
but instead the SVD is used [16]. Consider matrix B as

B =

b11 · · · b1j 0 · · · 0
...

...
...

...
bk1 · · · bkj 0 · · · 0

 (34)

with j being the number of nonzero columns3 and singular values.
The SVD yields B = USV T with the orthonormal columns of
U ∈ Rk×k being the eigenvectors of BBT ,

S =

σ1 0 · · · 0
. . .

...
...

σk 0 · · · 0

 ∈ Rk×m (35)

containing the singular values σ1,...,σk of B (note that only the first
j of them are nonzero), and the orthogonal matrix V ∈ Rm×m. An
important observation is that in the first j columns of V the last
m− j rows are zero, because these columns are the eigenvectors of
the nonzero eigenvalues of BTB, whose m− j last rows are zero.
The MPP of B reads as

B‡ = V ΣUT (36)

2A generalization for arbitrary W ≻ 0 is presented later on. In order to
keep notations concise superscript ’N’ in BN is omitted from now on.

3W.l.o.g. one can assume the nonzero columns to be the first ones, because
columns of B and related elements in u may be appropriately interchanged.

4

with

Σ =



σ−1
1 . . .

σ−1
j

. . .
0 · · · 0
...

...
0 · · · 0


∈ Rm×k. (37)

One can see from (37) that B‡ is no longer a right-inverse because
rk(Σ) < k. Matrix Σ has m − j zero rows which means together
with (36) that the last m− j columns of V do not contribute to B‡.
Evaluating (36) and considering these insights yields

B‡ =



σ−1
1 v11 · · · σ−1

j v1j 0 · · · 0
...

...
...

...
σ−1
1 vj1 · · · σ−1

j vjj 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0


·UT (38)

with vpq being the element from V ’s p-th row and q-th column.
Equation (38) can be rewritten to

B‡ = R

v11 · · · v1j...
...

vj1 · · · vjj


σ

−1
1 0 · · · 0

. . .
...

...
σ−1
j 0 · · · 0

UT (39)

with R ∈ Rm×j being consistent with (28). Expression (39) can
also be evaluated if rk(B) < k, i.e. less than k actuators are free4.
Assuming j < k and taking all nonzero columns from (34), one
obtains

B̃ = BR =

b11 · · · b1j
...

...
bk1 · · · bkj

 ∈ Rk×j (40)

with rk(B̃) = j. Applying the SVD on B̃ results in B̃ = ŨS̃Ṽ T

with Ũ ∈ Rk×k, S̃ ∈ Rk×j , and Ṽ ∈ Rj×j . Note that the zero
columns of B do not affect U , because BBT = B̃B̃T . This implies
that U = Ũ and the nonzero singular values of B and B̃ are the
same. Furthermore, it can be shown that the elements of Ṽ coincide
with those from the top-left j × j-submatrix of V . The MPP of B̃
is now a left inverse and reads as B̃† = (B̃T B̃)−1B̃T = Ṽ Σ̃ŨT

[16] or more specifically

B̃† =

v11 · · · v1j...
...

vj1 · · · vjj


σ

−1
1 0 · · · 0

. . .
...

...
σ−1
j 0 · · · 0

UT . (41)

Comparing (39) and (41) one realizes that if j < k then

B‡ = RB̃†, (42)

i.e. the pseudoinverse of BN is the left inverse of its nonzero columns
augmented with rows of zeros.

Now an arbitrary weighting matrix W ≻ 0 is considered.
By means of Cholesky decomposition W can be factorized into
W = Ŵ TŴ and Ŵ ∈ Rm×m is an upper triangular matrix with
positive diagonal entries [14]. Assuming j ≥ k an auxiliary matrix
is introduced as

BW = B0RRTŴ−1 (43)

4In the conventional formula (BBT)−1 does not exist any more.

with rk(BW) = k following from (67) in Appendix A. Its MPP is

B‡
W = Ŵ−TRRTBT

0

(
B0RRT Ŵ−1Ŵ−T︸ ︷︷ ︸

(ŴT Ŵ)−1
=W−1

RRTBT
0

)−1

.

(44)
Comparing (32) and (44) it follows that the weighted pseudoinverse
of B can be computed by

B# = RRTŴ−1B‡
W . (45)

Lemma 1: In case of j < k the weighting matrix has no influence
on the resulting pseudoinverse.

Proof: Combining (40) and (43) yields another auxiliary matrix

B̃W = BWR (46)

with B̃W ∈ Rk×j . Its MPP reads as
B̃†

W =
(
RT Ŵ−TRRTBT

0 B0RRT Ŵ−1R
)−1

RT Ŵ−TRRTBT
0 .

Right-multiplying a matrix with R selects according to (27) columns
with indices {l1, ..., lj} and left-multiplying with RT selects rows
with identical indices. Therefore RTŴ−TR and RTŴ−1R are
triangular matrices with positive diagonal entries which guarantees
invertibility. It follows that

B̃†
W =

(
RTŴ−1R

)−1 (
B̃T B̃

)−1

B̃T (47)

and together with (42) and (45) one obtains

B# = R
(
RTŴ−1R

)(
RTŴ−1R

)−1 (
B̃T B̃

)−1

B̃T

= R
(
B̃T B̃

)−1

B̃T = RB̃† = B‡
. (48)

Assumption 3: Two input matrix factorizations (7) are related by
means of a transformation matrix T with orthogonal columns, i.e.

TT T = Ikd (49)

with d ∈ R \ {0}.
Theorem 3: Under Assumption 3 RPINV yields identical input

vectors u1 ≡ u2 for any j ≥ 0 if v1 and v2 fulfill (11).
Proof: If j ≥ k Theorem 2 holds. In case of j < k Lemma 1

enables to restrict considerations on W = Im. Using (10) leads to
B̃2 = T−1B̃1 and according to (48) the rank deficient pseudoinverse
for the second factorization is

B#
2 = R

[
B̃T

1 T
−TT−1B̃1

]−1

B̃T
1 T

−T . (50)

Considering (49) yields T−TT−1 = Ik
1
d

and taking that out of the
bracket one obtains IkdT

−T = T . Consequently B#
2 = B#

1 T and
together with (11) u1 ≡ u2 follows.

B. Optimal factorization

Suppose j < k and W = Im (see Lemma 1). Due to B# lacking
full column rank vdes will generally not be reached any more because
B0B

̸= Ik. Of course this raises the question whether there is an
optimal factorization of Bu which makes the error between vdes

and vact as small as possible. But actually it is more reasonable
to minimize the deviation between desired and actual effect on the
plant: ev = Bv (vdes − vact). Using (10), (11), (31) and (50) one
can formulate the optimization problem

min
T

∥∥ev

∥∥ = min
T

∥∥MT (vdes +B0c)︸ ︷︷ ︸
ṽ

∥∥ (51a)

MT = BvT
(
Ik − T−1B0B

#
T

)
T−1 (51b)

B#
T = R

(
B̃TT−TT−1B̃

)−1

B̃TT−T (51c)

umin ≤ −c+B#
T T−1 (vdes +B0c) ≤ umax (51d)

5

If ṽ ∈ Nr (MT), the desired value vdes could be reached, although
B0B

̸= Ik provided that vdes ∈ Φ. It turns out that both MT

(because of B̃) and ṽ depend on vdes and so there is no universally
best factorization that could be computed offline. Problem (51) is
a nonlinear constrained optimization problem which makes online
solving quite sophisticated. RPINV is intended to be a low-effort
method for considering actuator constraints and so this is not a
reasonable option.

C. Effect prioritization

Instead of minimizing the total effect error ev it is easier to focus
on certain components. The basic idea of the approach is to exploit the
rank deficiency of MT by introducing zero rows. In this subsection
n = k and w.l.o.g. Bv = Ik are assumed and therefore (51b)
simplifies to

MT = Ik −B0B
#
T T−1. (52)

Lemma 2: For all j < k and all invertible transformations
T ∈ Rk×k the rank of (52) is k − j.

Proof: Define B̃T = T−1B̃ and (67) in Appendix A yields
rk(B̃T) = j. According to (48) one obtains B#

T = RB̃†
T . From

Lemma 1 of [15] it follows that rk(B̃†
T) = rk(B̃T) = j and

repeatedly applying (67) results in

j = rk(RB̃†
T) = rk(B#

T T−1). (53)

Note that B0B
#
T T−1 = B̃B̃†

TT
−1 and once again (67) reveals that

rk(B0B
#
T T−1) = j. (54)

Appendix B provides the rank of (52) by means of (68). Recall that
B0B

#
T = B̃B̃†

T and I†
k = Ik. Thus B0B

#
T T−1I†

kB0B
#
T T−1 =

B̃ B̃†
TT

−1B̃︸ ︷︷ ︸
Ij

B̃†
TT

−1 = B0B
#
T T−1.

Let C = [Ik B0B
#
T T−1] ∈ Rk×2k, C =

[
Ik

B0B
#
T T−1

]
∈ R2k×k.

Due to rk(Ik) = k it follows that C has full row rank
and C full column rank. Consequently, (54) and (68) yields
rk(Ik −B0B

#
T T−1) = rk(Ik)− rk(B0B

#
T T−1) = k − j.

Theorem 4: Let B̃j ∈ Rj×j be an invertible submatrix of
B̃ consisting of rows with indices {r1, ..., rj}. Then there exist
invertible matrices T ∈ Rk×k which transform (52) such that its
rows with indices {r1, ..., rj} contain only zeros.

Proof: rk(MT) = k − j due to Lemma 2 which means it can
contain up to j zero rows. W.l.o.g. it is assumed that the first j rows
of (52) should be zeroed. Using the partitioned matrices

B̃ =

[
B̃j

B̃k−j

]
with B̃j ∈ Rj×j and B̃k−j ∈ R(k−j)×j (55)

and

B̃†
TT

−1 =
[
Ã1 Ã2

]
with Ã1 ∈ Rj×j and Ã2 ∈ Rj×(k−j) (56)

the first j rows of MT = Ik − B̃B̃†
TT

−1 read as

0j×k
!
=

[
Ij − B̃jÃ1 B̃jÃ2

]
(57)

where 0j×k ∈ Rj×k is a zero-matrix. It follows that Ã1 = B̃−1
j

and Ã2 = 0j×(k−j). Defining T = T−1 one obtains

B̃†
TT =

[
B̃−1

j 0j×(k−j)

]
=

(
B̃TT

T
TB̃

)−1

B̃TT
T
T . (58)

After partitioning T = [T j T k−j] with T j ∈ Rk×j and T k−j ∈
Rk×(k−j) one can split (58) into two equations. One of them is

0j×(k−j) =
(
B̃TT

T
TB̃

)−1

B̃TT
T︸ ︷︷ ︸

B̃
†
T

T k−j (59)

where rk(B̃†
T) = j (see Lemma 2). Hence the bracket term in

(59) is full rank. Considering the left nullspace Nl(B̃
T) = 0T and

partitioning of B̃T and T
T

, equation (59) simplifies to

0j×(k−j) =
[
B̃T

j B̃T
k−j

] [T
T
j

T
T
k−j

]
T k−j . (60)

Rewriting (60) yields

0j×(k−j) =
(
B̃T

j T
T
j + B̃T

k−jT
T
k−j

)
︸ ︷︷ ︸

∈ Rj×k

T k−j (61)

Note that dim
[
Nl(T k−j)

]
= j, which coincides with the number

of rows in the bracket term of (61). Thus one can choose an arbitrary
T k−j with rk(T k−j) = k− j and determine a matrix NT ∈ Rj×k

such that span(NT) = Nl(T k−j). Finally, the remaining columns
of T are given by

T j =
(
NT − B̃T

k−jT
T
k−j

)T

B̃−1
j . (62)

Now that T is completely determined it must be shown that it satisfies

B̃−1
j =

(
B̃TT

T
TB̃

)−1

B̃TT
T
T j , (63)

i.e. the second matrix equation in (58). Observe that the last
k − j columns of B̃TT

T [
T j T k−j

]
are all zeros due to

(60). Hence it follows that B̃TT
T
TB̃ = B̃TT

T
T jB̃j and in-

serted into (63) results indeed in
(
B̃TT

T
T jB̃j

)−1

B̃TT
T
T j =

B̃−1
j

(
B̃TT

T
T j

)−1

B̃TT
T
T j = B̃−1

j .

Based on Theorem 4 an Enhanced Redistributed Pseudoinverse
(ERPINV) algorithm is proposed. This RPINV extension allows to
specify a priority list containing the numbers of k − 1 components
of ev which should be made zero. As soon as j < k it takes the
following measures:
ERPINV:

1) priority list items 1, ..., j determine the rows which form B̃j

2) if det(B̃j) = 0 then abort
3) choose an arbitrary T k−j with rk(T k−j) = k−j and compute

a basis of its left nullspace NT ∈ Rj×k

4) evaluate T j =
(
NT − B̃T

k−jT
T
k−j

)T

B̃−1
j to get the inverse

transformation T = T−1

5) use (10) and (11) to transform B, B0, and vdes

6) continue according to ordinary RPINV to get uN

Note that these extensions do not require any modifications of
the controller as the desired virtual control vector is transformed
according to the new factorization.

Remark 3: Apparently zeroing components of (52) only works if
the resulting uN ∈ Ω because otherwise (31) is not fulfilled which
is the basis for the derivation of (52).

6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t [s]

-10

-5

0

x 1
state variables

RPINV 1 (MSE: 9.41)
RPINV 2 (MSE: 9.41)
RPINV 3 (MSE: 9.76)
ERPINV (MSE: 4.07)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t [s]

-4

-2

0

x 2

RPINV 1 (MSE: 4.61)
RPINV 2 (MSE: 4.61)
RPINV 3 (MSE: 1.37)
ERPINV (MSE: 0.33)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t [s]

0

10

20

x 3

RPINV 1 (MSE: 33.38)
RPINV 2 (MSE: 33.38)
RPINV 3 (MSE: 37.01)
ERPINV (MSE: 47.94)

Fig. 3. States over time using RPINV for factorizations 1 - 3 and ERPINV.

VI. SIMULATION RESULTS

In this section the results for RPINV are demonstrated. The control
goal is to stabilize the origin x = 0. The state space representation
of the plant reads as

ẋ =

 1 0 −1
1 2 0

−1 1 2

x+

−6 1 1 10
−4 0 9 −5
−1 8 3 4


︸ ︷︷ ︸

Bu

u (64)

and the input constraints are −umax ≤ u ≤ umax with
uT

max = [1 13 13 12]. Three factorizations of Bu are tested:

Factorization 1:

Bv1 =

 1 0 0
2
3
− 4

47
1

1
6

1 0

 B1 =

−6 1 1 10
0 47

6
17
6

7
3

0 0 403
47

− 539
47


Factorization 2:

Bv2 =

 −7 4 4

− 142
141

1516
141

139
141

17
6

− 1
3

26
3

 B2 =


14
27

73
243

5447
11421

− 15022
11421

− 8
27

− 23
486

19673
22842

− 7625
11421

− 8
27

200
243

2551
11421

9889
11421


Factorization 3:

Bv3 =

 1 0 0
0 1 0
0 0 1

 B3 =

−6 1 1 10
−4 0 9 −5
−1 8 3 4


The transformation matrix describing the relationship between
factorizations 1 and 2 has orthogonal columns and reads as

T12 =

−7 4 4
4 −1 8
4 8 −1

 . (65)

The weighting matrix is W = diag(1
umax,1

, ..., 1
umax,4

). A linear
state-controller is chosen for stabilization. For each factorization the
controller gain matrix Ki is chosen in order to place all eigenvalues
of the closed-loop system matrices (A − BviKi) for i = 1, 2, 3
at −12. The initial state at t = 0 is xT

0 = [−7 − 2 14].
In Figures 3 and 4 one can see a different behavior depending

on the factorization because the number of free controls is smaller
than k = 3. Due to the special transformation matrix T12 there
is no deviation between factorizations 1 and 2. Figures 5 and 6
show desired and actually achieved effect on the plant as well as
the effect error ev for RPINV and ERPINV respectively. Initially
ERPINV uses factorization 3 because Bv3 = I3 is required. It is

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t [s]

-1

-0.5

0

u 1

control inputs

RPINV RPINV RPINV ERPINV

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t [s]

-20

-10

0

u 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t [s]

-10

0

10

u 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t [s]

0

10

20

u 4

Fig. 4. Inputs over time using RPINV for factorizations 1 - 3 and ERPINV.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

ef
fe

ct
 1

effect of RPINV

t [s]

desired effect
real effect

0 0.1 0.2 0.3 0.4 0.5
0

50

100

e v,
1

effect-DELTA of RPINV

t [s]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

ef
fe

ct
 2

t [s]

desired effect
real effect

0 0.1 0.2 0.3 0.4 0.5
0

20

40

e v,
2

t [s]

0 0.1 0.2 0.3 0.4 0.5
-300

-200

-100

0

ef
fe

ct
 3

t [s]

desired effect
real effect

0 0.1 0.2 0.3 0.4 0.5
-200

-100

0

100

e v,
3

t [s]

Fig. 5. Desired and achieved effect on plant for RPINV with factorization 3.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

ef
fe

ct
 1

effect of ERPINV

t [s]

desired effect
real effect

0 0.1 0.2 0.3 0.4 0.5
-5

0

5
e v,

1

10-13effect-DELTA of ERPINV

t [s]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

ef
fe

ct
 2

t [s]

desired effect
real effect

0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

e v,
2

10-12

t [s]

0 0.1 0.2 0.3 0.4 0.5
-300

-200

-100

0

ef
fe

ct
 3

t [s]

desired effect
real effect

0 0.1 0.2 0.3 0.4 0.5
-200

-100

0

100

e v,
3

t [s]

Fig. 6. Desired and achieved effect on plant for ERPINV with prioritization
of ev,1 and ev,2.

configured to prefer vanishing error components ev,1 and ev,2 as
recognizable in Figure 6. This also influences the performance in
bringing the corresponding state variables to zero as illustrated by the
mean squared errors (MSE) in Figure 3. The required transformation
matrix is computed online and depends on which actuators saturate.
In this example an approximation of one possible result is

T−1 ≈

−
3155
10844

− 5680
33393

1190
3253

− 3397
8324

− 1410
9977

16862
22085

− 8543
30064

− 4075
19103

9647
15364

 . (66)

7

VII. CONCLUSION

This work investigates the impact of input matrix factorization
on two algorithms for constrained control allocation. The usage
of transformation matrices allows to show why DA is invariant
under factorization, while RPINV can be influenced depending on
the number of actuator saturations. Only those factorizations which
are connected by means of transformation matrices with orthogonal
columns yield identical RPINV results under all circumstances. In
other cases it is crucial when zeroing columns of the control effec-
tivity matrix leads to its rank-reduction, because then the resulting
virtual control vector starts to deviate from the desired one. The
rank-reduction often prevents RPINV from achieving the desired
effect on the plant. It is shown that by changing the factorization
online depending on the desired virtual control one could reduce
the deviation. But the complex structure of the optimization problem
would stand in contrast to the simplicity of RPINV. If an electronic
control unit is capable of handling optimization problems, it is more
reasonable to solve the CA-problem with actuator constraints itself
instead of using RPINV.

Rather than solving the optimization problem online it is possible
to make a certain number of error components zero (ERPINV)
depending on the rank of the reduced pseudoinverse. This is ac-
complished by a change of input matrix factorization, which is
completely transparent to the controller. It allows a prioritization of
error components in case of a rank deficient pseudoinverse originating
from actuator saturations.

APPENDIX A
RANK OF MATRIX PRODUCT

Given A ∈ Rm×n and B ∈ Rn×o their ranks satisfy (see [14])

rk(A) + rk(B)− n ≤ rk(AB) ≤ min [rk(A), rk(B)] . (67)

APPENDIX B
RANK OF MATRIX DIFFERENCE

Assume two matrices A and B have the same size then one can
conclude according to Theorem 17 in [19] that

rk ([A B]) = rk(A) = rk

([
A
B

])
and BA†B = B

⇕
rk(A−B) = rk(A)− rk(B).

(68)

ACKNOWLEDGMENT

The project leading to this development has received funding
from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement
No 734832.

REFERENCES

[1] T. A. Johansen and T. I. Fossen, “Control allocation - a survey,”
Automatica, vol. 49, pp. 1087–1103, May 2013.

[2] L. Zaccarian, “Dynamic allocation for input redundant control systems,”
Automatica, vol. 45, pp. 1431–1438, Mar. 2009.

[3] O. Härkegard and S. T. Glad, “Resolving actuator redundancy - optimal
control vs. control allocation,” Automatica, vol. 41, pp. 137–144, Jan.
2005.

[4] W. Durham, “Constrained control allocation,” Journal of Guidance,
Control, and Dynamics, vol. 17, pp. 717–725, Jul. 1993.

[5] K. A. Bordignon, “Constrained control allocation for systems with
redundant control effectors,” Ph.D. dissertation, Virginia Polytechnic
Institute and State University, 1996.

[6] P. A. Servidia and R. S. Pena, “Spacecraft thruster control allocation
problems,” IEEE Transactions on Automatic Control, vol. 50, pp. 245–
249, Feb. 2005.

[7] T. A. Johansen, T. P. Fuglseth, P. Tondel, and T. I. Fossen, “Optimal
constrained control allocation in marine surface vessels with rudders,”
Control Engineering Practice, vol. 16, pp. 457–464, 2008.

[8] T. I. Fossen, T. A. Johansen, and T. Perez, “A survey of control allocation
methods for underwater vehicles,” in Underwater Vehicles. InTech,
2009.

[9] Y. Chen and J. Wang, “Fast and global optimal energy-efficient control
allocation with applications to over-actuated electric ground vehicles,”
IEEE Transactions on Control Systems Technology, vol. 20, pp. 1202–
1211, Sep. 2012.

[10] J. Brembeck and P. Ritzer, “Energy optimal control of an over actuated
robotic electric vehicle using enhanced control allocation approaches,” in
Proc. of 2012 Intelligent Vehicles Symposium, Alcalá de Henares, Spain,
Jun. 2012, pp. 322–327.

[11] H. Alwi and C. Edwards, “Sliding mode ftc with on–line control
allocation,” in Proc. of 49th IEEE Conference on Decision and Control,
San Diego, USA, Dec. 2006, pp. 5579–5584.

[12] A. Cristofaro and T. A. Johansen, “Fault-tolerant control allocation with
actuator dynamics: Finite-time control reconfiguration,” in Proc. of 53th
IEEE Conference on Decision and Control, Los Angeles, USA, dec
2014, pp. 4971–4976.

[13] M. Kirchengast, M. Steinberger, and M. Horn, “A new method to
compute generalized inverses for control allocation,” in Proc. of the 55th
IEEE Conference on Decision and Control, Las Vegas, USA, dec 2016,
pp. 5328–5334.

[14] R. A. Horn and C. R. Johnson, Matrix Analysis, 1st ed. New York:
Cambridge University Press, 2006.

[15] A. Ben-Israel and T. N. Greville, Generalized Inverses: Theory and
Applications, 2nd ed., ser. CMS Series in Mathematics. Springer, 2003.

[16] W. Ford, Numerical Linear Algebra with Application, 1st ed. Elsevier
Academic Press, 2015.

[17] S. Boyd and L. Vandenberghe, Convex Optimization, 7th ed. New York:
Cambridge University Press, 2009.

[18] M. W. Oppenheimer, D. B. Doman, and M. A. Bolender, “Control allo-
cation for over-actuated systems,” in Proc. of 2006 14th Mediterranean
Conference on Control and Automation (MED’06), Ancona, Italy, Jun.
2006, pp. 1–6.

[19] G. Marsaglia and G. P. H. Styan, “Equalities and inequalities for ranks
of matrices,” Linear and Multilinear Algebra, vol. 2, no. 3, pp. 269–292,
1974.

